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Abstract—Graphical models provide a powerful formalism for
statistical signal processing. Due to their sophisticated modeling
capabilities, they have found applications in a variety of fields
such as computer vision, image processing, and distributed sensor
networks. In this paper, we present a general class of algorithms
for estimation in Gaussian graphical models with arbitrary struc-
ture. These algorithms involve a sequence of inference problems
on tractable subgraphs over subsets of variables. This framework
includes parallel iterations such as embedded trees, serial iter-
ations such as block Gauss—Seidel, and hybrid versions of these
iterations. We also discuss a method that uses local memory at
each node to overcome temporary communication failures that
may arise in distributed sensor network applications. We ana-
lyze these algorithms based on the recently developed walk-sum
interpretation of Gaussian inference. We describe the walks
“computed” by the algorithms using walk-sum diagrams, and
show that for iterations based on a very large and flexible set of
sequences of subgraphs, convergence is guaranteed in walk-sum-
mable models. Consequently, we are free to choose spanning trees
and subsets of variables adaptively at each iteration. This leads to
efficient methods for optimizing the next iteration step to achieve
maximum reduction in error. Simulation results demonstrate that
these nonstationary algorithms provide a significant speedup in
convergence over traditional one-tree and two-tree iterations.

Index Terms—Distributed estimation, Gauss—Markov random
fields, graphical models, maximum walk-sum block, maximum
walk-sum tree, subgraph preconditioners, walk-sum diagrams,
walk-sums.

1. INTRODUCTION

RAPHICAL models offer a convenient representation

for joint probability distributions and convey the Markov
structure in a large number of random variables compactly.
A graphical model [1], [2] is a collection of variables defined
with respect to a graph; each vertex of the graph is associated
with a random variable and the edge structure specifies the
conditional independence properties among the variables. Due
to their sophisticated modeling capabilities, graphical models
[also known as Markov random fields (MRFs)] have found
applications in a variety of signal processing tasks involving
distributed sensor networks [3], images [4], [5], and computer
vision [6]. Our focus in this paper is on the important class
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of Gaussian graphical models, also known as Gauss—Markov
random fields (GMRFs), which have been widely used to model
natural phenomena in many large-scale estimation problems
(71, [8].

In estimation problems in which the prior and observation
models have normally distributed random components, com-
puting the Bayes least-squares estimate is equivalent to solving a
linear system of equations specified in terms of the information-
form parameters of the conditional distribution. Due to its cubic
computational complexity in the number of variables, direct ma-
trix inversion to solve the Gaussian estimation problem is in-
tractable in many applications in which the number of variables
is very large (e.g., in oceanography problems [8] the number of
variables may be on the order of 10°). For tree-structured MRFs
(i.e., graphs with no cycles), belief propagation (BP) [9] pro-
vides an efficient linear complexity algorithm to compute exact
estimates. However, tree-structured Gaussian processes possess
limited modeling capabilities [10]. In order to model a richer
class of statistical dependencies among variables, one often re-
quires loopy graphical models. As estimation on graphs with
cycles is substantially more complex, considerable effort has
been and still is being put into developing methods that over-
come this computational barrier, including a variety of methods
that employ the idea of performing inference computations on
tractable subgraphs [11], [12]. The recently proposed embedded
trees (ET) iteration [10], [13] is one such approach that solves
a sequence of inference problems on trees or, more generally,
tractable subgraphs. If ET converges, it yields the correct condi-
tional estimates, thus providing an effective inference algorithm
for graphs with essentially arbitrary structure.

For the case of stationary ET iterations—in which the same
tree or tractable subgraph is used at each iteration—necessary
and sufficient conditions for convergence are provided in [10],
[13]. However, experimental results in [13] provide compelling
evidence that much faster convergence can often be obtained by
changing the embedded subgraph that is used from one iteration
to the next. The work in [13] provided very limited analysis for
such nonstationary iterations, thus leaving open the problem of
providing easily computable broadly applicable conditions that
guarantee convergence.

In related work that builds on [10], Delouille ef al. [14] de-
scribe a stationary block Gauss—Jacobi (GJ) iteration for solving
the Gaussian estimation problem with the added constraint that
messages between variables connected by an edge in the graph
may occasionally be “dropped.” The local blocks (subgraphs)
are assumed to be small in size. Such a framework provides
a simple model for estimation in distributed sensor networks
where communication links between nodes may occasionally
fail. The proposed solution involves the use of memory at each
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node to remember past messages from neighboring nodes. The
values in this local memory are used if there is a breakdown in
communication to prevent the iteration from diverging. How-
ever, the analysis in [14] is also restricted to the case of sta-
tionary iterations, in that the same partitioning of the graph into
local subgraphs is used at every iteration.

Finally, we note that ET iterations fall under the class of par-
allel update algorithms, in that every variable must be updated
in an iteration before one can proceed to the next iteration. How-
ever, serial schemes involving updates over subsets of variables
also offer tractable methods for solving large linear systems
[15], [16]. An important example in this class of algorithms is
block Gauss—Seidel (GS) in which each iteration involves up-
dating a small subset of variables.

In this paper, we analyze nonstationary iterations based on
an arbitrary sequence of embedded trees or tractable subgraphs.
We refer to these trees and subgraphs on which inference is per-
formed at each iteration as preconditioners, following the termi-
nology used in the linear algebra literature. We present a general
class of algorithms that includes the nonstationary ET and block
GS iterations, and provide a general and very easily tested con-
dition that guarantees convergence for any of these algorithms.
Our framework allows for hybrid nonstationary algorithms that
combine aspects of both block GS and ET. We also consider the
problem of failing links and describe a method that uses local
memory at each node to address this problem in general nonsta-
tionary parallel and serial iterations.

Our analysis is based on a recently introduced framework for
interpreting and analyzing inference in GMRFs based on sums
over walks in graphs [17]. We describe walk-sum diagrams that
provide an intuitive interpretation of the estimates computed by
each of the algorithms after every iteration. A walk-sum diagram
is a graph that corresponds to the walks “accumulated” after
each iteration. As developed in [17] walk-summability is an
easily tested condition which, as we will show, yields a simple
necessary and sufficient condition for the convergence of the
algorithms. As there are broad classes of models (including at-
tractive, diagonally dominant, and so-called pairwise-normaliz-
able models) that are walk-summable, our analysis shows that
our algorithms provide a convergent, computationally attractive
method for inference.

The walk-sum analysis and convergence results show that ar-
bitrary nonstationary iterations of our algorithms based on a
very large and flexible set of sequences of subgraphs or sub-
sets of variables converge in walk-summable models. Conse-
quently, we are free to use any sequence of trees in the ET al-
gorithm or any valid sequence of subsets of variables (one that
updates each variable infinitely often) in the block GS itera-
tion, and still achieve convergence in walk-summable models.
We exploit this flexibility by choosing trees or subsets of vari-
ables adaptively to minimize the error at iteration n based on
the residual error at iteration n — 1. To make these choices op-
timally, we formulate combinatorial optimization problems that
maximize certain reweighted walk-sums. We describe efficient
methods to solve relaxed versions of these problems. For the
case of choosing the “next best” tree, our method reduces to
solving a maximum-spanning tree problem. Simulation results
indicate that our algorithms for choosing trees and subsets of
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variables adaptively provide a significant speedup in conver-
gence over traditional approaches involving a single precondi-
tioner or alternating between two preconditioners.

Our walk-sum analysis also shows that local memory at each
node can be used to achieve convergence for any of the above
algorithms when communication failures occur in distributed
sensor networks. Our protocol differs from the description in
[14], and as opposed to that work, allows for nonstationary up-
dates. Also, our walk-sum diagrams provide a simple, intuitive
representation for the propagation of information with each
iteration.

One of the conditions for walk-summability in Section II-C
shows that walk-summable models are equivalent to models for
which the information matrix is an H-matrix [16], [18]. Several
methods for finding good preconditioners for such matrices have
been explored in the linear algebra literature, but these have been
restricted to either cycling through a fixed set of preconditioners
[19] or to so-called “multisplitting” algorithms [20], [21]. These
results do not address the problem of convergence of nonsta-
tionary iterations using arbitrary (noncyclic) sequences of sub-
graphs. The analysis of such algorithms along with the devel-
opment of methods to pick a good sequence of preconditioners
are the main novel contributions of this paper, and the recently
developed concept of walk-sums is critical to our analysis.

In Section II, we provide the necessary background about
GMRFs and the walk-sum view of inference. Section III de-
scribes all the algorithms that we analyze in this paper, while
Section IV contains the analysis and walk-sum diagrams that
provide interpretations of the algorithms in terms of walk-sum
computations. In Section V, we use the walk-sum interpreta-
tion of Section IV to show that these algorithms converge in
walk-summable models. Section VI presents techniques for
choosing tree-based preconditioners and subsets of variables
adaptively for the ET and block GS iterations respectively,
and demonstrates the effectiveness of these methods through
simulation. We conclude with a brief discussion in Section VII.
The Appendix provides additional details and proofs.

II. GAUSSIAN GRAPHICAL MODELS AND WALK-SUMS

A. Gaussian Graphical Models and Estimation
A graph G = (V, £) consists of a set of vertices V' and associ-

, where is the set of all unordered

v
2 2
pairs of vertices. A subset S C V is said to separate subsets
A, B C V if every path in G between any vertex in A and any
vertex in B passes through a vertex in S. A graphical model
[1], [2] is a collection of random variables indexed by the ver-
tices of a graph; each vertex s € V corresponds to a random
variable x5, and where for any A C V, 24 = {zs]s € A}. A
distribution p(zv ) is Markov with respect to G if for any sub-
sets A, B C V that are separated by some S C V, the subset of
variables x 4 is conditionally independent of xp given xg, i.e.,
p(za,zplrs) = p(zalrs) plzplrs).

We consider GMRFs {z,|s € V} parameterized by a mean
vector 1 and a positive-definite covariance matrix P (denoted
by P = 0): zv ~ N(u,P) [1], [22]. For simplicity, each

ated edges £ C
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T is assumed to be a scalar variable. An alternate natural pa-
rameterization for GMRFs is specified in terms of the informa-
tion matrix J = P~ (also called precision or concentration
matrix) and potential vector h = P~1 p, and is denoted by
zy ~ N~Y(h,J).Inparticular, if p(zy ) is Markov with respect
to graph G, then the specialization of the Hammersley—Clifford
theorem for Gaussian models [1], [22] directly relates the spar-
sity of .J to the sparsity of G: .J, ; # 0 if and only if the edge
{s,t} € & forevery pair of vertices s,t € V. The partial corre-
lation coefficient p, + is the correlation coefficient of variables
zs and x; conditioned on knowledge of all the other variables

[1]:
a Cov(Ts; T2\ {5,¢})

\/var(ars |2\ s,03)var(@e|T\ £s,13) N

_ Js,t
\/Js,th,t

Hence, J,; = 0 implies that z, and z, are conditionally inde-
pendent given all the other variables 1\ ¢, 1}

Let  ~ N7 (hpriors Jprior ) and suppose that we are given
noisy observations y = Cx + v of z, with v ~ N(0, S). The
goal of the Gaussian estimation problem is to compute an es-
timate 7 that minimizes the expected squared-error between T
and z. The solution to this problem is the mean of the posterior
distribution z|y ~ N~ (h, J), with J = Jpsior +CT S71C and
h = hprior+CT S~1y [23]. Thus, the posterior mean . = J~1h
can be computed as the solution to the following linear system:

Ps.t - (D)

(Jorior + CTS™1C)Z = hypior + CTS 'y & JZ =h. (2)
We note that .J is a symmetric positive-definite matrix. If C' and
S are diagonal (corresponding to local measurements) .J has the
same sparsity structure as that of .J,;i0r. The conditions for all
our convergence results and analysis in this paper are specified
in terms of the posterior graphical model parameterized by .J.
As described in the introduction, solving the linear system (2)
is computationally expensive by direct matrix inversion even
for moderate-size problems. In this paper, we discuss tractable
methods to solve this linear system.

B. Walk-Summable Gaussian Graphical Models

We assume that the information matrix J of a Gaussian model
defined on G = (V,£) has been normalized to have unit diag-
onal entries. For example, if D is a diagonal matrix containing
the diagonal entries of .J, then the matrix D—(/2) jp—1/2)
contains rescaled entries of J at off-diagonal locations and 1°s
along the diagonal. Such a rescaling does not affect the conver-
gence results of the algorithms in this paper.! However, rescaled
matrices are useful in order to provide simple characterizations
of walk-sums. Let R = I — J. The off-diagonal elements
of R are precisely the partial correlation coefficients from (1),
and have the same sparsity structure as that of .J (and conse-
quently the same structure as G). Let these off-diagonal en-
tries be the edge weights in G, i.e., R, ; = p,+ is the weight
of the edge {s,t}. A walk in G is defined to be a sequence
of vertices w = {w; }f_, such that {w;, w; 11} € & for each
1 =0,...,¢—1.Thus, there is no restriction on a walk crossing

!Although our analysis of the algorithms in Section III is specified for nor-

malized models, these algorithms and our analysis can be easily extended to the
un-normalized case. See Appendix A.
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the same node or traversing the same edge multiple times. The
weight of the walk ¢(w) is defined:

-1

A

= H qu‘ yWit1*
=0

Note that the partial-correlation matrix R is essentially a ma-
trix of edge weights. Interpreted differently, one can also view
each element of R as the weight of the length-1 walk between
two vertices. In general, (Rl ) is then the walk-sum ¢(s 5 t)
over the (finite) set of all length -¢ walks from s to ¢ [17], where
the walk-sum over a finite set is the sum of the weights of the
walks in the set. Based on this point of view, we can interpret
estimation in Gaussian models from (2) in terms of walk-sums:

Ps,t = ((I - R)_l)s.t =
=0

=Y s =1). )

Thus, the covariance between variables x5 and x, is the length-
ordered sum over all walks from s to ¢. This, however, is a very
specific instance of an inference algorithm that converges if the
spectral radius condition o(R) < 1 is satisfied (so that the ma-
trix geometric series converges). Other inference algorithms,
however, may compute walks in different orders. In order to
analyze the convergence of general inference algorithms that
submit to a walk-sum interpretation, a stronger condition was
developed in [17] as follows. Given a countable set of walks W,
the walk-sum over W is the unordered sum of the individual
weights of the walks contained in W:

£ lw

weW

In order for this sum to be well-defined, we consider the fol-
lowing class of Gaussian graphical models.

Definition 1: A Gaussian graphical model defined on G =
(V,€) is said to be walk-summable if the absolute walk-sums
over the set of all walks between every pair of vertices in G are
well-defined. That is, for every pair s,t € V,

>

wEW(s—t)

$(s — 1) 2 |p(w)] < oo.

Here, ¢ denotes absolute walk-sums over a set of walks.
W(s — t) corresponds to the set of all walks? beginning
at vertex s and ending at the vertex ¢ in G. Section II-C
lists some easily tested equivalent and sufficient conditions
for walk-summability. Based on the absolute convergence
condition, walk-summability implies that walk-sums over a
countable set of walks can be computed in any order and that
the unordered walk-sum ¢(s — t) is well-defined [24], [25].
Therefore, in walk-summable models, the covariances and
means can be interpreted as follows:

Ps,t = ¢(8 - t) (4)
= Z hePs; = Z hsp(s — t) Q)
seV sev

2We denote walk-sets by W but generally drop this notation when referring to
the walk-sum over W, i.e., the walk-sum of the set W(~) is denoted by ¢(~).



CHANDRASEKARAN et al.: ESTIMATION IN GAUSSIAN GRAPHICAL MODELS USING TRACTABLE SUBGRAPHS

where (3) is used in (4), and (4) in (5). In words, the covariance
between variables x and x; is the walk-sum over the set of all
walks from s to ¢, and the mean of variable x; is the walk-sum
over all walks ending at ¢ with each walk being reweighted by
the potential value at the starting node.

The goal in walk-sum analysis is to interpret an inference
algorithm as the computation of walk-sums in G. If the anal-
ysis shows that the walks being computed by an inference al-
gorithm are the same as those required for the computation of
the means and covariances above, then the correctness of the al-
gorithm can be concluded directly for walk-summable models.
This conclusion can be reached regardless of the order in which
the algorithm computes the walks due to the fact that walk-sums
can be computed in any order in walk-summable models. Thus,
the walk-sum formalism allows for very strong yet intuitive
statements about the convergence of inference algorithms that
submit to a walk-sum interpretation. Indeed, the overall tem-
plate for analyzing our inference algorithms is simple. First, we
show that the algorithms submit to a walk-sum interpretation.
Next, we show that the walk-sets computed by these algorithms
are nested, i.e., W,, C W,, 41, where W,, is the set of walks com-
puted at iteration n. Finally, we show that every walk required
for the computation of the mean (5) is contained in W,, for some
n. A key ingredient in our analysis is that in computing all the
walks in (5), the algorithms must not overcount any walks. Al-
though each step in this procedure is nontrivial, combined to-
gether they allow us to conclude that the algorithms converge in
walk-summable models.

C. Properties of Walk-Summable Models

Very importantly, there are easily testable necessary and suffi-
cient conditions for walk-summability. Let 2 denote the matrix
of the absolute values of the elements of R. Then, walk-summa-
bility is equivalent to either of the following [17]:

* o(R) < L

e I—R>0.

From the second condition, one can draw a connection to
H-matrices in the linear algebra literature [16], [18]. Specif-
ically, walk-summable information matrices are symmetric,
positive-definite H-matrices.

Walk-summability of a model is sufficient but not necessary
for the validity of the model (positive-definite information/co-
variance). Many classes of models are walk-summable [17], as
follows:

1) diagonally dominant models, i.e., for each s

Zt;és |Ts.e] < Js.s3
2) valid non-frustrated models, i.e., every cycle has an even
number of negative edge weights and I — R > 0; special
cases include valid attractive models (R;; > 0 for all
s,t € V) and tree-structured models;
3) pairwise normalizable models, i.e., there exists a di-
agonal matrix D > 0 and a collection of matrices
{Je = 0|(Je)st = 0if (s,t) # e, e € £} such that
J=D+  cee.
An example of a commonly encountered walk-summable model
in statistical image processing is the thin-membrane prior [26].
Further, linear systems involving sparse diagonally dominant
matrices are also a common feature in finite element approxi-
mations of elliptical partial differential equations [27].

e V,
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We now describe some operations that can be performed on
walk-sets, and the corresponding walk-sum formulas. These re-
lations are valid in walk-summable models [17].

« Let {U,},~_, be a countable collection of mutually dis-
joint walk-sets. From the sum-partition theorem for abso-
lutely summable series [25], we have that ¢ (US>, U,,) =
Yo, ¢(U,,). This implies that for a countable collection
of walk-sets {V,,}., where V,,_1 C V,, we have that
¢ (UL Ve) = lim,— oo #(V,,). This is easily seen by
defining mutually disjoint walk-sets {U, },_, with U, =
Vo\Vn_1.

e Letu = ugui ... Uend and v = UstartV1 - - - Vg(r) be walks
such that uepq = Vstart. The concatenation of the walks is
defined to be u - v £ UQUL - - - UendV1 - - - Vg(v)- NOW cON-
sider a walk-set 2/ with all walks ending at vertex ue,q and
a walk-set V with all walks starting at vstart = Uend- LThe
concatenation of the walk-sets ¢/, V is defined as follows:

UV E {u-vlueld,veV).

If every walk w € U ® V can be decomposed uniquely into
u€e€Uandv € Vsothat w = uw - v, thend ® V is said
to be uniquely decomposable into the sets U, V. For such
uniquely decomposable walk-sets, d(U @V) = ¢(U)p(V).
Finally, the following notational convention is employed in
the rest of this paper. We use wild-card symbols (x and e) to
denote a union over all vertices in G. For example, given a col-
lection of walk-sets (), we interpret W(x) as |J, oy W(s).
Further, the walk-sum over the set W() is defined p(W (%)) =
Y scv @(W(s)). In addition to edges being assigned weights,
vertices can also be assigned weights (for example, the poten-
tial vector h). A reweighted walk-sum of a walk w = wy . . . wy
with vertex weight vector h is then defined to be ¢(h;w) =
huw, #(w). Based on this notation, the mean of variable z, from
(5) can be rewritten as

pr = p(h;* — t). (6)

III. NONSTATIONARY EMBEDDED SUBGRAPH ALGORITHMS

In this section, we describe a framework for the computa-
tion of the conditional mean estimates in order to solve the
Gaussian estimation problem of Section II-A. We present three
algorithms that become successively more complex in nature.
We begin with the parallel ET algorithm originally presented
in [10], [13]. Next, we describe a serial update scheme that in-
volves processing only a subset of the variables at each itera-
tion. Finally, we discuss a generalization of these nonstationary
algorithms that is tolerant to temporary communication failure
by using local memory at each node to remember past messages
from neighboring nodes. A similar memory-based approach was
used in [14] for the special case of stationary iterations. The key
theme underlying all these algorithms is that they are based on
solving a sequence of inference problems on tractable subgraphs
involving all or a subset of the variables. Convergent iterations
that compute means can also be used to compute exact error
variances [10]. Hence, we restrict ourselves to analyzing itera-
tions that compute the conditional mean.
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A. Nonstationary Parallel Updates: Embedded Trees

Let S be some subgraph of the graph G. The stationary ET al-
gorithm is derived by splitting the matrix J = Js — K s, where
Js is known as the preconditioner and K s is known as the cut-
ting matrix. Each edge in G is either an element of S or £\S.
Accordingly, every nonzero off-diagonal entry of .J is either an
element of Js or of —Ks. The diagonal entries of .J are part of
Js.Hence, the matrix K s is symmetric, zero along the diagonal,
and contains nonzero entries only in those locations that corre-
spond to edges not included in the subgraph generated by the
splitting. Cutting matrices may have nonzero diagonal entries
in general, but we only consider zero-diagonal cutting matrices
in this paper. The splitting of .J according to S transforms (2) to
JsT = KsZ + h, which suggests an iterative method to solve
(2) by recursively solving JsZ(™) = Ksz("~1 + h, yielding a
sequence of estimates

7 = g3t (KSW*U " h) . 7

If Jg ! exists then a necessary and sufficient condition for the
iterates {#:(™)}22_ to converge to .J~ 1/, for any initial guess 7:(*)
is that o(Jg5 'K s) < 1[10]. ET iterations can be very effective
if applying Jg5 ! to a vector is efficient, e.g., if S corresponds to
a tree or, in general, any tractable subgraph.

A nonstationary ET iteration is obtained by letting J = Js,_ —
K, , where the matrices .Js, correspond to some embedded
tree or subgraph S,, in G and can vary in an arbitrary manner
with n. This leads to the following ET iteration:

7 = g5t (Ksnaz*"—l) + h) . @®)

Our walk-sum analysis proves the convergence of nonstationary
ET iterations based on any sequence of subgraphs {S,,}52, in
walk-summable models. Every step of the above algorithm is
tractable if applying ng to a vector can be performed effi-
ciently. Indeed, an important degree of freedom in the above
algorithm is the choice of S,, at each stage so as to speed up
convergence, while keeping the computation at every iteration
tractable. We discuss some approaches to addressing this issue
in Section VL.

B. Nonstationary Serial Updates of Subsets of Variables

We begin by describing the block GS iteration [15], [16]. For
eachn =1,2,...,1letV,, C V be some subset of V. The vari-
ables zy, = {xs : s € V,} are updated at iteration n. The
remaining variables do not change from iteration n — 1 to n. Let
J) = [J]v, be the |V,,| x |V;,|-dimensional principal subma-
trix corresponding to the variables V,,. The block GS update at
iteration n is as follows:

) =07 (Ry, vl + b)) ©)

~(n) _ ~(n—1)
Tye =Tye

(10)
Here, V¢ refers to the complement of the vertex set V,,. In (9),
Ry, v refers to the submatrix of edge weights of edges from
the vertices V.7 to V,,. Every step of the above algorithm is
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tractable as long as applying .J (M~ {0 a vector can be per-
formed efficiently.

We now present a general serial iteration that incorporates
an element of the ET algorithm of Section III-A. This update
scheme involves a single ET iteration within the induced sub-
graph of the update variables V,,. We split the edges £(V},) in
the induced subgraph of V,, into a tractable set S,, and a set of
cut edges £(V,,)\Sy. Such a splitting leads to a tractable sub-
graph S,, of the induced subgraph of V;,. That is, the matrix .J (")
is split as J(") = Js — K. This matrix splitting is defined
analogous to the splitting in Section III-A. The modified condi-
tional mean update at iteration n is as follows:

7y =I5

n

(Kgn :/E\S—z_l) + Ry;z,uff(‘%_l) + hvﬂ) (11D

~(n) _ ~(n—1)
JJVS —JJVS .

(12)
Every step of this algorithm is tractable as long as applying Jg 11
to a vector can be performed efficiently.

The preceding algorithm is a generalization of both the block
GS update (9)—(10) and the nonstationary ET algorithm (8), thus
allowing for a unified analysis framework. Specifically, by let-
ting S,, = £(V,,) for all n above, we obtain the block GS algo-
rithm. On the other hand, by letting V,, = V for all n, we recover
the ET algorithm. This hybrid approach also offers a tractable
and flexible method for inference in large-scale estimation prob-
lems, because it possesses all the benefits of the ET and block
GS iterations. We note that there is one potential complication
with both the serial and the parallel iterations presented so far.
Specifically, for an arbitrary graphical model with positive-def-
inite information matrix .J, the corresponding information sub-
matrix Js, for some choices of subgraphs S,, may be invalid or
even singular, i.e., may have negative or zero eigenvalues.3 Im-
portantly, this problem never arises for walk-summable models,
and thus we are free to use any sequence of embedded subgraphs
for our iterations and be guaranteed that the computations make
sense probabilistically. _

Lemma I: Let J be a walk-summable model, let V C V,
and let Js be the |V| x |V|-dimensional information matrix
corresponding to the distribution over some subgraph S of
the induced subgraph £(V'). Then, Js is walk-summable, and
Js = 0. ~

Proof: For every pair of vertices s,t € V, it is clear that
the walks between s and ¢ in S are a subset of the walks be-
tween these vertices in G, i.e., W(s -2 t) C W(s — t). Hence,
$(s =51) < (s — t) < oo, because .J is walk-summable.
Thus, the model specified by .Js is walk-summable. This allows
us to conclude that Js > 0 because walk-summability implies
validity of a model. O

C. Distributed Interpretation of (11)—(12) and Communication
Failure

We first reinterpret (11)—(12) as local message-passing steps
between nodes followed by inference within the subgraph

3For example, consider a five-cycle with each edge having a partial correlation
of —0.6. This model is valid (but not walk-summable) with the corresponding
J having a minimum eigenvalue of 0.0292. A spanning tree model .Js obtained
by removing one of the edges in the cycle, however, is invalid with a minimum
eigenvalue of —0.0392.
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S,. At iteration n, let x, denote the set of directed edges in
E(V,)\S, and from V¢ to V,:

Fin = {(5,0)|{s,1} € E(V,)\Spors € Vet €V, }.  (13)

The edge set x,, corresponds to the nonzero elements of the ma-
trices K5, and Ry, v in (11). Edges in x,, are used to commu-
nicate information about the values at iteration n — 1 to neigh-
boring nodes for processing at iteration n.

For each t € V,,, the message M (s — t) = Ry, a&"‘” is
sent at iteration n from s to ¢ using the links in &,,. Let M, (%)
denote the summary of all the messages received at node ¢ at
iteration n:

M, (t) = R, (1.

S

Z M(s—t)=
{s|(s,t)Ekn}

>

{SI(S’t)e’in}
(14)

Thus, each t € V,, fuses all the information received about
the previous iteration and combines this with its local potential
value h; to form a modified potential vector that is then used for
inference within the subgraph S,,:

B = IS M, (V) + hy,) (15)
where M,,(V,,) denotes the entire vector of fused messages
M, (t) for t € V,. An interesting aspect of these mes-
sage-passing operations is that they are local and only nodes
that are neighbors in G may participate in any communication.
If the subgraph S,, is tree-structured, the inference step (15)
can also be performed efficiently in a distributed manner using
only local BP messages [9]. We now present an algorithm that
is tolerant to temporary link failure by using local memory at
each node ¢ to store the most recent message M (s — t) re-
ceived at ¢ from s. If the link (s, ¢) fails at some future iteration
the stored message can be used in place of the new expected
message. In order for the overall memory-based protocol to
be consistent, we also introduce an additional post-inference
message-passing step at each iteration. To make the above
points precise, we specify a memory protocol that the network
must follow; we assume that each node in the network has
sufficient memory to store the most-recent messages received
from its neighbors. First, S,, must not contain any failed links;
every link {s,t} € £(V,,) that fails at iteration n must be a part
of the cut-set*: (s,t),(¢,$) € ky,. Therefore, the links S,, that
are used for the inference step (15) must be active at iteration 7.
Second, in order for nodes to synchronize after each iteration,
they must perform a post-inference message-passing step. After
the inference step (15) at iteration n, the variables in V,, must
update their neighbors in the subgraph S,,. That is, for each
t € V,,, a message must be received post-inference from every
s such that {s,t} € S,:

M(s — t) = R, .. (16)

4One way to ensure this is to select S,, to explicitly avoid the failed links. See
Section VI-B for more details.
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This operation is possible since the edge {s,¢} is assumed to
active. Apart from these two rules, all other aspects of the al-
gorithm presented previously remain the same. Note that every
new message received overwrites the existing stored message,
and only the most recent message received is stored in memory.

Thus, link failure affects only (14) in our iterative procedure.
Suppose that a message to be received at ¢ € V,, from node s is
unavailable due to communication failure. The message M (s —
t) from memory can be used instead in the fusion formula (14).
Let r,(s — t) denote the iteration count of the most recent
information at node ¢ about s at the information fusion step (14)
at iteration n. In general, r,(s — t) < n — 1, with equality
ift € V, and (s,t) € K, is active. With this notation, we can
rewrite (14):

M, (t) =

~Tn(s—1
Rt7s.’L'5”( )

Z M(s—1t)=
{s|(s,t)€n,1}

>

{s|(s,t)€n,1}
(17)

IV. WALK-SUM INTERPRETATION AND WALK-SUM DIAGRAMS

In this section, we analyze each iteration of the algorithms
of Section III as the computation of walk-sums in G. Our anal-
ysis is presented for the most general algorithm involving failing
links, since the parallel and serial nonstationary updates without
failing links are special cases. For each of these algorithms, we
then present walk-sum diagrams that provide intuitive, graph-
ical interpretations of the walks being computed. Examples that
we discuss include classic methods such as GJ and GS, and it-
erations involving general subgraphs. Throughout this section,
we assume that the initial guess 70 = 0, and we initialize
M(s — t) = 0and r1(s — t) = 0 for each directed edge
(s,t) € £.1In Section V, we prove the convergence of our algo-
rithms for any initial guess Z(%).

A. Walk-Sum Interpretation

For every pair of vertices s,t € V, we define a recursive
sequence of walk-sets. We then show that these walk-sets are
exactly the walks being computed by the iterative procedures in
Section III:

»wgaw:@MmHMy4@®wgiﬂLq
®W@ﬁbﬂ
UWs2=1), sevV, teV, (18)
Wa(s = t) =Wh_1(s = t), seV, teVy (19)
with
Wo(s = t) =10, s,teV. (20)

The notation in these equations is defined in Section II-C.

W, (+—e)(s — *) denotes the walks starting at node s com-

puted up to iteration r,,(x* — o). W(x @) o) corresponds

to a length-1 walk (called a hop) across a directed edge in
Kn. Finally, W(e S—>t) denotes walks within S,, that end
at t. Thus, the first RHS term in (18) is the set of previously
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computed walks starting at s that hop across an edge in k,,
and then propagate within S,, (ending at t). W(s Lt) is
the set of walks from s to ¢ that live entirely within S,,. To
simplify notation, we define ¢, (s — t) = p(W,(s — t?)
We now relate the walk-sets W, (s — t) to the estimate 7,
at iteration 7.

Proposition 1: Atiteration n = 0,1, ..., with Z(®) = 0, the
estimate for node ¢ € V' in walk-summable models is given by

B = hau(s = 1) = pu(hix — 1)

seV

2y

where the walk-sum is over the walk-sets defined by (18)—(20),
and 355") is computed using (15) and (17).

This proposition, proven in Appendix B, states that each of
our algorithms has a precise walk-sum interpretation. A conse-
quence of this statement is that no walk is over-counted, i.e.,
each walk in W,, submits to a unique decomposition with re-
spect to the construction process (18)—(20) (see proof for de-
tails), and appears exactly once in the sum at each iteration.
As discussed in Section V (Propositions 3 and 4), the iterative
process does even more; the walk-sets at successive iterations
are nested and, under an appropriate condition, are “complete”
so that convergence is guaranteed for walk-summable models.
Showing and understanding all these properties are greatly fa-
cilitated by the introduction of a visual representation of how
each of our algorithms computes walks, and that is the subject
of Section I'V-B.

B. Walk-Sum Diagrams

In the rest of this section, we present a graphical interpreta-
tion of our algorithms, and of the walk-sets W,, (18)—(20) that
are central to Proposition 1 (which in turn is the key to our con-
vergence analysis in Section V). This interpretation provides a
clearer picture of memory usage and information flow at each it-
eration. Specifically, for each algorithm we construct a sequence
of graphs G("™) such that a particular set of walks in these graphs
corresponds exactly to the sets W,, (18)-(20) computed by the
sequence of iterates Z("). The graphs G are called walk-sum
diagrams. Recall that S,, corresponds to the subgraph used at
iteration n, generally using some of the values computed from
a preceding iteration. The graph G() captures all of these pre-
ceding computations leading up to and including the computa-
tions at iteration 7.

As a result, G(") has very specific structure for each algo-
rithm. It consists of a number of /evels—within each level we
capture the subgraph used at the corresponding iteration, and
the final level n corresponds to the results at the end of iter-
ation n. Although some variables may not be updated at each
iteration, the values of those variables are preserved for use in
subsequent iterations; thus, each level of G () includes all the
nodes in V. The update variables at any iteration (i.e., the nodes
in §,,) are represented as solid circles, and the nonupdate ones
as open circles. All edges in each S,,—edges of G included in
this subgraph—are included in that level of the diagram. As in
G, these are undirected edges, as our algorithms perform in-
ference on this subgraph. However, this inference update uses
some values from preceding iterations (15), (17); hence, we use
directed edges (corresponding to x,,) from nodes at preceding
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Fig. 1. (Left) Gauss-Jacobi walk-sum diagrams G(*) for n = 1,2,3.

(Right) Gauss—Seidel walk-sum diagrams G(") forn = 1,2, 3,4.

levels. The directed nature of these edges is critical as they cap-
ture the one-directional flow of computations from iteration to
iteration, while the undirected edges within each level capture
the inference computation (15) at each iteration. At the end of
iteration n, only the values at level n are of interest. Therefore,
the set of walks (reweighted by /) in G(") that begin at any solid
node at any level, and end at any node at the last level are of im-
portance, where walks can only move in the direction of directed
edges between levels, but in any direction along the undirected
edges within each level.

Later in this section we provide a general procedure for con-
structing walk-sum diagrams for our most general algorithms,
but we begin by illustrating these diagrams and the points made
in the preceding paragraph using a simple 3-node, fully con-
nected graph (with variables denoted =1, z2, x3). We look at
two of the simplest iterative algorithms in the classes we have
described, namely the classic GJ and GS iterations [15], [16].
Fig. 1 shows the walk-sum diagrams for these algorithms.

In the GJ algorithm each variable is updated at each iteration
using the values from the preceding iteration of every other vari-
able (this corresponds to a stationary ET algorithm (7) with the
subgraph §,, being the fully disconnected graph of all the nodes
V). Thus, each level on the left in Fig. 1 is fully disconnected,
with solid nodes for all variables and directed edges from each
node at the preceding level to every other node at the next level.
This provides a simple way of seeing both how walks are ex-
tended from one level to the next and, more subtly, how walks
captured at one iteration are also captured at subsequent itera-
tions. For example, the walk 12 in G(® is captured by the di-
rected edge that begins at node 1 at level 1 and proceeds to node
2 at level 2 (the final level of G(?)). However, this walk in G®)
is captured by the walk that begins at node 1 at level 2 and pro-
ceeds to node 2 at level 3 in G,

The GS algorithm is a serial iteration that updates one variable
at a time, cyclically, so that after |V| iterations each variable is
updated exactly once. On the right-hand side of Fig. 1, only one
node at each level is solid, using values of the other nodes from
the preceding level. For nonupdate variables at any iteration, a
weight-1 directed edge is included from the same node at the
preceding level. For example, since 5 is updated at level 2, we
have open circles for nodes 1 and 3 at that level and weight-1
directed edges from their copies at level 1. Weight-1 edges do
not affect the weight of any walk. Hence, at level 4 we still
capture the walk 12 from level 2 (from node 1 at level 1 to node
2 at level 2); the walk is extended to node 2 at levels 3 and 4
with weight-1 directed edges.

For general graphs, the walk-sum diagram G("*) of one of our
algorithms is constructed as follows.
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Fig. 2. (Left) Nonstationary ET: Subgraphs and walk-sum diagram. (Right) Hybrid serial updates: Subgraphs and walk-sum diagram.

1) For n = 1, create a new copy of each t € V using solid
circles for update variables and open circles for nonupdate
variables; label these ¢(1). Draw the subgraph S; using the
solid nodes and undirected edges weighted by the partial
correlation coefficient of each edge. G(*) is the same as
S, with the exception that G(Y) also contains nonupdate
variables denoted by open circles.

2) Given G("~1), create a new copy of each t € V using
solid circles for update variables and open circles other-
wise; label these t(™). Draw S,, using the update variables
with undirected edges. Draw a directed edge from the vari-
able u™(“=v) in G~V (since r,(u — v) < n — 1)
to v for each (u,v) € k,. If there are no failed links,
rn(u — v) = n — 1. Both these undirected and directed
edges are weighted by their respective partial correlation
coefficients. Draw a directed edge to each nonupdate vari-
able ¢ from the corresponding ¢+*~1) with unit edge
weight.

A level k in a walk-sum diagram refers to the &’th replica of the
variables.

Rules for Walks in G(): Walks must respect the orientation
of each edge, i.e., walks can cross an undirected edge in ei-
ther direction, but can only cross directed edges in one direc-
tion. In addition, walks can only start at the update variables V},
for each level k£ < n. Interpreted in this manner, walks in G (n)
reweighted by h and ending at one of the variables #(*) are ex-
actly the walks computed in ir\gk)

Proposition 2: Let G be a walk-sum diagram constructed
and interpreted according to the preceding rules. In walk-sum-
mable models, for any ¢t € V, k < n, and with 7 =9

G
Eﬁ’“) = ¢(h;* AN

t0). (22)

Proof: Based on the preceding discussion, one can check

the equivalence of the walks computed by the walk-sum

diagrams with the walk-sets (18)—(20). Proposition 1 then

yields (22). O

Sections IV-C—E describe walk-sum diagrams for the various
algorithms presented in Section III.

C. Nonstationary Parallel Updates

We describe walk-sum diagrams for the parallel ET algorithm
of Section III-A. Here, V,, = V for all n. Since there is no link

failure r,,(+ — o) = n — 1. Hence, the walk-sum formulas
(18)—(19) reduce to

Wh(s = t) =W, — 1(3 — %) ®W(*n—(1)>

UW (s220t), s,teV.

) @W(e-1)
(23)

The stationary GJ iteration discussed previously falls in this
class. The left-hand side of Fig. 2 shows the trees S1, S2, S3, and
the corresponding first three levels of the walk-sum diagrams for
a more general nonstationary ET iteration. This example illus-
trates how walks are “collected” in walk-sum diagrams at each
iteration. First, walks can proceed along undirected edges within
each level, and from one level to the next along directed edges
(capturing cut edges). Second, the walks relevant at each iter-
ation must end at that level. For example, the walk 13231 is
captured at iteration 1 as it is present in the undirected edges
at level 1. At iteration 2, however, we are interested in walks
ending at level 2. The walk 13231 is still captured, but in a dif-
ferent manner—through the walk 1323 at level 1, followed by
the hop 31 along the directed edge from node 3 at level 1 to node
1 at level 2. At iteration 3, this walk is captured first by the hop
from node 1 at level 1 to node 3 at level 2, then by the hop 32 at
level 2, followed by the hop from node 2 at level 2 to node 3 at
level 3, and finally by the hop 31 at level 3.

D. Nonstationary Serial Updates

We describe similar walk-sum diagrams for the serial up-
date scheme of Section III-B. Since there is no link failure,
rn(x — @) = n — 1. The recursive walk-set update (18) can
be specialized as follows:

S )@ W(e 1)

(24)

Wh(s = t) =W, — 1(8 — %) @ W(x
UW (s2mst), seViteV,.

While (23) is a specialization to iterations with parallel updates,
(24) is relevant for serial updates. The GS iteration discussed
in Section IV-B falls in this class, as do more general serial
updates described in Section III-B in which we update a subset
of variables V,, based on a subgraph of the induced graph of
V... The right-hand side of Fig. 2 illustrates an example for our
3-node model. We show the subgraphs S,, used in the first four
stages of the algorithm and the corresponding 4-level walk-sum
diagram. Note that at iteration 2 we update variables x2 and x5
without taking into account the edge connecting them. Indeed,
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Fig. 3. Nonstationary updates with failing links: Subgraphs used along with
failed edges at each iteration (left) and walk-sum diagram G(*) (right).

2,1

{1,3}

the updates at the first four iterations of this example include
block GS, a hybrid of ET and block GS, parallel ET, and GS,
respectively.

E. Failing Links

We now discuss the general nonstationary update scheme
of Section III-C involving failing links. The recursive walk-set
computation equations for this iteration are given by (18)—(20).
Fig. 3 shows the subgraph and the edges in &, that fail at each
iteration, and the corresponding 4-level walk-sum diagram. We
elaborate on the computation and propagation of information
at each iteration. At iteration 1, inference is performed using
subgraph &1, followed by nodes 1 and 2 passing a message to
each other according to the post-inference message-passing rule
(16). At iteration 2 only z3 is updated. As no links fail, node
3 gets information from nodes 1 and 2 at level 1. At iteration
3, the link (2,1) fails. But node 1 has information about x5 at
level 1 (due to the post-inference message passing step from
iteration 1). This information is used from the local memory
at node 1 in (17), and is represented by the arrow from node
2 at level 1 to node 1 at level 3. At iteration 4, the links (1, 3)
and (3, 1) fail. Similar reasoning as in iteration 3 applies to the
arrows drawn across multiple levels from node 1 to node 3, and
from node 3 to node 1. Further, post-inference message-passing
at this iteration only takes place between nodes 1 and 2 because
the only edge in Sy is {1,2}.

V. CONVERGENCE ANALYSIS

We now show that all the algorithms of Section III converge
in walk-summable models. As in Section IV-A, we focus on
the most general nonstationary algorithm with failing links of
Section ITI-C. We begin by showing that Z(") converges to the
correct means when 7(9) = 0. Next, we use this result to show
that we can achieve convergence to the correct means for any
initial guess Z(%).

The proof that ¢,, (h; x — t) — (J~'h), asn — oo relies on
the fact that W, (s — t) eventually contains every element of
the set W(s — t) of all the walks in G from s to ¢, a condition we
refer to as completeness. Showing this begins with the following
proposition proved in Appendix C.

Proposition 3 (Nesting): The walk-sets defined in equations
(18)—(20) are nested, i.e., for every pair of vertices s,t € V,
Wh-1(s — t) € Wh(s — t) for each n.

This statement is easily seen for a stationary ET algorithm be-
cause the walk-sum diagram G(™ from levels 2 to n is a replica
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of G»=1) (for example, the GJ diagram in Fig. 1). However,
the proposition is less clear for nonstationary iterations. The
discussion in Section IV-C illustrates this point; the paths that
a walk traverses change drastically depending on the level in
the walk-sum diagram at which the walk ends. Nonetheless, as
shown in Appendix C, the structure of the estimation algorithms
that we consider ensures that whenever a walk is not explicitly
captured in the same form it appeared in the preceding itera-
tion, it is recovered through a different path in the subsequent
walk-sum diagram (no walks are lost).

Completeness relies on both nesting and the following addi-
tional condition.

Definition 2: Let (u,v) be any directed edge in G. For each
n, let m?fti"e C Ky, denote the set of directed active edges (links
that do not fail) in &, at iteration n. The edge (u,v) is said to
be updated infinitely oftens if for every N > 0, there exists an
m > N such that (u,v) € S, U k2ctive,

If there is no link failure, this definition reduces to including
each vertex in V' in the update set V,, infinitely often. For par-
allel nonstationary ET iterations (Section III-A), this property
is satisfied for any sequence of subgraphs. Note that there are
cases in which inference algorithms may not have to traverse
each edge infinitely often. For instance, suppose that G can be
decomposed into subgraphs G; and G, that are connected by a
single edge, with G, having small size so that we can perform
exact computations. For example, Go could be a leaf node (i.e.,
have degree one). We can eliminate the variables in Gs, prop-
agate information “into” G; along the single connecting edge,
perform inference within Gy, and then back-substitute. Hence,
the single connecting edge is traversed only finitely often. In
this case the hard part of the overall inference procedure is on
the reduced graph with leaves and small, dangling subgraphs
eliminated, and we focus on inference problems on such graphs.
Thus, we assume that each vertex in G has degree at least two
and study algorithms that traverse each edge infinitely often.

Proposition 4 (Completeness): Letw = s. ..t bean arbitrary
walk from s to ¢ in G. If every edge in G is updated infinitely
often (in both directions), then there exists an /V such that w €
Wh(s — t) for all n > N, where the walk-set W,,(s — t) is
defined in (18)—(20).

The proof of this proposition appears in Appendix D. We can
now state and prove the following.

Theorem 1: 1f every edge in G is updated infinitely often
(in both directions), then ¢y, (h;* — t) — (J7'h), as n —
oo in walk-summable models, with ¢,,(s — t) as defined in
Section IV-A.

Proof: One can check that W, (s — ¢) C W(s — t),
V n. This is because equations (18)—(20) only use edges from
the original graph G. We have from Proposition 4 that every
walk from s to ¢ in G is eventually contained in W,,(s — t).
Thus, US2_ W, (s — t) = W(s — t). Given these arguments
and the nesting of the walk-sets W,,(s — t) from Proposition
3, we can appeal to the results in Section II-C to conclude that
¢n(hix — t) — (J7'h), asn — oo. O

Theorem 1 shows that 7. — (J='h), for 2(® = 0. The
following result, proven in Appendix E, shows that in walk-

SIf G contains a singleton node, then this node must be updated at least once.



CHANDRASEKARAN et al.: ESTIMATION IN GAUSSIAN GRAPHICAL MODELS USING TRACTABLE SUBGRAPHS

summable models convergence is achieved for any choice of
initial condition.6

Theorem 2: If every edge is updated infinitely often, then Z(")
computed according to (15), (17) converges to the correct means
in walk-summable models for any initial guess Z(*).

Next, we describe a stronger convergence result when there
is no communication failure.

Corollary 1: Assuming no communication failure, we have
the following special cases for convergence in walk-summable
models (with any initial guess):

1) the hybrid algorithms of Section III-B converge to the cor-
rect mean as long as each variable is updated infinitely
often;

2) the parallel ET iterations of Section III-A (with V,, =
V') converge to the correct mean using any sequence of
subgraphs.

‘We note that in the parallel ET iteration (with no link failure),

it is not necessary to include each edge in some subgraph S,,;
indeed, even stationary algorithms that use the same subgraph
at each iteration are guaranteed to converge.

Theorem 2 shows that walk-summability is a sufficient
condition for all our algorithms to converge for a very large
and flexible set of sequences of tractable subgraphs or subsets
of variables (ones that update each edge infinitely often) on
which to perform successive updates. Corollary 1 requires even
weaker conditions for convergence if there is no communica-
tion failure. The following result, proven in Appendix F, shows
that walk-summability is also necessary for this complete
flexibility. Thus, while any of our algorithms may converge for
some sequence of subsets of variables and tractable subgraphs
in a non-walk-summable model, there is at least one sequence
of updates that leads to a divergent iteration.

Theorem 3: For any non-walk-summable model, there exists
at least one sequence of iterative steps that is ill-posed, or for
which Z(™), computed according to (15) and (17), diverges.

VI. ADAPTIVE ITERATIONS AND EXPERIMENTAL RESULTS

In this section we address two topics. The first is taking ad-
vantage of the great flexibility in choosing successive iterative
steps by developing techniques that adaptively optimize the on-
line choice of the next tree or subset of variables to use in order
to reduce the error as quickly as possible. The second is pro-
viding experimental results that demonstrate the convergence
behavior of these adaptive algorithms.

A. Choosing Trees and Subsets of Variables Adaptively

Atiteration n, let the errorbe (™ = 7—7(") and the residual
errorbe h™) = h — J (") Note that it is tractable to compute
the residual error at each iteration.

1) Trees: We describe an efficient algorithm to choose span-
ning trees adaptively to use as preconditioners in the ET algo-
rithm of Section III-A. We have the following relationship be-

®Note that in this case the messages must be initialized as M (s — t) =
R, , #(°) for each directed edge (s,t) € £.
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tween the error at iteration n and the residual error at iteration
n —1:

e(n) — (Jfl _ J;l)h(nfl)

On

Based on this relationship, we have the walk-sum interpretation
e = p(R(=1); % ALIN s), and consequently the following
bound on the ¢; norm of e(™:

el = 37 |o(a D5 L2 )
seV

< P(In" V] G\Sy)

=(In"VG) = (IR I S,) @29)
where G\S,, denotes walks in G that must traverse edges not
in S,,, |h(»~ 1| refers to the entry-wise absolute value vector
of ("1, (|h"=D|;G) refers to the reweighted absolute
walk-sum over all walks in G, and ¢(|h("~V)[;S,,) refers to
the reweighted absolute walk-sum over all walks in S,,. Min-
imizing the error e(™ reduces to choosing S, to maximize
o(|n"=D];S,.). Hence, if we maximize among all trees, we
have the following maximum walk-sum tree problem:

argmaxs, o iree A" S0). (26)

Rather than solving this combinatorially complex problem, we
instead solve a problem that minimizes a looser upper bound
than (25). Specifically, consider any edge {u,v} € £ and all of
the walks S(u,v) = (uv, vu, uvu, Vv, LVOUV, VUVY, . . .) that
live solely on this single edge. It is not difficult to show that

B 2 PPV S(u,v))
hglnfl)‘ + ‘h(unfl)’) Z |Ru7v|£
=1

(n—1) |RU-,U|
hu ’) 1- |Ru,11| '

- (-

27)

This weight provides a measure of the error-reduction capacity
of edge {u,v} by itself at iteration n. This leads directly to
choosing the maximum spanning tree [28] by solving

> bun

{u,v}eS,

(28)

arg rnaXS72 a tree

For any tree S,, the set of walks captured in the sum in (28) is
a subset of all the walks in S,,, so that solving (28) provides a
lower bound on (26) and thus a looser upper bound than (25).
Each iteration of this method can be solved using O(|€|log |V])
computations based on standard greedy approaches for the max-
imum spanning tree problem [28]. For sparse graphs, more so-
phisticated variants can also be used to achieve a per-iteration
complexity of O(|€|loglog |V]) [28].
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2) Subsets of Variables: We present an algorithm to choose
the next best subset of k variables for the block GS algorithm of
Section III-B. The error at iteration n can be written as follows:

G(V) :ICV —.CIZ'( ) _lRV Vc[J_lh(n_l)]Vnc?

e(VC) =Ty — a:%’}c) = e(ﬂ D= =[J

— J®)
1h(n 1)]VC )

As with (25), we have the following upper bound:

) (n)

el = [z, +[52]),
<[é (In=Vp £ v2)
— ¢ (=D v, S5, )]
6 (I L v)

=¢(|h"1);6) - ¢ (Ih("‘l)l; v, £y )
(29)

where £(V,,) refers to the edges in the induced subgraph of V,.
Minimizing this upper bound reduces to solving the following
maximum walk-sum block problem:
(11 (n— E(Vy
arg maxiy, < @ (WD) V, SL V) G0)
As with the maximum walk-sum tree problem, finding the op-
timal such block directly is combinatorially complex. There-
fore, we consider the following relaxed maximum walk-sum
block problem based on single-edge walks:
arg maxy, < ¢ (|h( DLV, 25V, ) 31
where —1% denotes the restriction that walks can traverse at
most one edge. The walks in (31) are a subset of the walks in
(30). Thus, solving (31) provides a lower bound on (30), hence
minimizing a looser upper bound on the error than (29).
Solving (31) is also combinatorially complex; therefore, we
use a greedy method for an approximate solution:

1) SetV, = 0. Assuming that the goal is to solve the problem
for k = 1, compute node weights

Wy, = ‘h&"‘l)‘

based on the walks captured by (31) if node u were to be
included in V,,.

2) Find the maximum weight node u* from V\V,,, and set
Vi, — V, Uu*.

3) If |V,,| = k, stop. Otherwise, update each neighbor v €
V\V,, of «* and go to Step 2):

h(n 1)’) | Ry o

Wy — Wy + ( |RU*,’”| .

)4

This update captures the extra walks in (31) if v were to be
added to V,.
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Fig. 4. (Left) Convergence results for a randomly generated 15 X 15 nearest-
neighbor grid-structured model. (Right) Average number of iterations required
for the normalized residual to reduce by a factor of 10~1° over 100 randomly
generated models.

Step 3) is the greedy aspect of the algorithm as it updates
weights by computing the extra walks that would be captured
in (31) if node v were added to V,,, with the assumption that
the nodes already in V,, remain unchanged. Note that only
the weights of the neighbors of u* are updated in Step 3);
thus, there is a bias towards choosing a connected block.
In choosing successive blocks in this way, we collect walks
adaptively without explicit regard for the objective of updating
each node infinitely often. However, our method is biased
towards choosing variables that have not been updated for a
few iterations as the residual error of such variables becomes
larger relative to the other variables. Indeed, empirical evidence
confirms this behavior with all the simulations leading to
convergent iterations. For k& bounded, each iteration using this
technique requires O(k log |£]) computations using an efficient
sort data structure [28]. The space complexity of maintaining
such a structure can be significant compared to the adaptive ET
procedure.

3) Experimental Illustration: We test the preceding
two adaptive algorithms on randomly generated 15 x 15
nearest-neighbor grid models with7g(R) = 0.99, and with
z(© = 0. The blocks used in block GS were of size k = 5
We compare these adaptive methods to standard nonadaptive
one-tree and two-tree ET iterations [13]. Fig. 4 shows the
performance of these algorithms. The plot shows the relative
decrease in the normalized residual error (|[2(™||¢, /[|R(?]|,)
versus the number of iterations. The table shows the average
number of iterations required for these algorithms to reduce
the normalized residual error below 1071°. The average was
computed based on the performance on 100 randomly gener-
ated models. All these models are poorly conditioned because
they are barely walk-summable. The number of iterations for
block GS is scaled appropriately to account for the different
per-iteration computational costs (O(|€]loglog|V|) for adap-
tive ET and O(klog|&]) for adaptive block GS). The one-tree
ET method uses a spanning tree obtained by removing all
the vertical edges except the middle column. The two-tree
method alternates between this tree and its rotation (obtained
by removing all the horizontal edges except the middle row).

"The grid edge weights are chosen uniformly at random from [—1, 1]. The

matrix R is then scaled so that ¢(R) = 0.99. The potential vector h is chosen
to be the all-ones vector.
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Iteration Heration

Fig. 5. Convergence of memory-based algorithm on same randomly generated
15 x 15 used in Fig. 4: Varying o with 3 = 0.3 (left) and varying 3 with
a = 0.3 (right).

Both the adaptive ET and block GS algorithms provide far
faster convergence compared to the one-tree and two-tree iter-
ations, thus providing a computationally attractive method for
estimation in the broad class of walk-summable models.

B. Communication Failure: Experimental Illustration

To illustrate our adaptive methods in the context of commu-
nication failure, we consider a simple model for a distributed
sensor network in which links (edges) fail independently with
failure probability «, and each failed link remains inactive for
a certain number of iterations given by a geometric random
variable with mean (1/(3). At each iteration, we find the best
spanning tree (or forest) among the active links using the ap-
proach described in Section VI-A-1). The maximum spanning
tree problem can be solved in a distributed manner using the al-
gorithms presented in [29], [30]. Fig. 5 shows the convergence
of our memory-based algorithm from Section III-C on the same
randomly generated 15 x 15 grid model used to generate the
plot in Fig. 4 (again, with Z(®) = 0). The different curves are
obtained by varying « and (3. As expected, the first plot shows
that our algorithm is slower to converge as the failure proba-
bility « increases, while the second plot shows that convergence
is faster as ( is increased (which decreases the average inactive
time). These results show that our adaptive algorithms provide
a scalable, flexible, and convergent method for the estimation
problem in a distributed setting with communication failure.

VII. CONCLUSION

In this paper, we have described and analyzed a rich set of
algorithms for estimation in Gaussian graphical models with ar-
bitrary structure. These algorithms are iterative in nature and in-
volve a sequence of inference problems on tractable subgraphs
over subsets of variables. Our framework includes parallel itera-
tions such as ET, in which inference is performed on a tractable
subgraph of the whole graph at each iteration, and serial iter-
ations such as block GS, in which the induced subgraph of a
small subset of variables is directly inverted at each iteration.
We describe hybrid versions of these algorithms that involve
inference on a subgraph of a subset of variables. We also dis-
cuss a method that uses local memory at each node to overcome
temporary communication failures that may arise in distributed
sensor networks. Our memory-based framework applies to the
nonstationary ET, block GS, and hybrid algorithms.

‘We analyze these algorithms based on the recently introduced
walk-sum interpretation of Gaussian inference. A salient fea-
ture in our analysis is the development of walk-sum diagrams.
These graphs correspond exactly to the walks computed after
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each iteration, and provide an intuitive graphical comparison
between the various algorithms. This walk-sum analysis allows
us to conclude that for the broad class of walk-summable
models, our algorithms converge for a very large and flexible
set of sequences of subgraphs and subsets of variables used.
We also describe how this flexibility can be exploited by
formulating efficient algorithms that choose spanning trees
and subsets of variables adaptively at each iteration. These
algorithms are then used in the ET and block GS iterations re-
spectively to demonstrate that significantly faster convergence
can be obtained using these methods over traditional one-tree
and two-tree ET iterations.

Our adaptive algorithms are greedy in that they consider the
effect of edges individually (by considering walk-sums concen-
trated on single edges). A strength of our analysis for the case
of finding the “next best” tree is that we do obtain an upper
bound on the resulting error, and hence on the possible gap
between our greedy procedure and the truly optimal one. Ob-
taining tighter error bounds, or conditions on graphical models
under which our choice of tree yields near-optimal solutions is
an open problem. Another interesting question is the develop-
ment of general versions of the maximum walk-sum tree and
maximum walk-sum block algorithms that choose the K next
best trees or blocks jointly in order to achieve maximum reduc-
tion in error after K iterations. For applications involving com-
munication failure, extending our adaptive algorithms in a prin-
cipled manner to explicitly avoid failed links while optimizing
the rate of convergence is an important problem. Finally, the fun-
damental principle of solving a sequence of tractable inference
problems on subgraphs has been exploited for non-Gaussian in-
ference problems (e.g., [12]), and extending our methods to this
more general setting is of clear interest.

APPENDIX

A. Dealing With Un-Normalized Models

Consider an information matrix J = D — H (where D is
the diagonal part of .J) that is not normalized, i.e., D # I. The
weight of a walk w = {w;}¢_, can be redefined as follows:

-1
_ Hi=o Hw“w1+1

P(w) 7
Hi:o Dwi;wi
—1
_ Hi:o Dwi,wi Rwi-,wi+1 V Dwi+17wi+1
- l
Hi=0 D'wq ;Wi
p(w)

Dmo ,wo D'mg ,Wy

where 1) (w) is the weight of w with respect to the un-normal-
ized model, and ¢(w) is the weight of w in the corresponding
normalized model. We can then define walk-summability
in terms of the absolute convergence of the un-normalized
walk-sum (s — t) over all walks from s to ¢ (for each
pair of vertices s,t € V). A necessary and sufficient con-
dition for this un-normalized notion of walk-summability is

0 (D—(1/2)HD—(1/2)) < 1, which is equivalent to the original

condition p(R) < 1 in the corresponding normalized model.
Un-normalized versions of the algorithms in Section III can
be constructed by replacing every occurrence of the partial
correlation matrix R by the un-normalized off-diagonal matrix
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H. The rest of our analysis and convergence results remain
unchanged because we deal with abstract walk-sets. (Note
that in the proof of Proposition 1, every occurrence of R
must be changed to H.) Alternatively, given an un-normal-
ized model, one can first normalize the model (Jhorm
D_(I/Q) JunnormD_(l/Z)ahnorm — D_(1/2) hunnorm)’ then
apply the algorithms of Section III, and finally “de-normalize”

mgm)norm — D~ (1/2)/\51%%2. Such
a procedure would provide the same estimate as the direct
application of the un-normalized versions of the algorithms in
Section III as outlined above.

the resulting estimate

B. Proof of Proposition 1

Remarks: Before proceeding with the proof of the
proposition, we make some observations about the walk-sets
Wh(s — t) that will prove useful for the other proofs as
well. For ¢t € V,,, notice that since the set of edges contained
in S, and k, are disjoint, the walk-sets W(s $—>t) and

Wy, (v—e)(8 — %) @ W(x IION o) @ W(e S—>t) are dis-
joint. Therefore, from Section II-C,
fu(s = 1) = p(s 1)
+ ¢ ( rn(*—u)(s - *)
nn(l)
QW(x — &) @ W(e Sn, t)
Sn
= g(s -2 1)
¢( U Wrn (u—v) (S - ’U,)
u,veV

@ W(u K—)>v)®W(vS—>t)>
(32)
"n(l)

—>’U)®

Every Walk w € Wy (u—v)(s — u) @ W(u
W(v Sn, t) can be decomposed uniquely as w = wg - Wy - We,
where w, € Wi, (u—v)(s — u), wy € W(uiw), and
w. € W(v—1t). The unique decomposition property is a
consequence of S,, and &, being disjoint, and the walk in &,

being restricted to a length-1 hop. This property also implies
that W, (u—v)(s — u) @ W(u e v) @ W(v S—»t) and
W wooy(s — o) @ W' C ) @ W' 22 1) are
disjoint if (u,v) # (u',v"). Based on these two observations,
we have from Section II-C that

¢( U WT”(U_)U)(S_)U)Q@W(UL(D)U)

u,veV
®W@ﬁL@
= Z QS(Wrn(u—m)(s - u) ® W(u ””—(1)> U)
u,veV
@ W(v Sn, t))
Ky (1 '
= Z ¢rn(u—>u)(s - ’U,)¢(U @ ’U)¢(’U o t)
u,veV

(33)
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Proof of proposition: We provide an inductive proof. From
(20), ¢o(s — t) = 0. Thus

thﬁos—»t :fv\go),

seV

do(h;x — t)

which is consistent with the proposition because we assume that
our initial guess 1s O at each node.

Assumethata:t = ¢p(h;x — 1), for0 <n’ <n—1,as
the inductive hypothesis. For ¢t € V¢,

fv\gn) = A(n b _ = pp_1(h;x = t) = pp(h;x — 1)
where the first equality is from (12), the second from the induc-
tive hypothesis, and the third from (19). Hence, we can focus on
nodes in V,,. For t € V,,, (32) and (33) can be rewritten as

bul(s — 1) = (s 25 1)
Kn (1 "
+ 3 brnmn(s — whu L v)po T (34
(u,v)Enn
because ¢(u EION v) = 0if (u,v) ¢ ky,. From (32)—(34), we
have that
Dn(h;x—1) ZhSd) s—>t
seV
+ Z hs Z |:¢rn(u—>v)(s_>u)
SEV  (uw)Ekn

x (a5 0)(o = )|

:Z hs (Jgnl)t,s

seV
+ Z hs Z |:¢rn (u—»v)(s - 'U/)
H% (u,v)€Ekn

X R (J50),]

)

where we have used the walk-sum interpretation of J ll and K, .
Simplifying further, we have that

Gn(hix — 1) = (J5 hv,),

+ Z Qbr,,,(u—w)(h; * = u)RUﬂl (J.S_'l)t v
(u,v)eﬁ77

= (J5, hv.),
+ Z «717\2" (U_W)R“y'” (Jgnl)t v’

(u,v)Ekp

(35)

The last equality is from the inductive hypothesis because 0 <
rn(u — v) < n — 1. Next, we have that

Pn(h;x — t) = (J. 71hv )
+ Z 5 Z R, a7 (=)
veEV, {u|(u,v)€nn}

Z(E%WL+§:U§%M%W
veEV,
=z{"
where the second equality is from (17), and the third from (15).
O
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C. Proof of Proposition 3

We provide an inductive proof based on the walk-sum dia-
gram G(™). For a completely algebraic proof that is not based
on walk-sum diagrams we refer the reader to [31]. Based on the
construction of the walk-sum diagrams in Section IV-B and the
rules for interpreting walks in these diagrams, one can check the
equivalence of walks in G with the walk-sets (18)—(20) (this
property is used in the proof of Proposition 2). More precisely,
we have that W, (s — t) = Up<,W(s®) L— g t(™); for each
walk in G("™) that begins at some copy of s and ends at (") there
is a corresponding walk in W,,(s — ¢), and vice versa.

First, note that the proposition is true for n = 1 as Wy(s —
t) =0 C Wi(s — t). We assume as the inductive hypothesis
that W, _1(s — t) C Wy(s — t) for0 < n’ < n — 1.
Suppose that w = s...t € W,,_1(s — t). We must show that
w € Wy(s — t).1Ift ¢ V,, then w € W, (s — t) because
Wi_1(s — t) = W, (s — t) from (19).

If t € V,, then we must show that w is a walk in g
that ends at £(™ and starts at some node s for k < n.We
begin by tracing the walk w backwards in G from (™). We
continue this process as far as possible in S, until we find an
edge (u(™(v=v) (") where (u,v) € k,. If there is no such
edge, then w € W(si»t) C W, (s — t). Otherwise, we
have that w = s...u - v...t, where ™ (M s a walk
at level n of G and (u(™(®=) 4(") is an edge in G("™).
We need to check that s...u € W, (u—v)(s — u). Since
w € Wyhoi(s — t), the walk w ending at t(*=1 in G(™)
also makes the hop (u,v) through some edge (u(™ v(™")) in
G(™). This means that s...u € W,,(s — u). However, by
the definition of 7, (u — v), we have that m < r,(u — v).
As rp(u — v) < n — 1, we use the inductive hypothesis
to conclude that W,,(s — u) € W, (u—wv)(s — u). Thus,
s...u € Wy (u—u)(s — u) is a walk in G that starts at
some s(*) and ends at ("™ (“=v)) This walk can continue in
G(™) along the edge (u(™(“—") (") and further from v(")
to t("). Therefore, w € W, (s — t). O

D. Proof of Proposition 4

Letw = s...u-t. We provide an inductive proof with respect
to the length of w. If every edge is updated infinitely often, it is
clear that every node is updated infinitely often. Therefore, the
leading length-0 part (s) is computed when s is first updated
at some iteration k. By the nesting of the walk-sets W,, from
Proposition 3, we have that (s) € Wy (s — s) forall &’ > k.
Now assume (as the inductive hypothesis) that the leading sub-
walk s ... w including all but the last step u - ¢ of w is contained
in Wy (s — u) for some N (> k). Given the infinitely-often
update property, there exists an m > N such that the edge
(u,t) € S UKV If (u,t) € K21V then w € W,—1(s —
u) @ W(u %t)@W(tit) € Wp(s — t). This can
be concluded from (18) and because s...u € Wy,_1(s — u)
by the nesting argument (m — 1 > N) of Proposition 3. Again
applying the nesting argument, we can prove the proposition be-
cause we now have that w € W, (s — ¢) for all n. > m. We can
use a similar argument to conclude that w € W), (s — t) for all
n > m, if (u,t) € Sp,. O
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E. Proof of Theorem 2

From Theorem 1 and Proposition 1, we can conclude that 7:(")
converges to J~'h element-wise as n — oo for (®) = 0. As-
sume that Z(®) # 0. Consider a shifted linear system .J§ = h,
where h = h — J2(©)_ If we solve this system using the same
sequence of operations (subgraphs and failed links) that were
used to obtain the iterates ("), and with 7(®) = 0, then (™) con-
verges to the correct solution J 1 h— a:(o) of the system J§ = h.
We will show that 5™ = z(™) — (9 which would allow us
to conclude that z(") — J~1h element-wise as n — oo for
any 7(9). We prove this final step inductively. The base case is
clear because 7(®) = 0. Assume as the inductive hypothesis that
7 = z0) — 20 for 0 < n’ < n — 1. From this, one can
check that y(") Ag? Eg)) For t € V,,, we have from (15)
and (17) that’ !

@\gn) - (J;}}NLV”)t + Z (Jgnl)t,v Rv"“g{:‘n (=)

(u,v)Ekn
= (Jgnlhvn)t—{— Z (Jgnl)t Rv xrn(u—w)
(u,v)Eknp
- (FEIEO) - Y (5], Readl?)
(u,’u)Enn

:@w_<%y@vvm@+Jv‘x9

+ Ks,ﬂC( )+ Ry, V,ﬁ%)))
t

=z — 7.
The second equality follows from the inductive hypothesis, and
the last two from simple algebra. O

FE. Proof of Theorem 3

Before proving the converse, we have the following lemma
that is proved in [32].

Lemma 2: Suppose .J is a symmetric positive-definite ma-
trix, and J = Js — K is some splitting with K s symmetric
and Js nonsingular. Then, Q(ngKs) < 1if and only if J +
2Ks > 0.

Proof: Assume that J = I — R is valid but non-walk-sum-
mable. Therefore, R must contain some negative partial corre-
lation coefficients (since all valid attractive models, i.e., those
containing only non-negative partial correlation coefficients, are
walk-summable; see Section II-C). Let R = R, + R_ with R,
containing the positive coefficients and R_ containing the neg-
ative coefficients (including the negative sign). Consider a sta-
tionary ET iteration (7) based on cutting the negative edges so
that Js = I — Ry and Ks = R_. If Js is singular, then the
iteration is ill-posed. Otherwise, the iteration converges if and
only if Q(ngKg) < 1[15], [16]. From Lemma 2, we need to
check the validity of J + 2Ks:

J+2Ks=1—-R+2R_=1-R.

But  — R > 0 if and only if the model is walk-summable (from
Section II-C). Thus, this stationary iteration, if well-posed, does
not converge in non-walk-summable models. O
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