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FINDING PLANTED SUBGRAPHS WITH FEW EIGENVALUES
USING THE SCHUR–HORN RELAXATION∗
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Abstract. Extracting structured subgraphs inside large graphs—often known as the planted
subgraph problem—is a fundamental question that arises in a range of application domains. This
problem is NP-hard in general and, as a result, significant efforts have been directed towards the
development of tractable procedures that succeed on specific families of problem instances. We pro-
pose a new computationally efficient convex relaxation for solving the planted subgraph problem;
our approach is based on tractable semidefinite descriptions of majorization inequalities on the spec-
trum of a symmetric matrix. This procedure is effective at finding planted subgraphs that consist of
few distinct eigenvalues, and it generalizes previous convex relaxation techniques for finding planted
cliques. Our analysis relies prominently on the notion of spectrally comonotone matrices, which
are pairs of symmetric matrices that can be transformed to diagonal matrices with sorted diagonal
entries upon conjugation by the same orthogonal matrix.
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1. Introduction. In application domains ranging from computational biology
to social data analysis, graphs are frequently used to model relationships among large
numbers of interacting entities. A commonly encountered question across many of
these application domains is that of identifying structured subgraphs inside larger
graphs. For example, identifying specific motifs or substructures inside gene reg-
ulatory networks is useful in revealing higher-order biological function [3, 15, 30].
Similarly, extracting completely connected subgraphs in social networks is useful for
determining communities of people that are mutually linked to each other [29, 31, 33].
In this paper, we propose a new algorithm based on convex optimization for finding
structured subgraphs inside large graphs, and we give conditions under which our
approach succeeds in performing this task.

Formally, suppose Γ and G are graphs1 on k nodes and n nodes (here n > k), re-
spectively, with the following property: there exists a subset of vertices V ⊂ {1, . . . , n}
with |V | = k such that the induced subgraph of G corresponding to the vertex set V
is isomorphic to Γ. The planted subgraph problem is to identify the vertex subset V
given the graphs G and Γ; see Figure 1 for an example. The decision version of the
planted subgraph problem is known as the induced subgraph isomorphism problem
in the theoretical computer science literature, and it has been shown to be NP-hard
[26]. Nevertheless, as this problem arises in a wide range of application domains as
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(a) (b)

Fig. 1. The Clebsch graph (16 nodes) on the left. An example on the right of a 40-node graph
containing the Clebsch graph as an induced subgraph; the thick edges correspond to a 16-node induced
subgraph that is isomorphic to the Clebsch graph.

described above, significant efforts have been directed towards the development of
computationally tractable procedures that succeed on certain families of problem in-
stances. Much of the focus of this attention has been on the special case of the planted
clique problem in which the subgraph Γ is fully connected. Alon, Krivelevich, and
Sudakov [1] and Feige and Krauthgamer [20] developed a spectral algorithm for the
planted clique problem, and subsequently Ames and Vavasis [2] described an approach
based on semidefinite programming with similar performance guarantees to the ear-
lier work based on spectral algorithms. Conceptually, these methods are based on a
basic observation about the spectrum of a clique, namely, that the adjacency matrix
of a clique on k nodes has two distinct eigenvalues, one with multiplicity equal to one
and the other with multiplicity equal to k − 1. We describe a new semidefinite pro-
gramming technique that generalizes the method of Ames and Vavasis [2] to planted
subgraphs Γ that are not fully connected, with the spectral properties of Γ playing a
prominent role in our algorithm and our analysis.

1.1. Our contributions. Let AΓ ∈ Sk and AG ∈ Sn represent the adjacency
matrices of Γ and of G with Sq denoting the space of q × q real symmetric matrices.
Given any matrix M ∈ Sk, we let [M ]k→n ∈ Sn for n > k denote an n× n symmetric
matrix with the leading principal minor of order k equal to M and all the other
entries equal to zero. The following combinatorial optimization problem is a natural
first approach to phrase the planted subgraph problem in a variational manner:

(1)

Âco = arg max
A∈Sn

trace(A ·AG)

s.t. Ai,j = 0 if (AG)i,j = 0 and i 6= j,

A ∈ {Π[AΓ]k→nΠ′ | Π is an n× n permutation matrix}.

Assuming that there is no other subgraph of G that is isomorphic to Γ, one can check
that the optimal solution Âco of this problem identifies the vertices V ⊂ {1, . . . , n}
whose induced subgraph in G is isomorphic to Γ, i.e., the unique optimal solution
Âco is equal to zero everywhere except for the principal minor corresponding to the
indices in V and (Âco)V,V = Π̃AΓΠ̃′ for some k × k permutation matrix Π̃. However,
solving (1) is intractable in general. Replacing the combinatorial constraint A ∈
{Π[AΓ]k→nΠ′ | Π is an n × n permutation matrix} with the convex constraint A ∈
conv{Π[AΓ]k→nΠ′ | Π is an n × n permutation matrix} does not lead to a tractable
problem as checking membership in the polytope conv{Π[AΓ]k→nΠ′ | Π is an n ×
n permutation matrix} is intractable for general planted graphs Γ (unless P = NP).
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We describe next a convex outer approximation of the set {Π[AΓ]k→nΠ′ | Π is an
n×n permutation matrix} that leads to a tractable convex program. For any matrix
M ∈ Sn, the Schur–Horn orbitope SH(M) ⊂ Sn is defined as [36]

(2) SH(M) = conv{UMU ′ | U is an n× n orthogonal matrix}.

The term “orbitope” was coined by Sanyal, Sottile, and Sturmfels in their work on
convex hulls of orbits generated by the actions of groups, and the Schur–Horn or-
bitope was so named by these authors due to its connection to the Schur–Horn the-
orem in linear algebra [36]. In combinatorial optimization, approximations based
on replacing permutations matrices by orthogonal matrices have also been employed
to obtain bounds on the quadratic assignment problem [21]. The set SH(M) de-
pends only on the eigenvalues of M , and it is clearly an outer approximation of the
set {ΠMΠ′ | Π is an n × n permutation matrix}. Crucially for our purposes, the
Schur–Horn orbitope SH(M) for any M ∈ Sn has a tractable semidefinite descrip-
tion via majorization inequalities on the spectrum of a symmetric matrix [6, 36];
see section 4.1. Hence, we propose the following tractable semidefinite programming
relaxation for the planted subgraph problem:

(P )

Âsh = arg max
A∈Sn

trace(A ·AG)

s.t. Ai,j = 0 if (AG)i,j = 0 and i 6= j,

A ∈ SH([AΓ − γIk]k→n).

Here Ik ∈ Sk is the k×k identity matrix. We refer to this convex program as the Schur–
Horn relaxation, and this problem can be solved to a desired precision in polynomial
time. This relaxation only requires knowledge of the eigenvalues of the planted graph
Γ. The parameter γ ∈ R is to be specified by the user, and we discuss suitable choices
for γ in the following. Note that changing AΓ to AΓ − γIk in the constraints of (1)
essentially leaves that problem unchanged (the nonzero principal minor of the optimal
solution simply changes from Âco to Âco − γIk). However, the additional degree of
freedom provided by the parameter γ plays a more significant role in the Schur–Horn
relaxation as it allows for shifts of the spectrum of AΓ to more favorable values, which
is essential for the solution of various planted subgraph problems; see section 2.1 for
further details, as well as the experiments in section 4 for numerical illustrations. We
say that the Schur–Horn relaxation succeeds in recovering the planted subgraph Γ if
the optimal solution Âsh ∈ Sn satisfies the following conditions: the optimal solution
Âsh is unique, the submatrix (Âsh)V,V = Π̃AΓΠ̃′ − γIk for some k × k permutation

matrix Π̃, and the remaining entries of Âsh are equal to zero.
In section 2 we study the geometric properties of the Schur–Horn orbitope as these

pertain to the optimality conditions of the Schur–Horn relaxation. Our analysis relies
prominently on the notion of spectrally comonotone matrices, which refers to a pair of
symmetric matrices that can be transformed to diagonal matrices with sorted diagonal
entries upon conjugation by the same orthogonal matrix. Spectral comonotonicity is a
more restrictive condition than simultaneous diagonalizability, and it enables a precise
characterization of the normal cones at extreme points of the Schur–Horn orbitope
(Proposition 6). This discussion leads directly to the central observation of our paper
that the Schur–Horn relaxation is useful for finding planted graphs Γ that consist
of few distinct eigenvalues. Cliques form the simplest examples of such graphs as
their spectrum consists of two distinct eigenvalues. There are numerous other graph
families whose spectrum consists of few distinct eigenvalues, and the study of such
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graphs is a significant topic in graph theory [8, 17, 18, 32, 39, 40, 41]. For example,
strongly regular graphs are (an infinite family of) regular graphs with three distinct
eigenvalues; the Clebsch graph of Figure 1 is a strongly regular graph on 16 nodes
with eigenvalues in the set {5, 1,−3} and degree equal to five. For a more extensive
list of graphs with few eigenvalues, see section 2.2.

We state and prove the main theoretical result of this paper in section 3.4—see
Theorem 19. If the planted subgraph Γ and its complement are both symmetric—
Γ and its complement are both vertex- and edge-transitive—and if Γ is connected,
then this theorem takes on a simpler form (Corollary 20) . Specifically, the success
of the Schur–Horn relaxation (P ) relies on the existence of a suitable eigenspace
E ⊂ Rk of AΓ. Concretely, let PE ∈ Sk denote the projection onto E , and let µ(E) =

maxi,j, i 6=j
|(PE)i,j |√

|(PE)i,i||(PE)j,j |
denote the coherence of E . Assuming that the edges in G

outside the induced subgraph Γ are placed independently and uniformly at random
with probability p ∈ [0, 1

µ(E)k ) (i.e., the Erdős–Rényi random graph model), we show

in Corollary 20 that the Schur–Horn relaxation (P ) with parameter2 γ = λE (the
eigenvalue associated with E) succeeds with high probability provided

n . min
λ eigenvalue of AΓ

λ 6=λE

min

{
|λ− λE |2

dim(E)2
(
1− kpµ(E)

)
k2 p

, (|λ− λE | − 2|λE |)2

}
+ k.

The coherence parameter µ(E) lies in (0, 1], and it appears prominently in results on
sparse signal recovery via convex optimization [16]. In analogy to that literature, a
small value of µ(E) is useful in our context (informally) to ensure that the planted
graph Γ looks sufficiently “different” from the remainder of G (see section 3 for details).
Thus, the Schur–Horn relaxation succeeds if the planted graph Γ consists of few
distinct eigenvalues that are well-separated, and in which one of the eigenspaces has a
small coherence parameter associated to it. For more general nonsymmetric graphs,
our main result (Theorem 19) is stated in terms of a parameter associated with an
eigenspace E of AΓ called the combinatorial width, which roughly measures the average
conditioning over all minors of PE of a certain size.

Specialization to the planted clique problem. The sum of the adjacency matrix of
a clique and the identity matrix has rank equal to one, and consequently the planted
clique problem may be phrased as one of identifying a rank-one submatrix inside a
larger matrix (up to shifts of the diagonal by the identity matrix). In her thesis [19],
Fazel proposed the nuclear norm as a tractable convex surrogate for identifying low-
rank matrices in convex sets, and subsequent efforts provided theoretical support for
the effectiveness of this relaxation in a range of rank minimization problems [12, 34].
Building on these ideas, Ames and Vavasis [2] proposed a nuclear norm minimization
approach for the planted clique problem. The Schur–Horn relaxation (P ) specializes
to the relaxation in [2] when Γ is the clique. Specifically, letting Aclique ∈ Sk denote
the adjacency matrix of a k-clique, one can check that

(3) SH([Aclique + Ik]k→n) = {P ∈ Sn | trace(P ) = k, P � 0}.

As the nuclear norm of a positive semidefinite matrix is equal to its trace, the Schur–
Horn orbitope SH([AΓ +Ik]k→n) is simply a face of the nuclear norm ball in Sn scaled
by a factor k. Thus, the Schur–Horn relaxation (P ) with γ = −1 is effectively a nuclear

2In our experiments in section 4, we set γ equal to the eigenvalue of AΓ with the largest multi-
plicity. See section 3 for further discussion.
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norm relaxation when the planted subgraph of interest is the clique.3 Further, our
main result (Theorem 19) can be specialized to the case of a planted clique to obtain
the main result in [2]; see Corollary 21.

1.2. Paper outline. In section 2 we discuss the geometric properties of the
Schur–Horn orbitope and their connection to the optimality conditions of the Schur–
Horn relaxation, along with an extensive list of families of graphs with few eigenvalues.
Section 3 contains our main theoretical results, while in section 4 we demonstrate
the utility of the Schur–Horn relaxation in practice via numerical experiments. We
conclude in section 5 with a discussion of further research directions.

Notation. The normal cone at a point x ∈ C for a closed, convex set C ⊂ Rn
is denoted by NC(x) and it is the collection of linear functionals that attain their
maximal value over C at x [35]. The projection operator onto a subspace E ⊂ Rn is
denoted by PE . The restriction of a linear map A : Rn → Rn to an invariant subspace
E of A is denoted by A|E : E → E . The orthogonal complement of a subspace E is
denoted by E⊥. The notation dim(E) denotes the dimension of a subspace E . The
eigengap of a symmetric matrix M ∈ Sn associated with an invariant subspace E ⊂ Rn
of M is defined as

eigengap(M, E) = min
{
|λE − λE⊥ |

∣∣ λE an eigenvalue of M |E ,
λE⊥ an eigenvalue of M |E⊥

}
.

The smallest and largest eigenvalues of a symmetric matrix A are represented by
λmin(A) and λmax(A), respectively. The norms ‖·‖ , ‖·‖2, and ‖·‖F denote the vector
`2 norm, the matrix operator/spectral norm, and the matrix Frobenius norm, respec-
tively. The vector 1` ∈ R` denotes the all-ones vector of length `. We denote the
identity matrix of size k by Ik. The matrix IΩ ∈ R|Ω| × k denotes the matrix whose
rows are the rows of Ik indexed by Ω ⊂ {1, . . . , k}, so that the rows of IΩA are the
rows of A indexed by Ω for any A ∈ Rk×q. The matrix AΩ,Ω ∈ R|Ω|×|Ω| denotes the
principal minor of A indexed by the set Ω. The group of n × n orthogonal matrices
is denoted by On ⊂ Rn×n. The set relint(C) specifies the relative interior of any
convex set C. The column space of a matrix A is denoted by col(A). The quantity
E[·] denotes the usual expected value, where the distribution is clear from context.

2. Geometric properties of the Schur–Horn orbitope. In this section, we
analyze the optimality conditions of the Schur–Horn relaxation from a geometric
perspective. In particular, the notion of a pair of spectrally comonotone matrices
plays a central role in our development, and we elaborate on this point in the next
subsection. Based on this discussion, we observe that the Schur–Horn relaxation is
especially useful for finding planted graphs consisting of few distinct eigenvalues, and
we give examples of graphs with this property in section 2.2. The main theoretical
results formalizing the utility of the Schur–Horn relaxation are presented in section 3.

2.1. Optimality conditions of the Schur–Horn relaxation. We state the
optimality conditions of the Schur–Horn relaxation in terms of the normal cones at
extreme points of the Schur–Horn orbitope.

Lemma 1. Consider a planted subgraph problem instance in which the nodes of
G and Γ are labeled so that the leading principal minor of AG of order k is equal to
AΓ. Suppose there exists a matrix M ∈ Sn with the following properties:

3The nuclear norm relaxation in [2] is formulated in a slightly different fashion compared to the
Schur–Horn relaxation (P ) for the case of the planted clique; specifically, one can show that our
relaxation succeeds whenever the nuclear norm relaxation in [2] succeeds.
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1. Mi,j = (AG)i,j if (AG)i,j = 1 or if i = j;
2. M ∈ relint

(
NSH([AΓ−γIk]k→n)([AΓ − γIk]k→n)

)
.

Then the Schur–Horn relaxation succeeds at identifying the planted subgraph Γ inside
the larger graph G, i.e., the unique optimal solution of the convex program (P ) is
Âsh =

(
AΓ−γIk 0

0 0

)
.

Proof. From standard results in convex analysis [35], we have that
(
AΓ−γIk 0

0 0

)
is the unique optimal solution of (P ) if AG can be decomposed as AG ∈ K +
relint

(
NSH([AΓ−γIk]k→n)([AΓ − γIk]k→n)

)
for some matrix K ∈ Sn that satisfies

Ki,j = 0 if either (AG)i,j = 1 or i = j.

Letting K = AG −M we have the desired result.

The assumption on the node labeling is made purely for the sake of notational
convenience in our analysis (to avoid clutter in having to keep track of additional
permutations), and our algorithmic methodology does not rely on such a labeling.
Based on this characterization of the optimality conditions, the success of the Schur–
Horn relaxation relies on the existence of a suitable dual variable M ∈ Sn that satisfies
two conditions. The first of these conditions relates to the structure of the noise edges
in G, while the second condition relates to the structure of the planted graph Γ via
the normal cone NSH([AΓ−γIk]k→n)([AΓ− γIk]k→n). From the viewpoint of Lemma 1,
favorable problem instances for the Schur–Horn relaxation are, informally speaking,
those in which there are not too many noise edges in G (implying a less restrictive first
requirement on M) and in which the normal cone NSH([AΓ−γIk]k→n)([AΓ − γIk]k→n)
is large (entailing a more flexible second condition for M). The interplay between
these two conditions forms the basis of our analysis and results presented in section 3.
In the remainder of the present section, we investigate spectral properties of planted
graphs Γ that result in a large normal cone NSH([AΓ−γIk]k→n)([AΓ − γIk]k→n).

The normal cones at the extreme points of the Schur–Horn orbitope are conve-
niently described based on the following notion (see Proposition 6 in the following).

Definition 2. A pair of symmetric matrices A,B ∈ Sn is spectrally comonotone
if there exists an orthogonal matrix U ∈ Rn×n such that U ′AU and U ′BU are both
diagonal matrices with the diagonal entries sorted in nonincreasing order.

The stipulation that two matrices be spectrally comonotone is a stronger condition
than the requirement that the matrices be simultaneously diagonalizable, due to the
additional restriction on the ordering of the diagonal entries upon conjugation by an
orthogonal matrix.

Example 3. Consider the matrices

A =

3 0 0
0 1 0
0 0 1

 , B =

1 0 0
0 0.5 0.5
0 0.5 0.5

 , C =

1 0 0
0 1 1
0 1 1

 .

The matrices A and B are spectrally comonotone, while A and C are only simulta-
neously diagonalizable and are not spectrally comonotone.

As Proposition 1 states the optimality conditions of the Schur–Horn relaxation in
terms of the relative interiors of normal cones at extreme points of the Schur–Horn
orbitope, we need the following “strict” analog of spectral comonotonicity.

Definition 4. A matrix A ∈ Sn is strictly spectrally comonotone with a matrix
B ∈ Sn, if for every P ∈ Sn that is simultaneously diagonalizable with B, there exists
ε > 0 such that A+ ε P and B are spectrally comonotone.
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Strict spectral comonotonicity is more restrictive than spectral comonotonicity.
Further, the definition of strict spectral comonotonocity is not a symmetric one, unlike
that of spectral comonotonicity, i.e., even if A ∈ Sn is strictly spectrally comonotone
with B ∈ Sn, it may be that B is not strictly spectrally comonotone with A.

Example 5. Consider the matrices

A =

3 0 0
0 2 0
0 0 1

 , B =

3 0 0
0 1 0
0 0 1

 .

The matrix A is strictly spectrally comonotone with the matrix B, but B is not
strictly spectrally comonotone with A.

The following result provides a characterization of normal cones at extreme points
of the Schur–Horn orbitope in terms of spectrally comonotone matrices.

Proposition 6. For any matrix M ∈ Sn and the associated Schur–Horn orbitope
SH(M), the normal cone NSH(M)(W ) and its relative interior at an extreme point
W of SH(M) are given by

NSH(M)(W ) = {Q ∈ Sn | Q and W are spectrally comonotone},
relint

(
NSH(M)(W )

)
= {Q ∈ Sn | Q is strictly spectrally comonotone with W}.

Note. For any matrix M ∈ Sn, the extreme points of SH(M) are the elements of
the set {UMU ′ | U ∈ On}, as each of the matrices UMU ′ for U ∈ On has the same
Frobenius norm.

Proof. Let W = M without loss of generality. We have that

NSH(M)(M) =

{
Y ∈ Sn

∣∣∣ sup
Z∈SH(M)

trace(Y Z) ≤ trace(YM)

}

=

{
Y ∈ Sn

∣∣∣ sup
Z=UMU ′ for U∈On

trace(Y Z) ≤ trace(YM)

}
=

{
Y ∈ Sn

∣∣∣ sup
U∈On

trace(U ′Y UM) = trace(YM)

}
.

The last line follows from the inequality trace(YM) ≤ supU∈On
trace(U ′Y UM).

Considering the case of equality in the Von Neumann trace inequality [43], we have
that supU∈On

trace(U ′Y UM) = trace(YM) if and only if Y and M are spectrally
comonotone. The claim about the relative interior of the normal cone follows imme-
diately from the definition of strict spectral comonotonicity.

If a matrix M ∈ Sn has few distinct eigenvalues, the normal cone at an extreme
point UMU ′ (for U orthogonal) of SH(M) is larger as there are many more matrices
that are spectrally comonotone with UMU ′. Based on Proposition 6, this observation
suggests that planted graphs Γ with few distinct eigenvalues have large normal cones
NSH([AΓ−γIk]k→n)([AΓ−γIk]k→n), and such graphs are especially amenable to recovery
in planted subgraph problems via the Schur–Horn relaxation. We make this insight
more precise with our analysis in section 3.4. Proposition 6 also points to the utility of
employing the parameter γ in the Schur–Horn relaxation (P ). Specifically, multiplic-
ities in the spectrum of the matrix [AΓ− γIk]k→n ∈ Sn may be increased via suitable
choices of γ, which in turn makes the normal cone NSH([AΓ−γIk]k→n)([AΓ − γIk]k→n)
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(a) (b) (c)

Fig. 2. From left to right: 8-triangular graph, 9-triangular graph, and Petersen graph.

larger. In particular, setting γ equal to an eigenvalue of AΓ increases the multiplicity
of zero as an eigenvalue of [AΓ − γIk]k→n. As detailed in section 3, the success of
the Schur–Horn relaxation relies on the existence of an eigenspace E ⊂ Rk of AΓ with
a small coherence parameter, and the appropriate choice of γ is the eigenvalue λE
associated with E . In our experiments in section 4, we set γ equal to the eigenvalue
of AΓ with largest multiplicity, so that the multiplicity of zero as an eigenvalue of
[AΓ − γIk]k→n is as large as possible.

To conclude, we record an observation on spectral comonotonocity that is useful
in section 3. The claim is straightforward and therefore we omit the proof.

Lemma 7. A pair of symmetric matrices A,B ∈ Sn is spectrally comonotone if
and only if A and B are simultaneously diagonalizable and

λmin(A|Ei) ≥ λmax(A|Ei+1
) ∀i ∈ {1, . . . , t− 1},(4)

where Ei for i ∈ {1, . . . , t} are eigenspaces of B ordered such that the corresponding
eigenvalues of B are decreasing. Further, A is strictly spectrally comonotone with B
if and only if A and B are simultaneously diagonalizable and each of the inequalities
(4) holds strictly.

Note that if A and B are simultaneously diagonalizable, then any eigenspace E of
B is an invariant subspace of A. As a result, the restriction of A to the eigenspaces
of B in (4) is consistent with the notation described in section 1.2.

2.2. Graphs with few eigenvalues. Building on the preceding section, we
give examples of families of graphs consisting of few distinct eigenvalues. Such graphs
have received much attention due to their connections to topics in combinatorics and
design theory such as pseudorandomness [27] and association schemes [5, 22].

Triangular graphs. The triangular graph Tm of order m is the line graph of the
complete graph on m nodes. The graph Tm has

(
m
2

)
nodes and it has the three distinct

eigenvalues 2(m − 2) (with multiplicity 1), m − 4 (with multiplicity m − 1), and −2

(with multiplicity m(m−3)
2 ). Figure 2 gives two examples.

Kneser graphs. A Kneser graph K(m, `) is a graph on
(
m
`

)
nodes, each correspond-

ing to an `-element subset of m elements, and it consists of edges between those pairs
of vertices for which the corresponding subsets are disjoint. The graph K(m, 1) is the
complete graph on m nodes and the graph K(5, 2) is the Petersen graph (Figure 2).
The Kneser graph K(m, `) has `+ 1 distinct eigenvalues in general.

Paley graphs. Let q be a prime power such that q ≡ 1(mod 4). The Paley graph on
q nodes is an undirected graph formed by connecting pairs of nodes i, j ⊂ {0, . . . , q−1}
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(a) (b) (c)

Fig. 3. From left to right: 5-Paley graph, 13-Paley graph, and 17-Paley graph.

(a) (b)

Fig. 4. Generalized quadrangle-(2, 2) graph (left) and generalized quadrangle-(2, 4) graph (right).

if the difference i− j is a square in the finite field GF(q). Note that i− j is a square if
and only if j− i is a square as −1 is a square in GF(q). Paley graphs have eigenvalues
1
2 (q−1) (with multiplicity 1), 1

2 (−1+
√
q) (with multiplicity 1

2 (q−1)), and 1
2 (−1−√q)

(with multiplicity 1
2 (q− 1)). Paley graphs are also examples of pseudorandom graphs

as they exhibit properties similar to random graphs (in the limit of large q) [27].
Figure 3 shows the three smallest Paley graphs.

Strongly regular graphs. These are regular graphs with the property that every
pair of adjacent vertices has the same number da of common neighbors and every
pair of nonadjacent vertices has the same number dna of common neighbors for some
integers da, dna [7]. Strongly regular graphs that are connected have three distinct
eigenvalues; conversely, connected and regular graphs with three distinct eigenvalues
are necessarily strongly regular. The triangular graphs, Kneser graphs with parameter
` = 2, and the Paley graphs mentioned above are examples of strongly regular graphs.
The Clebsch graph shown in Figure 1(a) in the introduction is also a strongly regular
graph with degree 5 and eigenvalues 5 (with multiplicity 1), −3 (with multiplicity 5),
and 1 (with multiplicity 10). The generalized quadrangle graphs shown in Figure 4
are additional examples of strongly regular graphs. Strongly regular graphs form a
significant topic in graph theory due to their many regularity properties [10, 11, 37].

Other examples. Unlike regular graphs with three distinct eigenvalues, graphs
with four (or more) eigenvalues do not appear to have a simple combinatorial char-
acterization [40]. Nonetheless, there are many constructions of such graphs in the
literature [25, 39, 40], most notably those derived from distance-regular graphs [9]
and from association schemes. The two graphs shown in Figure 5 are obtained from
the Hamming scheme.
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(a) (b)

Fig. 5. Hamming-(3, 3) graph with 4 distinct eigenvalues (left) and 6-hypercube graph with 7
distinct eigenvalues (right).

3. Recovering subgraphs planted in Erdős–Rényi random graphs. In
this section we discuss our theoretical results on the performance of the Schur–Horn
relaxation in recovering subgraphs planted inside Erdős–Rényi random graphs. For-
mally, suppose without loss of generality as in the previous section that the nodes of
G and of Γ are labeled so that the leading principal minor of AG of order k is equal to
AΓ. The Erdős–Rényi model for the planted subgraph problem specifies a distribution
on the edges in the remainder of the graph G via a probability parameter p ∈ [0, 1];
for each i, j ∈ {1, . . . , n} with i < j and k < j, the graph G contains an edge between
nodes i and j with probability p (independent of the other edges):

(AG)i,j = (AG)j,i =

{
1 with probability p,

0 with probability 1− p.

We begin with a sufficient condition for the optimality condition described in Lemma 1,
which suggests a natural approach for constructing suitable dual variables for certify-
ing optimality. These sufficient conditions point to the importance of the existence of
an eigenspace of AΓ with certain properties to the success of the Schur–Horn relax-
ation; these properties are discussed in section 3.2. In section 3.4 we state and prove
the main theorem (Theorem 19) of this paper, with section 3.5 giving specializations
of this result (e.g., to the planted clique problem).

3.1. A simpler sufficient condition for optimality. The following proposi-
tion provides a simpler set of conditions than those in Lemma 1 on dual variables that
certify the success of the Schur–Horn relaxation. This result continues to be determin-
istic in nature, and the probabilistic aspects of our analysis—due to the Erdős–Rényi
model—appear in the following.

Proposition 8. Consider a planted subgraph problem instance in which the nodes
of G and Γ are labeled so that the leading principal minor of AG of order k is equal
to AΓ. Suppose there exists an eigenspace E ⊂ Rk of AΓ with eigenvalue λE , and

suppose there exists a matrix M =
(
M11 M12

M ′12 M22

)
∈ Sn with submatrices M11 ∈ Sk,M12 ∈

Rk×(n−k),M22 ∈ Sn−k such that the the following conditions are satisfied:
(i) Mi,j = (AG)i,j, if (AG)i,j = 1 or if i = j.
(ii) The submatrix M11 ∈ Sk is strictly spectrally comonotone with AΓ.
(iii) λmax(M11|E) ≥ λE and λmin(M11|E) ≤ λE .
(iv) Each column of the submatrix M12 ∈ Rk×(n−k) lies in the subspace E.
(v) eigengap(M11, E) > ‖M12‖2 + ‖M22‖2 + |λE |.
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Then the Schur–Horn relaxation (P ) with parameter γ = λE succeeds at identifying
the planted subgraph Γ inside the larger graph G.

Proof. We establish this result by showing that the given matrix M ∈ Sn satisfies
the requirements of Lemma 1. The first condition of Lemma 1 is identical to that of
this proposition, and therefore it is satisfied. We prove next that the remaining con-
ditions of this proposition ensure that the second requirement of Lemma 1 is also sat-
isfied, i.e., M ∈ relint(NSH([AΓ−λEIk]k→n)([AΓ − λEIk]k→n)). Based on Proposition 6,
this entails showing that M is strictly spectrally comonotone with [AΓ − λEIk]k→n.
Our strategy is to employ Lemma 7.

Let Ei ⊂ Rk, i = 1, . . . , t, be the eigenspaces of AΓ ordered such that the cor-
responding eigenvalues λEi are strictly decreasing, and suppose Ej = E , λEj = λE
for some j ∈ {1, . . . , t}. As 0 is an eigenvalue of AΓ − λEIk, one can check that the
eigenspaces of [AΓ − λEIk]k→n are Ẽi = Ei × {0} ⊂ Rk × Rn−k, i = 1, . . . , t, i 6= j
(with corresponding eigenvalues λEi − λE), and Ẽj = E × Rn−k ⊂ Rk × Rn−k (with
eigenvalue 0). We now need to show that M and [AΓ − λEIk]k→n are simultaneously
diagonalizable, and that λmin(M |Ẽi) > λmax(M |Ẽi+1

) for i ∈ {1, . . . , t− 1}.
First, as E is an eigenspace of AΓ − λEIk with eigenvalue 0 and as every column

of M12 belongs to E , one can check that (AΓ − λEIk) ·M12 = 0 ∈ Rk×(n−k). Further,
from Lemma 7 we note that M11 and AΓ − λEIk are simultaneously diagonalizable
because M11 is strictly spectrally comonotone with AΓ (and hence with AΓ − λEIk).
From these two observations one can check that M and [AΓ − λEIk]k→n commute
with each other, and therefore are simultaneously diagonalizable.

As M and [AΓ − λEIk]k→n are simultaneously diagonalizable, we have that the
eigenspaces Ẽi, i = 1, . . . , t, of [AΓ−λEIk]k→n are invariant subspaces of M . Similarly,
as M11 is strictly spectrally comonotone with AΓ, the eigenspaces Ei are invariant
subspaces of M11. Based on the structure of these eigenspaces as described above,
one can check that the eigenvalues of M |Ẽi are equal to those of M11|Ei for each
i = 1, . . . , t, i 6= j. Hence, λmin(M |Ẽi) > λmax(M |Ẽi+1

) for i > j and for i < j − 1.

All that remains to be verified is that λmin(M |Ẽj ) > λmax(M |Ẽj+1
) and that

λmin(M |Ẽj−1
) > λmax(M |Ẽj ). As each column of M12 belongs to E and as Ẽj =

E × Rn−k ⊂ Rk × Rn−k, we have for x ∈ E , y ∈ Rn−k that

(5) M |Ẽj

(
x
y

)
=

[(
M11|E 0

0 0

)
+

(
0 M12

M ′12 M22

)](
x
y

)
=

(
M11|Ex+M12y
M ′12x+M22y

)
∈ Ẽj .

Consequently, recalling that Ej = E we have

λmax(M |Ẽj ) ≤ max{λmax(M11|E), 0}+ ‖M12‖2 + ‖M22‖2
< max{λmax(M11|E), 0} − |λE |+ eigengap(M11, E)

≤ max{λmax(M11|E), 0} − |λE |+ λmin

(
M11|Ej−1

)
− λmax(M11|E)

= max{0,−λmax(M11|E)} − |λE |+ λmin

(
M11|Ej−1

)
≤ max{0,−λE} − |λE |+ λmin

(
M11|Ej−1

)
≤ λmin

(
M11|Ej−1

)
= λmin

(
M |Ẽj−1

)
.

The first inequality follows from (5), the second inequality from condition (v), the
third inequality from the definition of eigengap (see section 1.2) as Ej = E , the fourth
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inequality from condition (iii), and the second equality from the fact that the eigen-
values of M |Ẽi are equal to those of M11|Ei for each i = 1, . . . , t, i 6= j. Similarly, one
can check that λmin(M |Ẽj ) > λmax(M |Ẽj+1

). This concludes the proof.

This result provides a concrete approach for constructing dual variables to certify
the optimality of the Schur–Horn relaxation (P ) at the desired solution. In the re-
mainder of this section, we give conditions on the eigenstructure of the planted graph
Γ, the probability p of the Erdős–Rényi model, and the size n of the larger graph G
under which the Schur–Horn relaxation (P ) succeeds with high probability.

3.2. Invariants of graph eigenspaces. In this section, we investigate proper-
ties of eigenspaces of graphs which ensure that the conditions of Proposition 8 can be
satisfied. For notational clarity in the discussion in this section, we let Ωj ⊂ {1, . . . , k}
for j = 1, . . . , n− k denote the locations of the entries equal to one in the submatrix
(AG)i,j+k, i = 1, . . . , k, j = 1, . . . , n− k, i.e., (AG)i,j+k = 1⇔ i ∈ Ωj .

A requirement of Proposition 8 is the existence of a suitable eigenspace E ⊂ Rk
of AΓ such that one can obtain a matrix M12 ∈ Rk×(n−k) (a submatrix of a larger
dual certificate) that satisfies three conditions: (i) every column of M12 lies in E ; (ii)
for each i = 1, . . . , k and j = 1, . . . , n− k we have that (M12)i,j = 1 if (AG)i,j+k = 1;
and (iii) the operator norm ‖M12‖2 is as small as possible.

We begin by analyzing the first two conditions and the restrictions they impose
on E . Consider the jth column of M12 for a fixed j ∈ {1, . . . , n−k} as an illustration.
Then conditions (i) and (ii) are simultaneously satisfied if the coordinate subspace of
vectors in Rk with support on the indices in Ωj has a transverse intersection with
E⊥. More generally, a natural sufficient condition for the first two requirements on
M12 to be satisfied (for every column) is for E⊥ to have a transverse intersection with
the coordinate subspaces specified by each of the subsets Ωj for j = 1, . . . , k. This
observation leads to the following invariant that characterizes the transversality of a
subspace with all coordinate subspaces of a certain dimension.

Definition 9 (see [28]). The Kruskal rank of a subspace S ⊆ Rk, denoted
kruskal(S), is the largest m ∈ Z such that for any Ω ⊆ {1, . . . , k} with |Ω| = m
we have

S⊥ ∩ {v ∈ Rk | vi = 0 if i /∈ Ω} = {0}.

In other words, the Kruskal rank of a subspace S ⊂ Rk is one less than the size
of the support of the sparsest nonzero vector in Rk that is orthogonal to S. The
Kruskal rank of a matrix—the largest m such that all subsets of m columns of the
matrix are linearly independent—was first introduced in [28] in the context of tensor
decompositions. This version in terms of matrices is equivalent to our definition in
terms of subspaces. One can check that all principal minors of PS of size up to
kruskal(S) are nonsingular.

Recall that the entries (AG)i,j+k for i = 1, . . . , k and j = 1, . . . , n− k correspond
to edges (or lack thereof) between nodes in G outside the induced subgraph corre-
sponding to Γ and those of Γ. Therefore, if we employ the Schur–Horn relaxation
with parameter γ = λE (the eigenvalue associated to E), then the Kruskal rank of E
provides a bound on the number of noise edges that can be tolerated between these
two sets of nodes. As such kruskal(E) plays a central role in our main result (see
Theorem 19) in providing an upper bound on the probability of a noise edge in G
under the Erdős–Rényi model.

Returning to the three conditions on M12 stated at the beginning of this section, if
an eigenspace E ofAΓ has large Kruskal rank and if the size of each Ωj , j = 1, . . . , n−k,
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is smaller than kruskal(E), then there is an affine space (of dimension potentially larger
than zero) of matrices in Rk×(n−k) that satisfy the first two requirements on M12. The
third condition on M12 requires that we find the element of this affine space with the
smallest spectral norm:

M̂ spectral
12 = arg min

X∈Rk×(n−k)

‖X‖2

s.t. Xi,j = 1 if i ∈ Ωj for j = 1, . . . , n− k,
col(X) ⊆ E .

As long as |Ωj | ≤ kruskal(E) for each j = 1, . . . , n − k, this problem is feasible.
However, analytically characterizing the optimal value and solution of this problem is
challenging, especially in the context of problem instances that arise from the Erdős–
Rényi model, as the subsets Ωj , j = 1, . . . , n− k, are random. As a result, a common
approach is to replace the objective in the above problem with the Frobenius norm:

(6)

M̂Frobenius
12 = arg min

X∈Rk×(n−k)

‖X‖F

s.t. Xi,j = 1 if i ∈ Ωj for j = 1, . . . , n− k,
col(X) ⊆ E .

One of the virtues of this latter formulation in comparison to the earlier one is that
the spectral norm of the optimal solution ‖M̂Frobenius

12 ‖2 is more tractable to bound,
primarily since the optimization problem (6) decomposes into n − k separable prob-
lems, one for each column of the decision variable X. In particular, for any subspace
S ⊆ Rk and any Ω ⊂ {1, . . . , k} with |Ω| ≤ kruskal(S), consider the following mini-
mum Euclidean-norm completion,

(7)
qΩ(S) , arg min

q∈Rk

‖q‖ s.t. q ∈ S and qi = 1 for i ∈ Ω

= PSIΩ′((PS)Ω,Ω)−11|Ω|.

With this notation, the jth column of M̂Frobenius
12 is given by qΩj

(E). Further, under
the Erdős–Rényi model, the entries (AG)i,j+k, i = 1, . . . , k, j = 1, . . . , n − k, are
independent and identically distributed Bernoulli random variables. In such a family
of problem instances, the columns of M̂Frobenius

12 , i.e., qΩj (E) ∈ Rk, j = 1, . . . , k,
are independent and identically distributed random vectors. These observations in
conjunction with the following tail bound on the spectral norm of a random matrix
suggest a natural invariant of E that leads to bounds on ‖M̂Frobenius

12 ‖2:

Lemma 10 (see [42]). Let A be a d×N matrix (d < N) with columns Ai and let
Σ = E[AiAi

T ] denote the correlation matrix of the Ai’s. Further, suppose there exists
m ∈ R such that ‖Ai‖ ≤

√
m almost surely for all i. Then ∀x ≥ (N‖Σ‖2)1/2 we have

that

(8) P(‖A‖2 ≥ x) ≤ 2d exp

(
− 3(x2 −N‖Σ‖2)2

4m(x2 + 2N‖Σ‖2

)
.

Proof. The proof follows that of [42, Theorem 5.41] with minor modifications.
We apply the noncommutative Bernstein inequality to 1

N x
2 − ‖Σ‖2 rather than to

max(δ, δ2) on [42, p. 27], and we don’t make the isotropy assumption.
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To apply Lemma 10 to obtain a bound on ‖M̂Frobenius
12 ‖2, we describe next the

second key invariant of E , which is essentially the correlation matrix in Lemma 10.

Definition 11. Let S ⊆ Rk be a subspace. Then the combinatorial width of S
for each ` = 1, . . . , kruskal(S) and p ∈ [0, 1) is defined as

ω(S, `, p) ,
∥∥∥E[qΩ(S) qΩ(S)

′ ∣∣ |Ω| ≤ `]∥∥∥
2

with the expectation taken over Ω, where each element of {1, . . . , k} is contained in Ω
independently with probability p.

The conditioning in the definition ensures that qΩ(S) is well-defined as |Ω| ≤
kruskal(S). We utilize this terminology as a parallel to analogous notions such as
“mean width” that are prominent in the convex geometry literature. The explicit
appearance of ` in this definition allows for a more fine-grained analysis in our main
result Theorem 19; see section 3.4. Based on the following result, the Kruskal rank
and the combinatorial width play a central role in Theorem 19 as the success of the
Schur–Horn relaxation (P ) relies on the existence of an eigenspace E of AΓ that has
large Kruskal rank and small combinatorial width.

Proposition 12. Consider a planted subgraph problem instance in which the
nodes of G and Γ are labeled so that the leading principal minor of AG of order k
is equal to AΓ, and the remaining edges in G are drawn according to the Erdős–Rényi

model with probability p ∈ [0, kruskal(E)
k ). Fix any ` ∈ Z satisfying kp < ` ≤ kruskal(E),

and denote ζ := minΩ⊂{1,...,k}
|Ω|≤`

λmin((PE)Ω,Ω). For any δ ≥
√

(n− k)ω(E , `, p), there

exists a matrix M12 ∈ Rk×(n−k) satisfying the following properties:
1. Each column of M12 lies in E,
2. (M12)i,j = (AG)i, j+k if (AG)i, j+k = 1,
3. ‖M12‖2 < δ

with probability at least (1− 2k exp (− 3ζ(δ2−(n−k)ω(E,`,p))2

4 `(δ2+2(n−k)ω(E,`,p)) ))(1− exp (− (`−kp)2

`+kp ))n−k.

Proof. We bound the probability that M̂Frobenius
12 obtained as the optimal solution

of (6) satisfies the requirements of this proposition.
We begin by bounding the cardinality of each Ωj for j = 1, . . . , n− k. Under the

Erdős–Rényi model, each |Ωj | follows a binomial distribution. Consequently, using
the Chernoff bound we have for each j = 1, . . . , n− k that

P(|Ωj | ≥ `+ 1) ≤ P(|Ωj | ≥ `) = P
(
|Ωj | ≥

(
1 +

`− kp
kp

)
kp

)
≤ exp

(
− (`− kp)2

`+ kp

)
.

The first inequality is not essential and it is simply used to avoid notational clutter.
Based on the independence of the Ωj ’s,

(9) P(|Ωj | ≤ `, j = 1, . . . , n− k) ≥
(

1− exp

(
− (`− kp)2

`+ kp

))n−k
.

This inequality provides a bound on the probability that the optimization problem
(6) is feasible.

In our next step we bound ‖M̂Frobenius
12 ‖2 via Lemma 10. As ` ≤ kruskal(E) one

can check that ζ > 0. Further, from (7) we have that ‖qΩj
‖2 ≤ |Ωj |

ζ . Thus, by
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applying Lemma 10, we deduce that

P(‖M12‖2 < δ
∣∣ |Ωj | ≤ ` ∀j) ≥ 1− 2k exp

(
− 3ζ(δ2 − (n− k)ω(E , `, p))2

4 `(δ2 + 2(n− k)ω(E , `, p))

)
.(10)

The final result follows by combining (9) and (10).

3.3. Properties of Kruskal rank and combinatorial width. Beyond the
utility of the Kruskal rank and combinatorial width in characterizing the performance
of the Schur–Horn relaxation, these graph parameters are also of intrinsic interest and
we discuss next their relationship to structural properties of Γ.

3.3.1. Invariance under complements for regular graphs. Both the Kruskal
rank and the combinatorial width are preserved under graph complements for con-
nected regular graphs. Suppose Γ is a connected regular graph on k vertices, and
let AΓ ∈ Sk be an adjacency matrix representing Γ for some labeling of the nodes.
Then the eigenspaces of AΓ are the same as those of the adjacency matrix AΓc of the
complement Γc based on the following relation,

(11) AΓc = 1k1′k − Ik −AΓ.

As Γ is connected and regular, the vector 1k is an eigenvector of AΓ. Thus, the
Kruskal ranks and the combinatorial widths associated with the eigenspaces of AΓ

are the same as those associated with the eigenspaces of AΓc .

3.3.2. Combinatorial width for symmetric graphs. For graphs Γ that are
symmetric—vertex- and edge-transitive—and also have symmetric complements Γc,
the combinatorial width of any eigenspace E of AΓ can be characterized in terms of
the minimum singular values of minors of PE . In particular, we establish our result by
demonstrating that the correlation matrix E[qΩ(S) qΩ(S)

′ | |Ω| ≤ `] in the definition
of the combinatorial width has the property that all its nonzero eigenvalues are equal
to each other, which leads to bounds on the combinatorial width via bounds on the
trace of the correlation matrix.

Proposition 13. Let AΓ ∈ Sk be an adjacency matrix of a (connected) sym-
metric graph Γ with a symmetric complement Γc, and let E ⊂ Rk be an eigenspace
of AΓ. Fix any ` ∈ Z and p ∈ [0, 1) such that kp ≤ ` ≤ kruskal(E), and let
ζ := minΩ⊂{1,...,k}

|Ω|≤`
λmin((PE)Ω,Ω). Then,

ω(E , `, p) ≤ 2kp

ζ dim(E)
.

Proof. Denote the correlation matrix in the definition of the combinatorial width
as follows:

Σ = E [qΩ(E)qΩ(E)
′ ∣∣ |Ω| ≤ `] =

∑̀
i=0

cp,` p
i(1− p)k−i

∑
|Ω|=i

qΩ(E)qΩ(E)
′
,(12)

where the term cp,` = (
∑`
i=0

(
k
i

)
pi(1− p)k−i)−1 is the normalization constant.

The main element of the proof is to show that the rank of Σ ∈ Sk is equal to
dim(E) (it is easily seen that col(Σ) ⊆ E) and that all the nonzero eigenvalues of Σ are
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equal to each other. After this step is completed, one can bound the combinatorial
width using the following relation,

(13) ω(E , `, p) =
trace(Σ)

dim(E)
.

In particular, we have qΩ(E) = PEIΩ′((PE)Ω,Ω)−11|Ω| with |Ω| ≤ kruskal(E). One can

check that ‖qΩ(E)‖2 ≤ |Ω|ζ , and then obtain that

(14) trace(Σ) =
∑̀
i=0

cp,` p
i(1− p)k−i

∑
|Ω|=i

‖qΩ‖2 ≤ 2
∑̀
i=0

(
k

i

)
pi(1− p)k−i i

ζ
≤ 2 k p

ζ
.

The first inequality follows from the implication that kp ≤ ` ⇒ cp, ` ≤ 2. The second
inequality is obtained by bounding the sum from above with the expectation of a
binomial random variable with parameters k and p. Combining (13) and (14) we
have the desired result.

To complete the proof, we need to show that rank(Σ) = dim(E) and that all
the nonzero eigenvalues of Σ are equal to each other. For each i ≤ ` denote S(i) :=∑
|Ω|=i IΩ

′((PE)Ω,Ω)−11|Ω|1|Ω|
′((PE)Ω,Ω)−1IΩ so that

∑
|Ω|=i qΩ(E)qΩ(E)

′
= PES(i)PE .

Let Π ∈ Rk×k be a permutation matrix such that ΠAΓΠ′ = AΓ, i.e., Π corresponds to
an element of the automorphism group of Γ. It is easily seen that ΠPEΠ′ = PE . Con-
sequently, if a vertex subset Ω ⊂ {1, . . . , k} is mapped to Ω̂ under the automorphism
represented by Π, then we have that (PE)Ω,Ω = (PE)Ω̂,Ω̂. In turn, one can check that

Π IΩ
′((PE)Ω,Ω)−11|Ω|1|Ω|

′((PE)Ω,Ω)−1IΩ Π′ = IΩ̂
′((PE)Ω̂,Ω̂)−11|Ω̂|1|Ω̂|

′((PE)Ω̂,Ω̂)−1IΩ̂.

Based on these observations and the fact that |Ω| = i ⇔ |Ω̂| = i, we note that a
summand of S(i) gets mapped to another summand of S(i) under conjugation by Π.
Moreover, automorphisms are injective functions, and hence distinct summands of S(i)

must be mapped to distinct summands of S(i). Thus, we conclude that ΠS(i)Π′ = S(i)

for each i ≤ ` and for any permutation matrix Π ∈ Rk×k representing an automor-
phism of Γ.

As Γ is vertex- and edge-transitive, and as Γc is also edge-transitive, each S(i) is
of the following form:

(S(i))p,q =


α1 if (AΓ)p,q = 1 and p 6= q,

α2 if (AΓ)p,q = 0 and p 6= q

α3 if p = q

=⇒ S(i) = α1AΓ + α2AΓc + α3Ik,(15)

for some α1, α2, α3 ∈ R. Since Γ is vertex-transitive it is also a regular graph and,
consequently, the discussion from section 3.3.1 implies that the eigenspaces of AΓ and
AΓc are the same. As Γ is assumed to be connected, we have from (11), (15), and
from the equality

∑
|Ω|=i qΩ(E)qΩ(E)

′
= PES(i)PE that

∑
|Ω|=i

qΩ(E)qΩ(E)
′

=

{
[α1λE + α2(k − λE − 1) + α3] 1k1k

T

k if E = span{1k},
[α1λE − α2(λE + 1) + α3]PE otherwise.

Since this holds for each index i ≤ `, we deduce that every summand of Σ in (12)
is a scalar multiple of PE and, consequently, so is Σ. Furthermore, by construction,
Σ cannot be the all-zeros matrix. Therefore, rank(Σ) = dim(E) and all nonzero
eigenvalues of Σ are equal to each other. The result follows immediately.
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3.3.3. Simplifications based on coherence. The Kruskal rank of a subspace
is intractable to compute in general; as a result, a number of subspace parameters
have been considered in the literature to obtain tractable bounds on the Kruskal
rank. The most prominent of these is the coherence parameter of a subspace. In
our context, the additional analytical simplification provided by the coherence of a
subspace along with Proposition 13 lead to simple performance guarantees on the
Schur–Horn relaxation for symmetric planted graphs.

Definition 14. Let S ⊆ Rk be a subspace. The coherence of S, denoted µ(S),
is defined as

µ(S) := max
1≤i,j≤k
i 6=j

|(PS)i,j |
((PS)i,i)

1/2((PS)j,j)
1/2

.

The coherence parameter of a subspace can be computed efficiently, and it can
be used to bound the Kruskal rank from below.

Proposition 15 (see [16]). For any subspace S ∈ Rk, kruskal(S) ≥ 1
µ(S) .

Further, for symmetric planted graphs Γ, the following result provides a bound
on the minimum eigenvalue of minors of PE for eigenspaces E of AΓ. Recall that this
result is directly relevant in the context of Proposition 13.

Proposition 16. Suppose Γ is a vertex-transitive graph with adjacency matrix
AΓ ∈ Sk, and let E denote an eigenspace of AΓ. For any ` ∈ Z with ` < 1

µ(E) + 1, we

have that minΩ⊂{1,...,k}
|Ω|≤`

λmin((PE)Ω,Ω) ≥ dim(E)
k (1− (`− 1)µ(E)).

Proof. One can check that ΠPEΠ′ = PE for permutation matrices Π ∈ Rk×k that
correspond to automorphisms of Γ. Therefore, by vertex transitivity, the diagonal
entries of PE are all equal to each other. As trace(PE) = dim(E), we conclude that

(PE)i,i = dim(E)
k for each i = 1, . . . , k. Every row of (PE)Ω,Ω has at most ` − 1 off-

diagonal entries, and each of these entries is bounded above by dim(E)
k µ(E). We obtain

the desired result by applying the Gershgorin circle theorem.

3.4. Main result. Building on the preceding discussion, we state and prove
our main result Theorem 19. The proof of this result relies on an intermediate step

regarding the M22 submatrix of the dual variable M =
(
M11 M12

M ′12 M22

)
from Proposition 8.

From that result, we are required to obtain an M22 ∈ Sn−k such that (i) for each
i, j = 1, . . . , n − k we have (M22)i,j = 1 if (AG)i+k,j+k = 1 or if i = j, and (ii) the
operator norm ‖M22‖2 is as small as possible.

We present the following result from [4], which we utilize subsequently in Lemma
18 to establish a bound on ‖M22‖2.

Lemma 17 (see [4]). Let X ∈ Sd be a symmetric matrix whose entries Xi,j

are independent and centered random variables. For each ε ∈ (0, 1/2], there exists a
constant c̃ε such that for all x ≥ 0

P(‖X‖2 ≥ (1 + ε)2σ̃ + x) ≤ d exp

(
− x2

c̃εσ̃2
∗

)
,

where σ̃ := maxi
√∑

j E[X2
i,j ] and each |Xi,j | ≤ σ̃∗ almost surely.

Lemma 18. Consider a planted subgraph problem instance in which the nodes of
G and Γ are labeled so that the leading principal minor of AG of order k is equal to
AΓ, and the remaining edges in G are drawn according to the Erdős–Rényi model with
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probability p ∈ [0, 1). For constants c1 =
√

9p
1−p and c2 depending only on p and for

α ≥ c1
√
n− k, there exists M22 ∈ Sn−k satisfying

1. (M22)i,j = 1 if (AG)i+k,j+k = 1 or i = j,
2. ‖M22‖2 < α

with probability at least 1− (n− k) exp(−c2 (α− c1
√
n− k)2).

Proof. Our proof is inspired by the approach in [2]. Consider the following matrix
M22 ∈ Sn−k:

(M22)i,j =


1 if (AG)i+k,j+k = 1, i 6= j,
−p
1−p if (AG)i+k,j+k = 0, i 6= j,

0 if i = j.

(16)

As the submatrix (AG)i+k,j+k, i, j = 1, . . . , n−k, consists of independent and centered
entries (in the off-diagonal locations) and zeros on the diagonal, one can check that
M22 is a random matrix that satisfies the requirements of Lemma 17. Further, the first
part of the present lemma is satisfied. The second claim follows from an application
of Lemma 17 with ε = 1/2.

Combining Propositions 8 and 12 and Lemma 18, we now state and prove the
main result of this paper.

Theorem 19. Consider a planted subgraph problem instance in which the nodes
of G and Γ are labeled so that the leading principal minor of AG of order k is equal
to AΓ, and the remaining edges in G are drawn according to the Erdős–Rényi model.
Suppose E ⊂ Rk is an eigenspace of AΓ with associated eigenvalue λE , and we employ
the Schur–Horn relaxation (P ) with parameter γ = λE . Further suppose that

1. p ∈ [0, kruskal(E)
k ), and

2. for some ` ∈ Z satisfying kp < ` ≤ kruskal(E),

n < min

(
eigengap(AΓ, E)2

4ω(E , `, p)
,

(eigengap(AΓ, E)− 2|λE |)2

4c21

)
+ k.

Then the Schur–Horn relaxation succeeds at identifying the planted subgraph Γ inside
G with probability at least 1− p1 − p2, where

p1 = 1−
[(

1− exp
(
− (`−kp)2

`+kp

))n−k
×
(

1− 2k exp

(
− 3ζ(

1
4 eigengap(AΓ,E)2−(n−k)ω(E,`,p))2

4`(
1
4 eigengap(AΓ,E)2+2(n−k)ω(E,`,p))

))]
and

p2 = (n− k)× exp(−c2( 1
2eigengap(AΓ, E)− |λE | − c1

√
n− k)2).

Here, ζ = minΩ⊂{1,...,k}
|Ω|≤`

λmin((PE)Ω,Ω). Further, the constants c1 and c2 depend only

on p.

Proof. As discussed previously, since ` ≤ kruskal(E) we have that ζ > 0. We
establish the result by constructing a dual certificate M satisfying the conditions of
Proposition 8.

We start by setting M11 = AΓ. This ensures that conditions (ii) and (iii) of
Proposition 8 are satisfied. Next, we choose M12 as discussed in Proposition 12, with
the parameter δ = 1

2 eigengap(Γ, E), which satisfies δ ≥
√

(n− k)ω(E , `, p) due to the
upper bound on n. Such an M12 exists with probability at least 1−p1, and it satisfies
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condition (iv) of Proposition 8 as well as the bound ‖M12‖2 < 1
2eigengap(AΓ, E).

Finally, we set M22 as discussed in Lemma 18, with α = 1
2eigengap(AΓ, E) − |λE |,

which satisfies α ≥ c1
√
n− k due to the upper bound on n. Such an M22 exists with

probability at least 1− p2 and satisfies the bound ‖M22‖2 < 1
2eigengap(AΓ, E)− |λE |.

Based on this construction, the matrix M =
(
M11 M12

M ′12 M22

)
satisfies conditions (i)

and (v) of Proposition 8. Thus, if M12 and M22 with the stated properties exist, then
all the conditions of Proposition 8 are satisfied. By the union bound, the desired M12

and M22 exist concurrently with probability at least 1− p1 − p2.

Remark 1. The parameter ` arises in multiple aspects of this result. We discuss
specific choices of ` in the corollaries in the next section.

Theorem 19 provides a nonasymptotic bound on the performance of the Schur–
Horn relaxation (P ). In words, this relaxation succeeds with high probability in
identifying a subgraph Γ planted inside a larger graph G (under the Erdős–Rényi
model) provided AΓ has an eigenspace E satisfying four conditions: (i) the eigenspace
E has large Kruskal rank; (ii) the eigenspace E has small combinatorial width; (iii)
AΓ has a large eigengap with respect to E ; and (iv) the projection matrix PE has the
property that all sufficiently large principal minors are well-conditioned. In practice,
larger dimensional eigenspaces of AΓ may be expected to satisfy these conditions more
easily and, therefore, we set γ equal to the eigenvalue of AΓ of largest multiplicity in
our experimental demonstrations in section 4.

3.5. Specializations of Theorem 19. We appeal to the discussion in sec-
tion 3.3 on the properties of the Kruskal rank and the combinatorial width to obtain
specializations of Theorem 19 to certain graph families. We begin by considering the
case of symmetric planted graphs with symmetric complements.

Corollary 20. Consider a planted subgraph problem instance in which the nodes
of G and Γ are labeled so that the leading principal minor of AG of order k is equal
to AΓ, and the remaining edges in G are drawn according to the Erdős–Rényi model.
Suppose E ⊂ Rk is an eigenspace of AΓ with associated eigenvalue λE , and we employ
the Schur–Horn relaxation (P ) with parameter γ = λE . Further suppose that the
following three conditions hold:

1. Γ is a connected symmetric graph with a symmetric complement,
2. p ∈ [0, 1

µ(E)k ),

3. n < min
(

eigengap(AΓ,E)2 dim(E)2
(

1−kpµ(E)
)

16k2p , (eigengap(AΓ,E)−2|λE |)2

4c21

)
+ k.

Then the Schur–Horn relaxation succeeds in identifying the planted subgraph Γ inside
the larger graph G with probability at least 1−p1−p2, where p1 and p2 are as stated in

Theorem 19 (one can substitute dim(E)
2k (1−kpµ(E)) for the ζ term and 4k2p

dim(E)2(1−kpµ(E))

for the ω(E , `, p) term appearing in p1).

Proof. This result follows by a combination of Theorem 19, and Propositions 13,
15, 16. Set ` = d 1

2 (kp + 1
µ(E) )e. This choice satisfies kp < ` ≤ kruskal(E) based on

Proposition 15. One can also check that the inequality ` < 1
µ(E) +1 holds. The vertex

transitivity of Γ implies that one can appeal to Proposition 16 to conclude that

(17) min
Ω⊂{1,...,k}
|Ω|≤`

λmin

(
(PE)Ω,Ω

)
≥ dim(E)

k

(
1− (`− 1)µ(E)

)
>

dim(E)

2k
(1− kpµ(E)).

Based on the condition on p, this lower bound is strictly positive. As Γ is symmetric
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and has a symmetric complement (and is connected), we conclude from Proposition 13

that ω(E , `, p) ≤ 4k2p
dim(E)2(1−kpµ(E)) .

Finally, one can check that conditions (2) and (3) of the corollary imply that both
of the requirements of Theorem 19 are met and, hence, the Schur–Horn relaxation
succeeds in identifying the planted subgraph Γ with probability at least 1− p1 − p2,

where p1 and p2 are as stated in Theorem 19—one can substitute 4k2p
dim(E)2(1−kpµ(E)) as

an upper bound for ω(E , `, p) and dim(E)
2k (1 − kpµ(E)) as a lower bound for ζ, which

yields a lower bound on 1− p1 − p2 from Theorem 19.

As the coherence parameter of an eigenspace is more tractable to compute than
the Kruskal rank, this result provides an efficiently verifiable set of conditions that
guarantee the success of the Schur–Horn relaxation (P ) for symmetric planted graphs
Γ. This result specialized to the case of the planted clique problem yields the result
of Ames and Vavasis [2].

Corollary 21. Fix p ∈ [0, 1) and consider a family of planted clique problem
instances {Γk,Gk}∞k=1 generated according to the Erdős–Rényi model, where Γk is the
k-clique and Gk is a graph on nk nodes. There exists a constant β > 0 only depending
on p such that if nk ≤ βk2, the Schur–Horn relaxation with γ = −1 succeeds in
identifying Γk inside Gk with probability approaching one exponentially fast in k.

Proof. The k-clique is a connected symmetric graph with a complement that is
also symmetric; hence the first condition of Corollary 20 is satisfied. Each AΓk

∈ Sk
has a (k − 1)-dimensional eigenspace E such that µ(E) = 1

k−1 , dim(E) = k − 1, and
eigengap(AΓ, E) = k.

Based on the choice ` = d 1
2 (kp + 1

µ(E) )e as in Corollary (20), one can check that
dim(E)

2k (1 − kpµ(E)) = Θ(1), that ω(E , `, p) ≤ 4k2p
dim(E)2 (1−kpµ(E)) = Θ(1), and that

`− kp = Θ(k).

Set nk = k2

32 min( 1−kpµ(E)
2p , 1

c12 ) + k. One can check that the third condition of

Corollary 20 is satisfied with this choice. Moreover, this value of nk (or any smaller
value) yields 1

4eigengap(AΓ, E)2 − (nk − k)ω(E , `, p) = Θ(k2) and 1
2eigengap(AΓ, E)−

1− c1
√
nk − k = Θ(k).

By Corollary 20, we conclude that the Schur–Horn relaxation (P ) with parameter
γ = −1 identifies a hidden k-clique with probability 1− p1 − p2, where

p1 = 1−
(
1− exp(−c4k)

)n−k(
1− 2k exp(−c3k)

)
−→ 0, as n, k →∞, and

p2 = (n− k) exp
(
−c5k2

)
−→ 0, as n, k →∞,

for some constants c3 > 0, c4 > 0, and c5 > 0.

Thus, Theorem 19 can be specialized to obtain the result presented in [2].

Remark 2. Theorem 19 can also be specialized to obtain recovery results for
other families of planted subgraph problems. As an example, for some fixed inte-
ger t > 1 and probability p, consider a family of planted subgraph problem instances
{Γk,Gk}k=t,2t,... in which Γk is the complete t-partite graph on k vertices whose in-
dependent sets each contain k/t vertices—this graph is the complement of a disjoint
union of t cliques with size k/t—and Gk is a graph on nk vertices. By suitably
specializing Theorem 19, one can show that the Schur–Horn relaxation succeeds in
identifying the planted complete t-partite graph with probability approaching 1 ex-
ponentially fast as k →∞ provided that p ∈ [0, 1

t ) and nk . k2.
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4. Numerical experiments.

4.1. Semidefinite descriptions of the Schur–Horn orbitope. We begin
with a discussion of semidefinite representations of the Schur–Horn orbitope SH(M)
for M ∈ Sn. Specifically, suppose s` : Sn → R denotes the sum of the `-largest
eigenvalues of a symmetric matrix for ` = 1, . . . , n. Then the Schur–Horn orbitope
SH(M) can be described via majorization inequalities on the spectrum [36]:
(18)
SH(M) = {N ∈ Sn | s`(N) ≤ s`(M) for 1 ≤ ` ≤ n− 1, and trace(N) = trace(M)} .

As the sublevel sets of the convex functions s` have tractable semidefinite descriptions
[6], one can obtain a lifted polynomial-sized semidefinite representation of SH(M) for
arbitrary M ∈ Sn. However, specifications of SH(M) via semidefinite representations
of the sublevels sets of s` involve a total of O(n) additional matrix variables in Sn and
O(n) semidefinite constraints (one for each of the majorization inequalities in (18));
in particular, these do not take advantage of any structure in the spectrum of M ,
such as multiplicities in the eigenvalues.

We discuss next an alternative semidefinite representation of SH(M) that is based
on a modification of the description of SH(M) presented in [14], and it exploits the
multiplicities in the eigenvalues of M so that both the number of additional matrix
variables and semidefinite constraints scale with the number of distinct eigenvalues
of M rather than the ambient size n of M . Suppose M has q distinct eigenvalues
λ1, . . . , λq with multiplicities m1, . . . ,mq. Then one can check that [14]
(19)

SH(M) =

{
N ∈ Sn

∣∣∣∣ ∃Yi ∈ Sn, Yi � 0, i = 1, . . . , q, such that

N =

q∑
i=1

λiYi,

q∑
i=1

Yi = In, trace(Yi) = mi for i = 1, . . . , q

}
.

In this latter description of the Schur–Horn orbitope, both the number of additional
matrix variables in Sn and the number of semidefinite constraints are on the order
of the number of distinct eigenvalues of M , which can be far smaller than n for the
adjacency matrices of graphs considered in this paper. In the numerical experiments
presented next, we employ the description (19) of the Schur–Horn orbitope.

4.2. Experimental results. We investigate the performance of the Schur–Horn
relaxation (P ) in planted subgraph problems with the four planted subgraphs Γ listed
in Table 1. For each of these graphs, we set γ equal to the eigenvalue corresponding
to the largest eigenspace of the corresponding graph. We vary n (the size of the larger
graph G inside which Γ is planted) and p (the probability of a noise edge in G), and we
obtain 10 random instances of planted subgraph problems for each value of n and p.
In Figure 6, we plot the empirical probability of success of the Schur–Horn relaxation
for these random trials; the white cells represent a probability of success of one and
the black cells represent a probability of success of zero. Our results were obtained
using the CVX parser [23, 24] and the SDPT3 solver [38]. In each of the four cases,
the Schur–Horn relaxation (P ) succeeds in solving the underlying planted subgraph
problem for suitably small n and p.

5. Discussion. In this paper, we introduce a new convex relaxation approach
for the planted subgraph problem, and we describe families of problem instances for
which our method succeeds. Our method generalizes previous convex optimization
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Table 1
Planted subgraphs (and associated parameters) for which we demonstrate the utility of the

Schur–Horn relaxation. See Figure 6 for the associated phase transitions.

Planted graph Γ Eigenvalues Kruskal rank of the
[with # vertices] [with multiplicity] largest eigenspace

Clebsch [k = 16]
5[×1],−3[×5], 1[×10] 5

(Figure 1(a))
Generalized

10[×1],−5[×6], 1[×20] 10
quadrangular-(2, 4)

[k = 27]
(Figure 4(b))

8-triangular [k = 28]
12[×1], 4[×7],−2[×20] 6

(Figure 2(a))
9-triangular [k = 36]

14[×1], 5[×8],−2[×27] 7
(Figure 2(b))

(a) (b)

(c) (d)

Fig. 6. Phase transition plots based on the experiment described in section 4.2 for the (a)
Clebsch graph, (b) Generalized quadrangle-(2, 4) graph, (c) 8-triangular graph, and (d) 9-triangular
graph.

techniques for identifying planted cliques based on nuclear norm minimization [2], and
it is useful for identifying planted subgraphs consisting of few distinct eigenvalues.
There are several further directions that arise from our investigation, and we mention
a few of these here.

Spectrally comonotone matrices with sparsity constraints. One of the ingredients
in the proof of our main result Theorem 19 is to find a matrix M11 ∈ Sk that is
spectrally comonotone with AΓ ∈ Sk, and that further satisfies the condition that
(M11)i,j = 1 whenever (AΓ)i,j = 1. In the proof of Theorem 19 we simply choose
M11 = AΓ. This choice does not exploit the fact that the entries of M11 corresponding
to those where (AΓ)i,j = 0 are not constrained (and in particular can be nonzero).
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With a different choice of M11, one could replace eigengap(AΓ, E) in Theorem 19 by
eigengap(M11, E) (recall that E is an eigenspace of AΓ). Consequently, our main result
could be improved via principled constructions of matrices M11 ∈ Sk that satisfy the
conditions of Theorem 19 and for which eigengap(M11, E) > eigengap(AΓ, E).

Sparse graphs with eigenspaces with large Kruskal rank. One of the central ques-
tions concerning the planted subgraph problem is the possibility of identifying “sparse”
planted subgraphs inside “dense” noise via computationally tractable approaches.
Concretely, suppose Γ is a regular graph with degree d. Under the Erdős–Rényi
model for the noise, the average degree of any k-node subgraph of the larger graph G
is about (k−1)p. From Theorem 19, we have that the Schur–Horn relaxation succeeds

(with high probability) in identifying Γ if p ∈ [0, kruskal(E)
k ), where E ⊂ Rk is one of

the eigenspaces of Γ. In other words, (for suitably large k) if d < kruskal(E) then
the Schur–Horn relaxation succeeds in identifying Γ inside G despite the fact that Γ
is sparser than a typical k-node subgraph in G. Of the graphs we have investigated
in this paper, the Clebsch graph from Figure 1(a), is an example in which both the
degree and the Kruskal rank of the largest subspace are equal to 5. For some of the
other small graphs discussed in this paper, the degree is larger than the Kruskal ranks
of the eigenspaces. For larger graphs, the computation of the Kruskal rank of the large
eigenspaces quickly becomes computationally intractable. Therefore, it is of interest
to identify graph families in which (by construction) the degree is smaller than the
Kruskal rank of one of the eigenspaces.

Convex geometry and graph theory. In developing convex relaxations for the
planted subgraph problem (based on the formulation (1)) as well as other inverse prob-
lems involving unlabeled graphs, the key challenge is one of obtaining tractable convex
outer approximations of the set A(B) = {ΠBΠ′ | Π is an n× n permutation matrix}
for some given adjacency matrix B ∈ Sn. In particular, a convex approximation
C that contains A(B) is useful if the normal cone NC(B) is large; as an example,
the Schur–Horn relaxation SH(B) has this property for adjacency matrices B with
few distinct eigenvalues. More generally, what is an appropriate convex relaxation
for other structured graph families such as low-treewidth graphs (arising in infer-
ence in statistical graphical models), or graphs with a specified degree distribution
(arising in social network analysis)? Recent work [13] provides a catalog of convex
graph invariants that are useful for obtaining computationally tractable convex relax-
ations of A(B). A deeper investigation of the interaction between convex-geometric
aspects of these invariants (such as the normal cones of the associated convex relax-
ations) and the structural properties of the graph specified by the adjacency matrix
B has the potential to yield new convex relaxations for general inverse problems on
graphs.

Finding subgraphs versus induced subgraphs. A planted clique is both a subgraph
and an induced subgraph of an underlying graph G. However, for other planted
graphs, this is not necessarily the case as there could be additional noise edges between
the vertices of the planted graph Γ. In this paper we focus on identifying planted
subgraphs that are induced subgraphs, and we investigate the theoretical properties
as well as the empirical utility of the Schur–Horn relaxation (P ) for this task. For
identifying planted subgraphs that may not be induced subgraphs, the experimental
results in Figure 7 suggest that Schur–Horn relaxation (P ) continues to be useful.
Specifically, Figure 7(a) gives the performance of the Schur–Horn relaxation in a
setting in which the generalized quadrangle-(2, 4) graph is a subgraph of a larger graph
on n nodes and noise edges (both outside the planted graph and between disconnected
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(a) (b)

Fig. 7. Phase transition plot for the problem of identifying the generalized quadrangle-(2, 4)
graph: on the left is a plot in which this graph is a subgraph and on the right is a plot in which this
graph is an induced subgraph (as in section 4.2).

vertices of the planted graph) occur with probability p. In comparison with the result
of section 4.2 (when the generalized quadrangle-(2, 4) graph is an induced subgraph),
we notice that the Schur–Horn relaxation performs slightly worse. A reason for this
is that identifying structured subgraphs is inherently harder than identifying induced
subgraphs due to the additional noise edges. Analyzing the performance of the Schur–
Horn relaxation (P )—both theoretically and empirically—in a more extensive manner
for identifying subgraphs that may not be induced remains an open question.
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