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Abstract—In this paper, we consider the problem of learning
Gaussian multiresolution (MR) models in which data are only
available at the finest scale, and the coarser, hidden variables
serve to capture long-distance dependencies. Tree-structured MR
models have limited modeling capabilities, as variables at one scale
are forced to be uncorrelated with each other conditioned on other
scales. We propose a new class of Gaussian MR models in which
variables at each scale have sparse conditional covariance structure
conditioned on other scales. Our goal is to learn a tree-structured
graphical model connecting variables across scales (which trans-
lates into sparsity in inverse covariance), while at the same time
learning sparse structure for the conditional covariance (not its
inverse) within each scale conditioned on other scales. This model
leads to an efficient, new inference algorithm that is similar to
multipole methods in computational physics. We demonstrate the
modeling and inference advantages of our approach over methods
that use MR tree models and single-scale approximation methods
that do not use hidden variables.

Index Terms—Gauss–Markov random fields, graphical models,
hidden variables, multipole methods, multiresolution (MR)
models.

I. INTRODUCTION

M ULTIRESOLUTION (MR) methods have been widely
used in large-scale signal processing applications due to

their rich modeling power as well as computational efficiency
[34]. Estimation algorithms based on MR representations are
efficient since they perform global computations only at coarser
scales in which the number of variables is significantly smaller
than at finer scales. In addition, MR models provide compact
representations for long-range statistical dependencies among
far-apart variables by capturing such behavior at coarser resolu-
tions. One of the most common settings [3], [7], [8], [11], [19],
[23], [28], [34] for representing MR models is that of graphical
models, in which the nodes of the graph index random variables
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Fig. 1. Examples of MR tree models (a) for a 1-D process and (b) for a 2-D
process. Shaded nodes represent original variables at the finest scale and white
nodes represent hidden variables at coarser scales.

and the edges encode conditional independence structure among
the variables. Graphical models in which edges are undirected
are also called Markov random fields (MRFs).

In many applied fields including communication [13], speech
and image processing [32], and bioinformatics [27], statistical
models have been represented with sparse graphical model
structures in which each node in the graph is connected to only
a few other nodes. For Gaussian phenomena, in which the vari-
ables being represented are jointly Gaussian, this corresponds
to sparsity in the inverse covariance matrix. There are a variety
of attractions of such sparse models, including parsimonious
parameterization (with obvious advantages for learning such
models and avoiding overfitting) and the potential for efficient
inference algorithms (e.g., for computing posterior distributions
given measurements or for parameter estimation).

The potential advantages of sparsity for efficient inference,
however, depend very much on the structure of the resulting
graph, with the greatest advantage for tree-structured graphs,
i.e., graphs without cycles. Indeed, this advantage provided one
of the major motivations for the substantial literature and appli-
cation [10], [14], [22], [34] of models on MR trees (such as in
Fig. 1) in which each level represents the phenomenon of in-
terest at a corresponding scale or resolution. The coarser scales
in these models are usually introduced solely or primarily1 as
hidden variables. That is, it is the finest scale of such a model
that represents the phenomenon of interest, and coarser scales
are introduced to capture long-range correlations in a manner
that is graphically far more parsimonious than could be cap-
tured solely within a single, finest scale model. Indeed, a sparse
single-scale graphical model is often poor at capturing long-
range correlations, and even if it does, may result in the model
being ill-conditioned.

A significant and well-known limitation of such MR tree
models, however, is the set of statistical artifacts they can

1In some contexts, some of the variables at coarser scales represent nonlocal
functionals of the finest scale phenomenon that are either measured or are to be
estimated.
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introduce. In an MR tree model, variables at one scale are
conditionally independent when conditioned on neighboring
scales, a direct consequence of the fact that nodes are connected
to each other only through nodes at other scales. Thus, the corre-
lation structure between variables at the finest scale can depend
dramatically on exactly how the MR tree is arranged over these
finest scale nodes. In particular, finest scale nodes that are the
same “distance” from each other as measured solely within that
finest scale can have very different distances along the MR tree
due to the different lengths of fine-to-coarse-to-fine paths that
connect them. While in some applications such fine-scale arti-
facts may have no significant effect on the particular estimation
task of interest, there are many situations in which these arti-
facts are unacceptable. A variety of methods [3], [7], [8], [11],
[19], [23], [28] have been proposed to overcome this limitation
of tree models. These methods involve including additional
edges—either interscale or within the same scale—to the MR
tree model and considering an overall sparse MR graphical
model.

In this work, we propose a different approach to address the
limitation of MR tree models—one that has considerable intu-
itive appeal. Note that the role of coarser scales in an MR model
is to capture most of the correlations among the finer scale vari-
ables through coarser scales. Then, should not the residual cor-
relations at each scale that need to be captured be approximately
local? In other words, conditioned on variables at other scales,
the residual correlation of any node should be concentrated on
a small number of neighboring nodes within the same scale.
This suggests that instead of assuming that the conditional sta-
tistics at each scale (conditioned on the neighboring scales) have
sparse graphical structure (i.e., sparse inverse covariance) as in
the previous methods, we need to look for models in which the
conditional statistics have sparse covariance structure.

MR models with the type of structure described above—tree-
structure between scales and then sparse conditional covariance
structure within each scale—have a special inverse covariance
structure. As we describe later in the paper, the inverse covari-
ance matrix of our MR model (denoted ) can be represented as
a sum of the inverse covariance matrix of an MR tree (denoted

) and inverse of a conditional covariance matrix within each
scale (denoted ), i.e., where both
and are sparse matrices. This structure leads to efficient
estimation algorithms that are different in a fundamental way
from standard graphical model estimation algorithms which
exploit sparse graph structure. Indeed, as we describe in this
paper, sparse in-scale conditional correlation structure gener-
ally corresponds to a dense graphical model within each scale,
so that standard graphical model inference algorithms are not
useful. However, estimation for phenomena that are only locally
correlated requires local computations—essentially a general-
ization of finite impulse response (FIR) filtering within each
scale—corresponding to multiplication involving the sparse
conditional covariance matrix. Our approach can be viewed as
a statistical counterpart to so-called multipole methods [20] for
the rapid solution of elliptic partial differential equations (in
particular those corresponding to evaluating electric fields given
charge distributions); we use the sparse tree structure of part of
the overall statistical structure, namely, that between scales, to

propagate information from scale-to-scale (exploiting sparsity
in ), and then perform local FIR-like residual filtering within
each scale (exploiting sparsity in ).

In addition to developing efficient algorithms for inference
given our MR model, we develop in detail methods for learning
such models given data at the finest scale (or more precisely
an empirical marginal covariance structure at the finest scale).
Our modeling procedure proceeds as follows: given a collec-
tion of variables and a desired covariance among these vari-
ables, we construct an MR model by introducing hidden vari-
ables at coarser resolutions. Then, we optimize the structure of
each scale in the MR model to approximate the given statis-
tics with a sparse conditional covariance structure within each
scale. This step can be formulated as a convex optimization
problem involving the log-determinant of the conditional co-
variance matrix.

The rest of the paper is organized as follows. In the next sec-
tion, we provide some background on graphical models and
a sparse matrix approximation method using log-determinant
maximization. In Section III, the desired structure of our MR
model—sparse interscale graphical structure and sparse in-scale
conditional covariance structure—is specified in detail. The spe-
cial-purpose inference algorithm that exploits sparsity in both
Markov and covariance structure is described in Section IV,
while in Section V, we show how the log-det maximization
problem can be used to learn our MR models. In Section VI,
we illustrate the advantages of our framework in three mod-
eling problems: dependencies in monthly stock returns, frac-
tional Brownian motion [30], and a 2-D field with polynomially
decaying correlations. We provide experimental evidence that
our MR model captures long-range correlations well without
blocky artifacts, while using many fewer parameters than single-
scale approximations. We also demonstrate that our MR ap-
proach provides improved inference performance. Section VII
concludes this paper, and in Appendixes I–III, we provide algo-
rithmic details for our learning method.

II. PRELIMINARIES

A. Gaussian Graphical Models

Let be a graph with a set of nodes and (pair-
wise) edges . Two nodes and are said to be neighbors if
there is an edge between them. A subset of nodes
is said to separate subsets if every path in between
any node in and any node in passes through a node in .
A graphical model is a collection of random variables indexed
by nodes of the graph: each node is associated with a random
variable ,2 and for any . A proba-
bility distribution is said to be Markov with respect to a graph

if for any subsets that are separated
by some and are independent conditioned on

. Specifically, if an
edge is not present between two random variables, it indicates
that the two variables are independent conditioned on all other
variables in the graph.

2For simplicity, we assume that � is a scalar variable, but any of the analysis
in this paper can be easily generalized to the case when � is a random vector.
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Fig. 2. (a) Sparse graphical model. (b) Sparsity pattern of the corresponding
information matrix.

Fig. 3. Conjugate graph. (a) Sparsity pattern of a covariance matrix. (b) Corre-
sponding graphical model. (c) Conjugate graph encoding the sparsity structure
of the covariance matrix in (a).

Let be a jointly Gaussian random vector with
a mean vector and a positive–definite covariance matrix . If
the variables are Markov with respect to a graph ,
the inverse of the covariance matrix (also called the in-
formation, or precision, or concentration matrix) is sparse with
respect to [26]. That is, if and only if . We
use to denote a Gaussian distribution with an in-
formation matrix and a potential vector ; the distri-
bution has the form . Fig. 2(a)
shows one example of a sparse graph, and the sparsity pattern of
the corresponding information matrix is shown in Fig. 2(b).
The graph structure implies that is uncorrelated with con-
ditioned on . Note that this does not indicate that is uncor-
related with . In fact, the covariance matrix (the inverse of the
information matrix) will, in general, be a full matrix.

For any subset , let be its
complement. Then, the conditional distribution is
Markov with respect to the induced subgraph of with nodes

and edges . The corre-
sponding information matrix of the conditional model is the sub-
matrix of with rows and columns corresponding to elements in

. For example, in Fig. 2, is a chain model
connecting variables through , and the information matrix
of this conditional distribution is the submatrix ,
which is a tri-diagonal matrix.

B. Conjugate Graphs

While Gaussian graphical models provide a compact repre-
sentation for distributions with a sparse information matrix, in
general, a sparse graphical model cannot represent distributions
with a sparse covariance matrix. Consider a distribution with the
sparsity pattern of the covariance matrix given as in Fig. 3(a).
Its information matrix will, in general, be a full matrix, and the
corresponding graphical model will be fully connected as shown
in Fig. 3(b). Therefore, we introduce conjugate graphs to illus-
trate the sparsity structure of a covariance matrix. Specifically,

in the conjugate graph, when two nodes are not connected with a
conjugate edge, they are uncorrelated with each other.3 We use
solid lines to display graphical model edges, and dotted lines
to represent conjugate edges. Fig. 3(c) shows the corresponding
conjugate graph for a distribution with covariance structure as
in Fig. 3(a). From the conjugate edge structure, we can identify
that is uncorrelated with , and .

The term conjugate graph is motivated by the notion of con-
jugate processes [25]—two random processes that have covari-
ances that are inverses of one another.4 Our concept of a con-
jugate graph that represents marginal independence structure
is also called a covariance graph or a bi-directed graph [12],
[16], [24].

C. Log-Determinant Maximization

In this section, we introduce the log-determinant maximiza-
tion problem to obtain a positive–definite matrix that approxi-
mates a given target matrix and has a sparse inverse. This tech-
nique will be used in Section V to learn a sparse graphical
model approximation or a sparse covariance matrix approxima-
tion. Suppose that we are given a target matrix , and we wish
to learn an approximation that is positive–definite and has a
sparse inverse. Thresholding the elements of can be in-
effective as the resulting matrix may not be positive–definite.
One alternative is to solve the following convex optimization
problem of maximizing the log-determinant of subject to el-
ementwise constraints with respect to the target matrix:

(1)

where is a nonnegative regularization parameter and
is a convex distance function. In Section V, we use the abso-
lute difference between the two values as the distance func-
tion: . Note that this optimization
problem is convex in . In the following proposition, we show
that when is large enough, a set of elements of the inverse of

are forced to be zero.
Proposition 1: Assume that for all and that the

feasible set of (1) is nonempty. Then, for each such that the
inequality constraint is not tight [i.e., ], the
corresponding element of is zero [i.e., ].

Proof: From the Karush–Kuhn–Tucker (KKT) conditions
[4], there exists for all such that the following
equations are satisfied:

where is a matrix with its elements
. The first equation is also called the

complementary slackness condition. The second equation is
obtained using . For all such
that , we get from the first equation.
Since from the second equation, for each that
the equality constraint is not tight, .

3Since we consider jointly Gaussian variables, uncorrelated variables are in-
dependent.

4This is different from the widely known conjugate priors [2].
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This optimization problem is commonly used in Gaussian
modeling to learn a sparse graphical model approximation given
the target covariance [1] as we describe in Section V-A. We also
use the same framework to learn a sparse covariance matrix ap-
proximation given the target information matrix as described in
Section V-B.

III. MULTIRESOLUTION MODELS WITH SPARSE IN-SCALE

CONDITIONAL COVARIANCE

We propose a class of MR models with tree-structured con-
nections between different scales and sparse conditional covari-
ance structure at each scale. Specifically, within each scale, a
variable is correlated with only a few other variables in the same
scale conditioned on variables at scales above and below. We il-
lustrate the sparsity of the in-scale conditional covariance using
the conjugate graph. Thus, our model has a sparse graphical
model for interscale structure and a sparse conjugate graph for
in-scale structure. In the rest of the paper, we refer to such an
MR model as a sparse in-scale conditional covariance multires-
olution (SIM) model.

We would like to emphasize the difference between the con-
cept of in-scale conditional covariance with the more com-
monly used concepts of marginal covariance and pairwise con-
ditional covariance. Specifically, marginal covariance between
two variables is the covariance without conditioning on any
other variables. Pairwise conditional covariance refers to the
conditional covariance between two variables when conditioned
on all other variables, including the variables within the same
scale. In-scale conditional covariance is the conditional covari-
ance between two variables (in the same scale) when condi-
tioned on variables at other scales (or equivalently, variables at
scales above and below, but not the variables at the same scale).

As we illustrate subsequently in this section, the distinction
between SIM models and the class of MR models with sparse
pairwise conditional covariance structure is significant in terms
of both covariance/information matrix structure and graphical
model representation. The latter, which has been the subject of
study in previous work of several authors, has sparse informa-
tion matrix structure and, corresponding to this, sparse struc-
ture as a graphical model, including within each scale. In con-
trast, our SIM models have sparse graphical model structure be-
tween scales but generally have dense conditional information
matrices within each scale. At first this might seem to be unde-
sirable, but the key is that the conditional covariance matrices
within each scale are sparse—something we display graphically
using conjugate graphs. As we show in subsequent sections,
this leads both to advantages in modeling power and efficient
inference.

Fig. 4(b) shows an example of our SIM model. We denote
the coarsest resolution as scale 1 and increase the scale number
as we go to finer scales. In the model illustrated in Fig. 4(b),
conditioned on scale 1 (variable ) and scale 3 (variables
through ), is uncorrelated with . Note that this is dif-
ferent from and being uncorrelated without conditioning
on other scales (the marginal covariance is nonzero), and also
different from the corresponding element in the information ma-
trix being zero (the pairwise conditional covariance is nonzero).
In fact, the corresponding graphical model representation of the

Fig. 4. Examples of MR models. (a) MR model with a sparse graphical struc-
ture. (b) SIM model with sparse conjugate graph within each scale. (c) Graphical
model corresponding to the model in (b).

model in Fig. 4(b) consists of a densely connected graphical
structure within each scale as shown in Fig. 4(c).

In contrast, an MR model with a sparse graphical model struc-
ture within each scale is shown in Fig. 4(a).5 Such a model does
not enforce sparse covariance structure within each scale condi-
tioned on other scales: conditioned on scales above and below,

and are correlated unless we condition on the other vari-
ables at the same scale (namely variable ). In Section VI, we
demonstrate that SIM models lead to better modeling capabili-
ties and faster inference than MR models with sparse graphical
structure.

The SIM model, to our best knowledge, is the first approach to
enforce sparse conditional covariance at each scale explicitly in
MR modeling. A majority of the previous approaches to over-
coming the limitations of tree models [7], [8], [11], [23], [28]
focus on constructing an overall sparse graphical model struc-
ture [as in Fig. 4(a)] to enable an efficient inference procedure. A
different approach based on a directed hierarchy of densely con-
nected graphical models is proposed in [32], but it does not have
a sparse conjugate graph at each layer and requires mean-field
approximations unlike our SIM model.

A. Desired Structure of the Information Matrix

A SIM model consists of a sparse interscale graphical model
connecting different scales and a sparse in-scale conditional co-

5Throughout this paper, we use the term “sparse” loosely for coarser scales
with just a few nodes. For these coarse scales, we have a small enough number
of variables so that computation is not a problem even if the structure is not
sparse.
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Fig. 5. Decomposition of a SIM model into a sparse hierarchical structure con-
necting different scales and a sparse conjugate graph at each scale. Shaded ma-
trices are dense and nonshaded matrices are sparse.

variance matrix at each scale. Here, we specify the desired spar-
sity structure for each submatrix of the information matrix of
a SIM model. First, we partition the information matrix of
a SIM model by scale as shown in Fig. 5 (corresponding to a
model with three scales). The submatrix of corresponds
to the information matrix of the conditional distribution at scale

conditioned on other scales (see Section II-A). As illustrated
in Fig. 4(c), a SIM model has a densely connected graphical
model within each scale, so in general is not a sparse ma-
trix. The inverse of , however, is sparse since we have a
sparse conditional covariance matrix within each scale. The sub-
matrix is sparse with respect to the graphical model
structure connecting scale and . We consider hierarchical
models in which only successive neighboring scales are con-
nected. Hence, is a zero matrix if .
By the modeling assumption that the interscale graphical model
connecting different scales is sparse, is
a sparse matrix. In Fig. 5, shaded matrices are dense and non-
shaded matrices are sparse.

The matrix can be decomposed as a sum of , corre-
sponding to the hierarchical interscale tree structure, and ,
corresponding to the conditional in-scale structure. Let

. Since is a block-diagonal matrix, its inverse is
also block-diagonal with each diagonal block equal to .
Hence, is a sparse matrix, whereas is not sparse in gen-
eral. Therefore, the information matrix of a SIM model can
be decomposed as a sum of a sparse matrix and the inverse of a
sparse block-diagonal matrix

(2)

Each nonzero entry in corresponds to an interscale edge con-
necting a pair of variables at different scales. The block diagonal
matrix has nonzero entries corresponding to conjugate edges
within each scale. One simple example is demonstrated in Fig. 5.
In Section IV, we take advantage of sparsity in both and
for efficient inference.

IV. INFERENCE EXPLOITING SPARSITY IN MARKOV AND

COVARIANCE STRUCTURE

Let be a collection of random variables with a prior distri-
bution: . Suppose that we have a set of noisy
measurements at a subset of the variables: where

is a selection matrix that only selects variables at which mea-
surements are specified, and is a zero-mean Gaussian noise
vector with covariance . The maximum a posteriori (MAP)
estimate is equivalent to the mean of the posterior distribution

(3)

where , and . The posterior infor-
mation matrix has the same sparsity structure as if
we assume that the noise covariance matrix is diagonal. If
corresponds to a tree-structured model, (3) can be solved with
linear complexity. If the prior model is not a tree, solving this
equation directly by matrix inversion requires computa-
tions where is the number of variables. We review a class of
iterative algorithms that solve linear systems using the idea of a
matrix splitting in Section IV-A. Based on the specific splitting
of the information matrix of our SIM model as in (2), we pro-
pose a new and efficient inference algorithm in Section IV-B.

A. Iterative Algorithms Based on a Matrix Splitting

As described above, computing the optimal estimates in
Gaussian models is equivalent to solving a linear equation

where is a posterior information matrix.
Many iterative linear system solvers are based on the idea of
a matrix splitting: . Let us rewrite the original
equation as . Assuming that is invertible, we
obtain the following iterative update equations:

(4)

where is the value of at the previous iteration, and
is the updated value at the current iteration. The matrix is
called a preconditioner, and (4) corresponds to the precondi-
tioned Richardson iterations [18]. If solving the equation

for a fixed vector is easy due to a special structure of ,
each iteration can be performed efficiently.6 There are a variety
of ways in which splittings can be defined [15]. For example,
Gauss–Jacobi iterations set the preconditioner as a diagonal
matrix with diagonal elements of , and embedded tree (ET)
algorithms [33] split the matrix so that has a tree structure.

B. Efficient Inference in SIM Models

We use the matrix splitting idea in developing an efficient in-
ference method for our SIM model. Recall that the informa-
tion matrix of the SIM model can be decomposed as in (2).
Our goal is to solve the equation
where , and are all sparse matrices. We alternate be-
tween two inference steps corresponding to interscale compu-
tation and in-scale computation in the MR model. Our inter-
scale computation, called the tree inference step exploits sparse
Markov structure connecting different scales, while our in-scale
inference step exploits sparse in-scale conditional covariance
structure within each scale.

1) Tree Inference: In the tree-inference step, we select the
interscale tree structure as the preconditioner in (4) by setting

6We may use different preconditioners for each iteration, resulting in nonsta-
tionary Richardson iterations [6].
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, where is a diagonal matrix added to
ensure that is positive–definite7

(5)

With the right-hand side vector fixed, solving the above equa-
tion is efficient since corresponds to a tree-structured graph-
ical model.8 On the right-hand side, can be evaluated easily
since is diagonal, but computing directly is not
efficient because is a dense matrix. Instead, we eval-
uate by solving the matrix equation . The matrix

(in-scale conditional covariance) is sparse and well-condi-
tioned in general; hence the equation can be solved efficiently.
In our experiments, we use just a few Gauss–Jacobi iterations
(see Section IV-A) to compute .

2) In-scale Inference: In this step, we select the in-scale
structure to perform computations within each scale by setting

. Then, we obtain the following update equation:

(6)

Evaluating the right-hand side only involves multiplications of
a sparse matrix and a vector, so can be computed
efficiently. Note that although we use a similar method of split-
ting the information matrix and iteratively updating as in the
Richardson iteration (4), our algorithm is efficient due to a fun-
damentally different reason. In the Richardson iteration (specif-
ically, the ET algorithm) and in the tree-inference step, solving
the matrix equation is efficient because it is equivalent to solving
an inference problem on a tree model. In our in-scale infer-
ence step, the preconditioner selected actually corresponds to
a densely connected graphical model, but since it has a sparse
conjugate graph, the update equation reduces to a sparse ma-
trix multiplication. Thus, our in-scale inference step requires
only local computations, which is in the same spirit as multi-
pole methods [20] or FIR filtering methods.

After each iteration, the algorithm checks whether the pro-
cedure has converged by computing the relative residual error:

where is the norm
and . The term can be evalu-
ated efficiently even though is not a sparse matrix. Since

, the value of com-
puted from the tree-inference step can be used to evaluate the
residual error as well, and since and are sparse matrices,
the first two terms can be computed efficiently.

The concept of performing local in-scale computations can be
found in algorithms that use multiple scales to solve partial dif-
ferential equations, such as multipole methods [20] or multigrid
methods [5]. The efficiency of these approaches comes from the
assumption that after a solution is computed at coarser resolu-
tions, only local terms need to be modified at finer resolutions.
However, these approaches do not have any statistical basis or
interpretation. The models and methods presented in this paper

7In (4),� needs to be invertible, but �� �� � is singular since the diagonal
elements at coarser scales (without measurements) are zero. In our experiments,
we use� � ������	 �� where �����	 � is a diagonal matrix with diagonal
elements of 	 .

8This step is efficient for a more general model as well in which the interscale
structure is sparse but not a tree.

are aimed at providing a precise statistical framework leading
to inference algorithms with very solid advantages analogous to
those of multipole and multigrid methods.

V. LEARNING MR MODELS WITH SPARSE IN-SCALE

CONDITIONAL COVARIANCE

In this section, we describe the procedure of learning a SIM
model approximation to a given target covariance. As has been
well-developed in the literature and reviewed in Section V-A,
optimization of the log-determinant of a covariance matrix
leads to sparse inverse covariances and hence sparse graphical
models. In Section V-B, we turn the tables—optimizing the
log-determinant of the inverse covariance to yield a sparse
covariance. We learn SIM models with sparse hierarchical
graphical structure and sparse in-scale conditional covariance
structure by combining these two methods as described in
Section V-C.

A. Sparse Graphical Model Approximation

Suppose that we are given a target covariance and wish
to learn a sparse graphical model that best approximates the co-
variance. The target covariance matrix may be specified exactly
when the desired statistics of the random process are known,
or may be the empirical covariance computed from samples.
One possible solution for selecting a graphical model is to use
the inverse of the target covariance matrix, . However,
whether is exact or empirical, its inverse will, in general,
be a full matrix, resulting in a fully connected graphical model.
One may threshold each element of so that small values
are forced to zero, but often, this results in an invalid covariance
matrix that is not positive–definite.

Therefore, standard approaches in Gaussian graphical model
selection [1], [17], [21] use the log-determinant problem in (1)
to find an approximate covariance matrix

(7)

From Proposition 1, the solution of the above problem has a
sparse inverse, which is a sparse graphical model approxima-
tion. The entropy of a Gaussian distribution is proportional
to the log-determinant of its covariance matrix. Hence, this
learning approach is also called maximum-entropy modeling
[21].

It can be shown that the dual problem of (7) is given as follows
[1]:

(8)

where , and
is the divergence

between the two distributions. This problem minimizes the
divergence between the approximate and the original distribu-
tion with an penalty on the elements of to obtain a sparse
graphical model approximation. Both the primal (7) and the
dual (8) optimization problems are convex and can be solved
efficiently using interior-point methods [21], block coordinate
descent methods [1], or the so-called graphical lasso [17].
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B. Sparse Covariance Approximation

We now consider the problem of approximating a target dis-
tribution with a distribution that has a sparse covariance matrix
(as opposed to a sparse information matrix as in the previous
section). That is, we wish to approximate a target Gaussian dis-
tribution with information matrix by a distribution in which
many pairs of the variables are uncorrelated. We again use the
log-determinant problem in (1), but now in the information ma-
trix domain

(9)

The solution has a sparse inverse, leading to a sparse covari-
ance approximation. Note the symmetry between (7) and (9). In
a Gaussian model, the log-partition function [7] is proportional
to the negative of the log-determinant of the information ma-
trix. Thus, the problem in (9) can be interpreted as minimizing
the log-partition function.

In our MR modeling approach, we apply this sparse covari-
ance approximation method to model distributions at each scale
conditioned on other scales. Thus, the conditional distribution at
each scale is modeled as a Gaussian distribution with a sparse
covariance matrix.

C. Learning a SIM Model

In this section, we discuss a method to learn a SIM model
to approximate a specified MR model that has some complex
structure (e.g., without the local in-scale conditional covariance
structure). When a target covariance (or graphical model) is
specified only for the finest scale variables, we first need to
construct a full MR model that serves as the target model for
the SIM approximation algorithm; such an “exact” target MR
model must have the property that the marginal covariance at the
finest scale equals the specified covariance for the finest scale
variables.

Appendix I describes in detail the algorithm that we use to
produce a target MR information matrix if we are only pro-
vided with a target covariance at the finest scale. The basic idea
behind this approach is relatively simple. First, we use an EM
algorithm to fit an MR tree model so that the marginal covari-
ance at each finest scale node in this model matches those of
the provided finest scale target covariance. As is well known,
because of the tree structure of this MR model, there are often
artifacts across finest scale tree boundaries, a manifestation of
the fact that such a model does not generally match the joint
statistics, i.e., the cross covariances, across different finest scale
nodes. Thus, we must correct the statistics at each scale of our
MR model in order to achieve this finest scale matching. There-
fore, in our second step, we introduce correlations within each
scale resulting in a full target whose finest scale marginal co-
variance matches the originally given covariance. Referring to
Fig. 5, what the first tree construction does is to build the tree-
structured information matrix , capturing interscale connec-
tions, as well as a first approximation to the diagonal of the
in-scale conditional covariance . What the second step does
is to fill in the remainder of the shaded blocks in and modify
the diagonals in order to match the finest scale marginal statis-

tics. In so doing, this target covariance does not, in general, have
sparse in-scale conditional covariance (i.e., is
not sparse), and the procedure we now describe (with many
more details in Appendixes II and III) takes the target

and produces an approximation that has our desired
SIM structure.

Suppose that the target MR model is specified in information
form with information matrix . We can find a SIM model
that approximates by solving the following optimization
problem:

(10)

where is the in-scale information matrix at scale and
is the set of all possible interscale edges connecting

successive neighboring scales. Note that except for the posi-
tive–definiteness condition , the objective function as
well as the constraints can be decomposed into an interscale
component and in-scale components. If we only look at the
terms involving the parameters at scale (i.e., elements of
the matrix ), the above problem maximizes the log-deter-
minant of the information matrix subject to elementwise
constraints. Therefore, from the arguments in Section V-B,
the log-det terms ensure that each has a sparse inverse,
which leads to a sparse in-scale conditional covariance, and
thus a sparse conjugate graph. The -norm on the interscale
edges penalizes nonzero elements [performing the same role as
in the second term of (8)] and thus encourages the interscale
structure connecting different scales to be sparse. Often, the
specified target information matrix of the MR model already
has a sparse interscale graphical structure, such as an MR tree
structure (see Appendix I, for example). In such a scenario, the

-norm can be dropped from the objective function.
The problem in (10) is convex and can be efficiently solved

using general techniques for convex optimization [4], [29]. In
Appendixes II and III, we provide a simplified version of the
problem in (10) to further reduce the computational complexity
in solving the optimization problem. This can be achieved by
interleaving the procedure of constructing the target MR model
and the optimization procedure at each scale to obtain a sparse
conjugate graph structure scale-by-scale. The regularization pa-
rameter in the constraints of (10) provides a tradeoff between
sparsity of the in-scale conjugate graphs and data-fidelity (i.e.,
how close the approximation is to the target information ma-
trix ). In practice, we allow two different regularization pa-
rameters for each scale: one for all node constraints and one
for all edge constraints. For our experimental results, we se-
lected these regularization parameters using a heuristic method
described in Appendix III.

VI. EXPERIMENTAL RESULTS

Modeling of complex phenomena is typically done with an
eye to at least two key objectives: 1) model accuracy; and 2)
tractability of the resulting model in terms of its use for various
statistical inference tasks.

In this section, we compare the performance of our SIM
model to four other modeling approaches. First, we consider
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Fig. 6. Structure of the SIM model approximation for stock data.

TABLE I
TOP FOUR STRONGEST CONJUGATE EDGES AT SCALE 3 OF FIG. 6

a single-scale approximate model where we learn a sparse
graphical model using (7) without introducing hidden vari-
ables. This is motivated by the fact that one of the dominant
themes in statistical modeling is to encourage a sparse graphical
model structure to approximate given statistics. Another widely
used modeling method is a tree-structured MR model. Such
tree models are the absolute winner in terms of computational
tractability, but they are not nearly as good in terms of modeling
accuracy. Third, we consider a sparse MR model in the form
introduced in [7], which aims to overcome the limitations of
the tree. Note that unlike a SIM model, a sparse MR model has
a sparse information matrix but not sparse in-scale conditional
covariance. Finally, for each of our examples, we have the
original model defined by the exact given statistics. They serve
as target statistics for each approximate modeling method,
but they do not have a sparse structure that makes inference
computationally tractable in larger examples.

We measure the modeling accuracy of approximate models
by computing the divergence between the exact distribution and
the approximate distribution.9 The tractability of each model can
be evaluated either by measuring computation time for a spe-
cific inference task or by counting the number of parameters.
An important point here is that all of the methods to which we
compare, as well as our SIM model, are general-purpose mod-
eling frameworks that are not tailored or tuned to any specific
application.

A. Stock Returns

Our first experiment is modeling the dependency structure of
monthly stock returns of 84 companies in the S&P 100 stock
index.10 We use the hierarchy defined by the Standard Indus-

9For multiscale models, we marginalize out coarser scale variables and use
the marginal covariance at the finest scale to compute this divergence.

10We disregard 16 companies that have been listed on S&P 100 only after
1990.

Fig. 7. Stock returns modeling example. Sparsity pattern of the information
matrix of (a) the single-scale (122.48), and (b) the sparse MR approximation
(28.34). (c) Sparsity pattern of the in-scale conditional covariance of the SIM
approximation (16.36). All at the finest scale. We provide the divergence be-
tween the approximate and the empirical distribution in the parenthesis. The
tree approximation has divergence 38.22.

trial Classification (SIC) system,11 which is widely used in fi-
nance, and compute the empirical covariance using the monthly
returns from 1990 to 2007. Our MR models have four scales,
representing the market, six divisions, 26 industries, and 84 in-
dividual companies, respectively, at scales from the coarsest to
the finest.

Fig. 6 shows the first three scales of the SIM model approx-
imation. At scale 3, we show the SIC code for each industry
(represented by two digits) and in the parenthesis denote the
number of individual companies that belong to that industry
(i.e., number of children). We show the finest scale of the SIM
model using the sparsity pattern of the in-scale conditional co-
variance in Fig. 7(c). Often, industries or companies that are
closely related have a conjugate edge between them. For ex-
ample, the strongest conjugate edge at scale 3 is the one between
the oil and gas extraction industry (SIC code 13) and the petro-
leum refining industry (SIC code 29). Table I shows four con-
jugate edges at scale 3 in the order of their absolute magnitude
(i.e., the top four strongest in-scale conditional covariance).

Fig. 7(a) shows the sparsity pattern of the information ma-
trix of a single-scale approximation. Note that the corresponding
graphical model has densely connected edges among companies

11http://www.osha.gov/pls/imis/sic_manual.html
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Fig. 8. Covariance approximation for fBm-64. (a) Original model. (b) Single-
scale approximation. (c) Tree approximation. (d) SIM model.

that belong to the same industry, because there is no hidden vari-
able to capture the correlations at a coarser resolution. Fig. 7(b)
shows the information matrix at the finest scale of a sparse
MR model approximation [8]. Although the graphical model is
sparser than the single-scale approximation, some of the compa-
nies still have densely connected edges. As shown in the caption
of Fig. 7, the SIM model approximation provides the smallest
divergence of all approximations.

B. Fractional Brownian Motion

We consider fractional Brownian motion (fBm) [30]
with Hurst parameter defined on the time in-
terval with the covariance function:

. Note that this is a
nonstationary process. Fig. 8 shows the covariance realized by
each model using 64 time samples. For the tree model and the
SIM model, we only show the marginal covariance of the finest
scale variables. Our SIM approximation in Fig. 8(d) is close to
the original covariance in Fig. 8(a), while the single-scale ap-
proximation in Fig. 8(b) fails to capture long-range correlations
and the tree model covariance in Fig. 8(c) appears blocky.

A similar covariance realization without severe blocky arti-
facts can also be obtained by the sparse MR model of [7]. How-
ever, we observe that a SIM model can achieve a smaller di-
vergence with respect to the true model with a smaller number
of parameters than the counterpart sparse MR model. Fig. 9(a)
shows the sparsity pattern of the conjugate graph (i.e., the con-
ditional covariance) of the finest scale of the SIM model and
Fig. 9(b) shows the sparsity pattern of the graphical model (i.e.,
the information matrix) of the finest scale of the sparse MR
model. The SIM model has 134 conjugate edges at the finest
scale and the sparse MR model has 209 edges. The divergence
with respect to the true distribution is 1.62 for the SIM model
and 2.40 for the sparse MR model. Moreover, note that the struc-
ture of the conjugate graph in Fig. 9(a) is mostly local, but in
the sparse MR model in Fig. 9(b), some nodes are connected to
many other nodes. This suggests that the conditional covariance
structure is a more natural representation for capturing in-scale
statistics.

Fig. 10(a) displays a 256-point sample path using the exact
statistics and Fig. 10(b) displays sparse and noisy observations
of Fig. 10(a). Observations are only available on (over

Fig. 9. Sparsity pattern of (a) the in-scale conditional covariance of the finest
scale of the SIM model and (b) the information matrix of the finest scale of the
sparse MR model for the fBm-64 example.

Fig. 10. Estimation for fBm-256. (a) Sample-path using exact statistics.
(b) Noisy and sparse observations of (a). Estimates using (c) single-scale ap-
proximation, (d) tree model, and (e) SIM model are shown in the dashed–dotted
lines. In each figure, the solid black line indicates the optimal estimate based
on exact statistics, and the dashed gray lines show plus/minus one standard
deviation error bars of the optimal estimate.

TABLE II
FBM-256 APPROXIMATION

which the noise variance is 0.3) and (with noise vari-
ance 0.5). Fig. 10(c)–(e) shows the estimates (in dashed–dotted
line) based on the approximate single-scale model, the tree, and
the SIM model, respectively, together with the optimal esti-
mate based on the exact statistics (in solid black). The dashed
gray lines in Fig. 10(c)–(e) indicate plus/minus one standard
deviation error bars of the optimal estimate. We see that the
single-scale estimate differs from the optimal estimate by a sig-
nificant amount (exceeding the error bars around the optimal
estimate), while both the tree estimate and the SIM estimate
are close to the optimal estimate (i.e., well within the error bars
around the optimal). In addition, the estimate based on our SIM
model does not have blocky artifacts as in the estimate based on
the tree.

The performance of each model is summarized in Table II.
Note that the number of parameters (number of nodes plus the
number of (conjugate) edges) in the SIM model is much smaller
than the original or the single-scale approximate model. Specif-
ically, the number of interscale edges and conjugate in-scale
edges in the SIM model is while the number of edges in
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Fig. 11. Conjugate graph at each scale of the SIM model for polynomially de-
caying covariance approximation. (a) Scale 2 �� � ��. (b) Scale 3 �� � ��.
(c) Scale 4 ��� � ���.

Fig. 12. (a) Covariance behavior of various models. (b) Comparison of infer-
ence performance for polynomially decaying covariance experiments.

the original and the single-scale approximation is where
is the number of variables.

C. Polynomially Decaying Covariance
for A 2-D Gaussian Field

We consider a collection of 256 Gaussian random variables
arranged spatially on a grid. The variance of each vari-
able is given by and the covariance between each pair
of variables is given by , where is
the spatial distance between nodes and . The original graph-
ical structure (corresponding to the inverse of the specified co-
variance matrix) is fully connected, and the single-scale approx-
imation of it is still densely connected with each node connected
to at least 31 neighbors.

Fig. 11 shows the conjugate graph of the SIM model approxi-
mation within each scale, i.e., the sparsity of the conditional co-
variance at that scale. We emphasize that these conjugate edges
encode the in-scale conditional correlation structure among the
variables directly, so each node is only locally correlated when
conditioned on other scales. Fig. 12(a) displays the covariance
as a function of the distance between a pair of nodes. The co-
variance of the single-scale approximation falls off much more
rapidly than that of the original model, and the magnified por-
tion of the plot emphasizes the blocky artifacts of the tree model.

TABLE III
POLYNOMIALLY DECAYING COVARIANCE APPROXIMATION

We conclude that our SIM model provides good modeling ca-
pabilities for processes with long-range correlation.

To compare the inference performance, we generate random
noisy measurements using the specified statistics and compare
the computation time to solve the inference problem for the
SIM model (using the inference algorithm in Section IV-B), the
original and the single-scale approximate model (using the ET
algorithm described in Section IV-A), and the sparse MR model
(using the algorithm in [8]). Table III shows the average time
until convergence (the relative residual error reaches )
averaged over 100 experiments, and Fig. 12(b) shows the
residual error versus computation time for one set of random
measurements.12 The SIM modeling approach provides a sig-
nificant gain in convergence rate over the other models. Note
that the sparse MR model has a smaller number of parameters,
but the divergence and the average time until convergence are
larger. Hence, even though sparse MR models have advantages
over single-scale approximations, SIM models provide more
accurate approximations of the underlying process and enable
more efficient inference procedures.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a new class of Gaussian MR
models with sparse in-scale conditional covariance structure at
each scale and tree-structured connections across scales. In our
SIM model, each variable is correlated with only a few other
variables in the same scale when conditioned on other scales.
Our approach overcomes the limitations of tree-structured MR
models and provides good modeling performance especially in
capturing long-range covariance behavior without blocky arti-
facts. In addition, by decomposing the information matrix of the
resulting MR model into the sum of a sparse matrix (the infor-
mation matrix corresponding to interscale graphical structure)
and an information matrix that has a sparse inverse (the in-scale
conditional covariance), we develop an efficient inference algo-
rithm utilizing the sparsity in both Markov and covariance struc-
ture. Our algorithm alternates computations across scales using
the sparse interscale graphical structure, and in-scale computa-
tions that reduce to sparse matrix multiplications.

We also describe a method for learning models with this struc-
ture, i.e., for building SIM models that provide a good approx-
imation to a target covariance. Given a target covariance at the
finest scale, our learning algorithm first constructs an exact MR
model for the target covariance, and then optimizes the struc-
ture of each scale using log-determinant maximization to obtain

12The computation time was measured at AMD Opteron 270 Dual Core Pro-
cessor using Matlab 7.4.0 code.
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a sparse conjugate graph approximation. In Appendix I, we in-
troduce one method to construct an exact MR model, which first
learns a good MR tree model and then augments each scale in
a coarse-to-fine way. An important and interesting extension of
our learning method would be to alternatively optimize the tree
and the in-scale models in a computationally tractable way. Al-
though for simplicity we assumed that the interscale structure
of SIM models is a tree, our inference procedure is efficient for
the more general case of having a sparse interscale structure (but
not necessarily a tree) as well.

SIM models are of most value when there are long-distance
correlations, which are most prominent in multidimensional
data such as in geophysical fields, and the application of our
methods in such areas is a promising line of work. While our
focus in this paper is on the Gaussian model, applying similar
principles to discrete or other more general models is also of
interest. Although the sparse matrix multiplication and the
log-det optimization framework for Gaussian models are not
directly applicable to the discrete case, we expect that having
a sparse in-scale dependency structure at each scale condi-
tioned on other scales may still result in efficient inference and
learning algorithms.

APPENDIX I
COMPUTING THE TARGET INFORMATION MATRIX

OF AN MR MODEL

Suppose that we are given a target covariance of the vari-
ables at the finest scale. In this section, we discuss a method to
introduce hidden variables at coarser scales and build an exact
MR model, so that when we marginalize out all coarser scale
variables, the marginal covariance at the finest scale is exactly
equal to . The information matrix of this exact MR model
can be used as the target information matrix in (10) to obtain
a SIM model approximation.

To begin with, we learn an interscale model by selecting a
tree structure (without any in-scale connections) with additional
hidden variables at coarser scales and the original variables at
the finest scale. Selecting a good tree structure is important, but
this structure does not need to be perfect since we later aug-
ment the interscale model with in-scale structures. For some
processes, there exists a natural hierarchical structure: for ex-
ample, for regular 1-D or 2-D processes, the MR tree models in
Fig. 1 can be used. For other problems in which the spatial re-
lation among the variables is not clearly defined, we can group
variables that are highly correlated and insert one coarser scale
variable for each group. Once the structure is fixed, the EM al-
gorithm [5] can be applied to choose the parameters that best
match the given target covariance for the finest scale vari-
ables. This procedure is efficient for a tree-structured model.

After the parameter fitting, we have an information matrix
corresponding to an MR tree model. Although the EM al-

gorithm will adjust the elements of so that the marginal
covariance at the finest scale is close to , it will in general not
match the cross-correlation between variables at different finest
scale nodes. As mentioned in Section V-C, if we view as
a first approximation to , it has a structure as in Fig. 5 except
that the in-scale conditional structure that we have learned (the

shaded blocks in in the figure) is diagonal rather than full,
resulting in artifacts that correspond to inaccurate matching of
finest scale cross covariances. As a result, the basic idea of our
construction is to recursively modify our approximation to ,
from coarse-to-fine scales to get full matching of marginal sta-
tistics at the finest scale.

In an MR tree model, the covariance matrix at each scale can
be represented in terms of the covariance at the next finer scale

(11)

where and are determined by .13 Since we wish
to modify the tree model so that the covariance matrix at the
finest scale becomes , we set for the finest scale

and compute a target marginal covariance for each scale in
a fine-to-coarse way using (11). These target marginal covari-
ances at each scale can be used to modify . Specifically, the
diagonal matrix of the tree model is replaced with a nondi-
agonal matrix so that the marginal covariance at scale is equal
to , the target marginal covariance at that scale computed
using (11). In modifying , we proceed in a coarse-to-fine way.
Suppose that we have replaced through , and let us
consider computing . We partition the information matrix of
the resulting MR model into nine submatrices with the in-scale
information matrix at scale at the center14:

(12)

Note that except for , all submatrices are equivalent to the cor-
responding components in because we have only replaced
coarser in-scale blocks.

From (12), the marginal covariance at scale is
. By setting this

equal to the target covariance matrix in (11), the target
information matrix at scale can be computed as follows:

(13)

which we replace with in (12) and proceeds to the next finer
scale until we reach the finest scale. The matrix inversion in the
above equation requires computation that is cubic in the number
of variables . Learning a graphical model structure typically
involves at least computation [1], so computing is
not a bottleneck of the learning process.

After the algorithm augments in-scale structures for all scales,
the resulting information matrix has the marginal covari-
ance at the finest scale exactly equal to the target covariance
matrix . In addition, has dense in-scale structure both as
a graphical model and in terms of the corresponding conjugate
graph (since in general the matrix is not sparse and does not
have a sparse inverse), and a sparse interscale graphical struc-
ture. Hence, the information matrix can be used as the target

13Let� � �� � and� � �� � . Then,� � � �

and � � � � � � � .
14For� � � (the coarsest scale) and� �� (the finest scale), the partition

consists of only four submatrices. Also, the 0-blocks in (12) are immediate be-
cause of the MR structure, which does not have edges directly between scales
� � � and � � �.
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TABLE IV
LEARNING ALGORITHM IN DETAIL

information matrix of the MR model in (10) with the -norm
dropped from the objective function to learn a SIM model ap-
proximation.

APPENDIX II
SEQUENTIAL STRUCTURE OPTIMIZATION

In Appendix I, we constructed an exact MR model such that
the marginal covariance at the finest scale matches the specified
target covariance exactly. The information matrix of the exact
MR model can be used as the target information matrix in (10)
to learn a SIM model approximation. In this section, we intro-
duce an alternative approach to learn a SIM model; instead of
first constructing an exact MR model across all scales and then
optimizing the structure of all scales in parallel by solving (10),
one can interleave the procedure of finding a target information
matrix at scale and optimizing its structure to have a sparse
conjugate graph.

After computing the target information matrix at scale
using (13) (before proceeding to compute at the next

finer scale), we perform structure optimization at scale to ob-
tain a sparse in-scale conditional covariance approximation (i.e.,
a sparse conjugate graph). This in-scale structure optimization
can be performed by solving a simplified version of the log-det
problem in (10). Since the interscale edges of are sparse by
our construction, the -norm can be dropped from the objective
function of (10). In addition, the parameters at all scales other
than scale are fixed. Thus, the optimization problem reduces
to the following:

(14)

where is the set of nodes at scale . Using the approxima-
tion techniques described in Appendix III, the above problem
can be solved more efficiently than the problem in (10) that does
not use the sequential approach.

APPENDIX III
COMPUTATIONAL SIMPLIFICATIONS IN SOLVING

THE LOG-DET PROBLEM

In this section, we introduce some techniques to obtain an ap-
proximate solution of the log-determinant problem in (14) effi-
ciently, and provide a method for choosing the regularization

parameters. The problems in (10) and (14) are both convex and
can be solved using standard convex optimization techniques
[4]. In order to further reduce the computational complexity, we
ignore the positive–definiteness condition until we find a
solution that maximizes the log-determinant with the element-
wise constraints satisfied. Then, the problem reduces to (9) that
involves only the information matrix at scale , which can
be efficiently solved using the techniques in [1], [17], and [21].
If, after replacing with the solution , the entire infor-
mation matrix is positive–definite, then is indeed the op-
timal solution. If is not positive–definite, then we adjust the
regularization parameter, and for this purpose, we allow two reg-
ularization parameters: one for all nodes and one for all edges

(15)

where and are parameters for edges and nodes, respec-
tively. Note that the KKT conditions of the above problem are
exactly the same as those in Proposition 1, and the inverse of

(the conjugate graph at scale ) is sparse.
It is straightforward to show that the optimal solution of (15)

has the diagonal elements equal to , so for large

enough value of becomes positive–definite. Therefore, if
the resulting is not positive–definite, we can increase the value
of . In practice, we set equal to where is the
maximum value of the off-diagonal elements of , and set
the initial value of for all coarser scales. For the finest
scale, we use and adjust so that the divergence
between the approximate and target distribution is minimized.

After every scale in the MR model is augmented with a sparse
conjugate graph, the resulting SIM model has a sparse interscale
structure, and a sparse conjugate graph at each scale. Table IV
summarizes the algorithm for learning a SIM model given the
target covariance at the finest scale.
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