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Abstract
The edit distance between two graphs is a widely usedmeasure of similarity that evalu-
ates the smallest number of vertex and edge deletions/insertions required to transform
one graph to another. It is NP-hard to compute in general, and a large number of heuris-
tics have been proposed for approximating this quantity. With few exceptions, these
methods generally provide upper bounds on the edit distance between two graphs. In
this paper, we propose a new family of computationally tractable convex relaxations
for obtaining lower bounds on graph edit distance. These relaxations can be tailored to
the structural properties of the particular graphs via convex graph invariants. Specific
examples that we highlight in this paper include constraints on the graph spectrum
as well as (tractable approximations of) the stability number and the maximum-cut
values of graphs.We prove under suitable conditions that our relaxations are tight (i.e.,
exactly compute the graph edit distance) when one of the graphs consists of few eigen-
values. We also validate the utility of our framework on synthetic problems as well as
real applications involving molecular structure comparison problems in chemistry.
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1 Introduction

Graphs are widely used to represent the structure underlying a collection of inter-
acting entities. A common computational question arising in many contexts is that
of measuring the similarity between two graphs. For example, the unknown func-
tions of biological structures such as proteins, RNAs and genes are often deduced
from structures which have similar sequences with known functions [23,25,31,41,42].
Evaluating graph similarity also plays a central role in various pattern recognition
applications [12,35], specifically in areas such as handwriting recognition [17,30],
fingerprint classification [24,34] and face recognition [44].

The notion of similarity that is the most commonly considered is the graph edit
distance [39]. The edit distance GED(G1,G2) between two graphs G1 and G2 is the
smallest number of operations required to transformG1 intoG2 by a sequence of edits or
changes applied to the vertices and edges ofG1.Aparticular sequence of edit operations
transforming G1 into G2 is usually referred to as an edit path. For unlabeled graphs, the
permissible set of edit operations are usually insertions/deletions of vertices/edges.
For labeled graphs, the set of permissible edit operations can also include vertex/edge
relabelings. In some situations, certain types of edits are considered more ‘severe’
than others and different edits have different costs associated to them; in such cases,
the edit distance is the smallest cost over all edit paths that transform one graph to
another, where the cost of an edit path is the sum of the costs of the edits that compose
the path. See Fig. 1 for an illustration of a simple graph edit distance problem.

The problem of computing the graph edit distance is NP-hard in general [18], and in
practice exact calculation of the edit distance is only feasible for small-sized graphs.
For two graphs on the same number of nodes with only edge deletions/additions
allowed, deciding whether the graph edit distance is zero corresponds precisely to
the graph isomorphism problem. Thus, significant efforts have been directed towards
developing computationally tractable heuristics for approximating the edit distance
[1,5,13,27–29,36,37,45] or for exactly computing the edit distance for graphs from

Fig. 1 An instance of a graph edit distance problem in which we wish to calculate the minimum number
of edit operations required for transforming graph G1 to graph G2. The edit operations are encoded by line
style: The dashed graph elements are to be removed from G1 and the zigzagged graph elements are to be
added to G1 in order to transform G1 to G2. Assuming a cost of 1 for each edit operation, the graph edit
distance between G1 and G2 is 3
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Convex graph invariant relaxations for graph edit distance 597

specific families such as planar graphs [33]. These methods are largely combinatorial
in nature, and most of them aim at identifying an edit path that transforms one graph to
the other. Consequently, much of the prior literature on this topic provides techniques
that lead to upper bounds on the edit distance between two graphs. In contrast, far fewer
approaches have been proposed for obtaining lower bounds on the edit distance. We
are aware of three previous papers [27,37,45] in which binary linear programming or
other combinatorial reformulations of graph edit distance are proposed, and based on
these reformulations, methods to calculate upper and lower bounds are described. In
their respective numerical experiments, the authors of these papers either compute the
graph edit distance exactly using an integer programming solver [27] or use heuristics
of a combinatorial nature to compute upper and lower bounds [37,45].

In this paper, we develop a computationally efficient framework for obtaining lower
bounds on the graph edit distance. Our contributions differ qualitatively from the prior
literature in two aspects. First, our approach can be tailored to the structural properties
of the specific graphs at hand based on the notion of a convex graph invariant. These
lead to useful lower bounds on the edit distance if one of the graphs is ‘suitably
structured’. Second, we give a theoretical analysis of conditions on pairs of graphs
under which a tractable semidefinite relaxation based on the spectral properties of a
graph provably computes the edit distance, i.e., our lower bound is tight.

1.1 Our framework

Much of the focus of our development and our analysis is on the edit distance between
two unlabeled graphs on the same number of vertices, with edge deletions and inser-
tions being the allowed edit operations. We discuss in Sect. 5.1 an extension of our
framework to settings in which the number of vertices in the two graphs may be dif-
ferent and in which vertex deletions and insertions are also allowed. Let A1 ∈ S

n

and A2 ∈ S
n represent the adjacency matrices of two unweighted, unlabeled, simple

and loopless graphs G1 and G2 on n vertices. (Here S
n denotes the space of n × n

real symmetric matrices.) The following optimization problem gives a combinatorial
formulation of the computation of the edit distance between G1 and G2:

GED(G1,G2) = min
X ,E∈Sn

∑

1≤i< j≤n

1Ei j �=0

s.t . X + E = A2

X ∈ {Π A1Π
T : Π is an n × n permutation matrix.}

Ei j ∈ {−1, 0, 1} ∀ i, j ∈ {1, . . . , n}.

(1)

The function 1{·} denotes the usual indicator function, the decision variable X is
an adjacency matrix representing G1, and the decision variable E specifies the edge
deletions and insertions made to G1 to obtain G2. One aspect of the problem (1) is
that its formulation is not symmetric with respect to G1 and G2, although the optimal
value remains unchanged if A1 and A2 are swapped in the problem description, i.e.,
GED(G1,G2) = GED(G2,G1); we revisit this point in the sequel. Unsurprisingly,
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598 U. O. Candogan, V. Chandrasekaran

solving (1) is intractable in general as calculating the graph edit distance is an NP-
hard problem. Our approach in this paper is to obtain tractable convex relaxations of
(1).Relaxing the objective to a convex function is a straightforwardmatter; specifically,
as the absolute value function constitutes a lower bound on the indicator function in
the range [−1, 1]; we replace the objective of (1) with the convex function 1

2‖E‖�1 ,
where ‖ · ‖�1 denotes the (entrywise) �1 norm that sums the absolute values of the
entries of a matrix.

The main remaining source of difficulty with obtaining a convex relaxation of
(1) is to identify a tractable convex approximation of a set of the form {Π AΠT :
Π is an n × n permutation matrix} for a given matrix A ∈ S

n . When A specifies an
adjacencymatrix of a graph, this set consists of all the adjacencymatrices that describe
the graph, thus highlighting the structural attributes of the graph that remain invariant
to vertex relabeling. Consequently, we seek a convex approximation that similarly
remains invariant to vertex relabeling. We describe next a notion from [9] that aims to
address this challenge:

Definition 1 [9] A set C ⊂ S
n is an invariant convex set if it is convex and if M ∈ C

implies that Π MΠT ∈ C for all n × n permutation matrices Π .

Invariant convex sets provide a useful convex modeling framework to constrain
graph properties that remain invariant to vertex relabeling. In particular, suppose
that CG1 ⊂ S

n is an invariant convex set that contains {Π A1Π
T : Π is an n ×

n permutation matrix} and has an efficient description. Then, the following convex
program provides a lower bound on GED(G1,G2):

GEDL B(G1,G2; CG1) = min
X ,E∈Sn

1
2 ‖E‖1

s.t . X + E = A2

X ∈ CG1 ,

(P)

It is evident that this problem provides a lower bound on GED(G1,G2) as the objec-
tive function here is a lower bound of the objective of (1) over the constraint set
of (1), and further the constraint set of (P) is an outer approximation of the con-
straint set of (1). Unlike the optimal value GED(G1,G2) of (1), the optimal value
GEDL B(G1,G2; CG1) of (P) is not symmetric; specifically, if CG2 is some invariant
convex set containing {Π A2Π

T : Π is an n × n permutation matrix}, then in gen-
eral GEDL B(G1,G2; CG1) �= GEDL B(G2,G1; CG2). This is because in general the sets
CG1 and CG2 constitute convex outer approximations with different approximation
qualities to the sets of adjacency matrices of their respective graphs, which is a key
factor in determining the quality of the graph edit distance lower bound produced
by our approach. In practice we propose computing both GEDL B(G1,G2; CG1) and
GEDL B(G2,G1; CG2) for some invariant convex sets CG1 and CG2 corresponding to G1
and G2 respectively, and taking the larger of these quantities as both constitute lower
bounds on GED(G1,G2).

This discussion leads naturally to the following question—which invariant convex
set CG best captures the structural properties of a graph G? Employing such a set in
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Convex graph invariant relaxations for graph edit distance 599

the relaxation (P) would provide better lower bounds on the edit distance. Letting
A ∈ S

n be an adjacency matrix of G, the ‘tightest’ invariant convex set that contains
the collection {Π AΠT : Π is an n × n permutation matrix} is simply the convex
hull of this collection. However, this convex hull is intractable to describe for general
graphsG (unless P=NP). As a result, it is of interest to obtain computationally tractable
invariant convex relaxations that reflect the structure in G. In the next subsection, we
give a list of invariant convex sets that are tractable to compute and that can be ‘tuned’
to the structure of G. These invariants can either be used individually or combined (at
increased computational expense), thus yielding a flexible and powerful framework
for obtaining bounds on the graph edit distance. The focus of the rest of the paper is
on investigating the utility of these invariants theoretically as well as via numerical
experiments; we give a summary of our main contributions in Sect. 1.3.

1.2 Convexity and graph invariants

We list here a few examples of invariant convex sets that play a prominent role in
this paper; we refer the interested reader to [9] for a more exhaustive list as well as
additional properties of invariant convex sets.

Loopless and edge weight constraints Looplessness and edge weight bounds are not
especially powerful constraints, but they nonetheless serve as simple examples of
invariant convex sets. Looplessness corresponds to the constraint set {M ∈ S

n | Mii =
0 for i = 1, . . . , n}, and bounds on the edge weights for unweighted graphs (for
example) can be specified via the set {M ∈ S

n | 0 ≤ Mi j ≤ 1 for i, j = 1, . . . , n}.
Spectral invariants1 Let G be a graph represented by an adjacency matrix A ∈ S

n with
eigenvalues λ(A) ∈ R

n . The smallest convex set containing all symmetric matrices
with the same eigenvalues (and multiplicities) as A is referred to as the Schur–Horn
orbitope associated to A [40], and is denoted by CSH(G):

CSH(G) := conv{M ∈ S
n | λ(M) = λ(A)}.

This set consists precisely of those matrices whose spectra are majorized by λ(A) [3].
It has an efficient semidefinite description, particularly for graphs with few distinct
eigenvalues [14]. Furthermore, one can replace the list of eigenvalues in this example
with the degree sequence of a graph, and in a similar vein, consider the convex hull
of all adjacency matrices representing graphs with the same degree sequence; see [9]
for more details.

A prominent way in which invariant convex sets can be constructed is via sublevel
sets of convex graph invariants:

Definition 2 [9] A function f : Sn → R is a convex graph invariant if it is convex
and if f (M) = f (Π MΠT ) for all M ∈ S

n and all n × n permutation matrices Π .

1 In this paper, we frequently use the terms ‘eigenvalues of a graph’ and ‘eigenvalues of an adjacency
matrix of a graph’ interchangeably.
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600 U. O. Candogan, V. Chandrasekaran

As with invariant convex sets, convex graph invariants characterize structural prop-
erties of a graph that are invariant to vertex relabeling. The following convex graph
invariants play a prominent role in our work:

Inverse of the stability number A stable set (also known as independent set) of a graph
G is a subset of vertices of G such that no two vertices in the subset are connected.
The stability number of a graph G is a graph invariant that is equal to the size of the
largest stable set of G. It was shown by Motzkin and Straus [32] that the inverse of
the stability number admits the following variational description, where A ∈ S

n is an
adjacency matrix representing G:

inv-stab-number(A) = min
x∈Rn

x ′(I + A)x

s.t .
∑

i

xi = 1, xi ≥ 0 for i = 1, . . . , n.

As the stability number of a graph is NP-hard to compute for general graphs (the
above programmay be reformulated as a conic programwith respect to the completely
positive cone), the following tractable relaxation based ondoubly nonnegativematrices
is widely employed:

f (A) = min
X∈Sn

Tr(X(I + A))

s.t . X � 0, 1′ X1 = 1, Xi j ≥ 0 for i, j = 1, . . . , n.
(2)

One can check that both inv-stab-number(A) and f (A) are concave graph invariants.

Maximum cut The maximum cut value of a graph is the maximum over all partitions
of the vertices of the sum of the weights of the edges between the partitions. For a
graph G specified by adjacency matrix A ∈ S

n , the maximum cut value is given as:

max-cut(A) = max
y∈{−1,1}n

1
4

∑

i, j

Ai, j (1 − yi y j ).

As this value is NP-hard to compute for general graphs, the following celebrated
efficiently-computable relaxation is commonly used [19]:

g(A) = max
X∈Sn

1
4 Tr(A (11T − X))

s.t . X � 0, Xii = 1 for i = 1, . . . , n.
(3)

Bothmax-cut(A) and g(A) are convex graph invariants as they are each invariant under
conjugation of the argument by a permutation matrix and they are each expressed as
a pointwise maximum of affine functions.
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1.3 Our contributions

The invariant convex sets listed in the previous section when used in the context of the
optimization problem (P) all lead to valid lower bounds on the edit distance between
two graphs. The question then is whether certain invariants are more naturally suited
to particular structural properties of graphs. The main focus of this paper is on identi-
fying attributes of graphs for which the invariants described above are well-suited, and
evaluating in these contexts the quality of the bounds obtained via (P) both theoreti-
cally and through numerical experiments. Specifically, we say that an invariant convex
constraint set CG is well-suited to the structure of a graph G if GEDL B(G,G′; CG) pro-
vides a tight (or high-quality) lower bound of GED(G,G′) for all graphs G′ that are
obtained via a small number of edge deletions and insertions applied to G (here ‘small’
is interpreted relative to the total number of edges in G).

In Sect. 2, we investigate theoretically the effectiveness of the Schur–Horn orbitope
as an invariant convex set in providing lower bounds on the graph edit distance via
(P). We consider a stylized setting in which a graph G on n vertices is modified to
a graph G′ by adding or removing at most d edges incident to each vertex of G. We
prove in Theorem 1 (see Sect. 2.1) that the optimal value of the convex program (P)
with a Schur–Horn orbitope constraint set equals the graph edit distance between
G and G′, i.e., GEDL B(G,G′; CSH(G)) = GED(G,G′) provided: 1) d is sufficiently
small, 2) G has eigenspaces with the property that there exists a linear combination
of the associated projection operators onto these spaces so that the largest entry in
magnitude is suitably bounded, and 3) when projected onto any eigenspace of G,
matrices supported on entries corresponding to edits have small norm; see Theorem 1
for precise details. Conditions similar to the third requirement appear in the authors’
earlier work on employing the Schur–Horn orbitope in the context of the planted
subgraph problem [8]. However, the second condition is novel and is motivated by the
context of the present paper on graph edit distance. Under the additional assumption
that G is vertex-transitive, Corollary 1 provides a simple formula on the maximum
allowable number d of edge additions/deletions per vertex of G; we illustrate the
utility of this formula by computing bounds on d for many graph families such as
Johnson graphs, Kneser graphs, Hamming graphs and other strongly regular graphs.
Indeed, for some of these families, our results are ‘order-optimal’ in the sense that our
bounds on d are on the order of the degree of G. The proofs of the main results of
Sect. 2 are given in Sect. 3.

In Sect. 4, we conduct a detailed numerical evaluation of the power and limita-
tions of convex invariant relaxations based on the inverse stability number (via the
tractable approximation (2)) and the maximum cut value (via the tractable approxima-
tion (3)). We do not provide precise theoretical guarantees due to a lack of a detailed
characterization of the facial structure of the associated convex sets. Nonetheless, we
identify classes of graph edit distance problems for which these constraints produce
high-quality lower bounds. Specifically, we observe that a convex relaxation based
on the Motzkin–Straus approximation of the inverse of the stability number provides
useful lower bounds on graph edit distance if one of the graphs has the property that
the removal of any edge increases the graph’s stability number; graphs with such a
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602 U. O. Candogan, V. Chandrasekaran

property have been studied in the extremal graph theory literature [26] and we refer the
reader to Sect. 4.1 for further details. Similarly, in Sect. 4.2, we observe that a convex
relaxation based on the Goemans–Williamson approximation of the maximum cut
value produces effective lower bounds on the graph edit distance if the addition of any
edge to one of the graphs increases that graph’s maximum cut value; windmill graphs
are a prominent example that possess such a property. In both Sects. 4.1 and 4.2, we
present empirical results that corroborate our observations.

In Sect. 5 we demonstrate the utility of our framework in providing lower bounds
on the average pairwise graph edit distance in two chemistry datasets consisting of
a collection of molecules known as Alkanes and Polycyclic Aromatic Hydrocarbons
(PAH). The PAH dataset in particular consists of large structures for which exact
computation of graph edit distance is prohibitively expensive. The best-known upper
bound on the average graph edit distance over all pairs of graphs in this dataset is 29.8,
and to the best of our knowledge, the exact value of this quantity is not known [5].
Indeed, much of the literature featuring the PAH dataset aims at providing an upper
bound on the average pairwise graph edit distance. Our framework provides a lower
bound of 21.6 on the average pairwise graph edit distance of PAH, which appears to
be the best available bound to date. In obtaining these results, we combine invariant
convex sets based on the Schur–Horn orbitope, the Motzkin–Straus approximation
of the inverse stability number, and the Goemans–Williamson approximation of the
maximum-cut value.

1.4 Relation to the quadratic assignment problem

The Quadratic Assignment Problem (QAP) consists of optimizing a linear functional
over the set {Π AΠT : Π is an n × n permutation matrix} for a given matrix A ∈ S

n

[16,46]. The QAP tries to identify a labeling of the vertices of a graph so that it shares
as many edges in common with another graph as possible. The following optimization
problem is a QAP-inspired formulation of the graph edit distance:

GED(G1,G2) = min
X∈Sn

1
2 〈11T − 2A2, X〉 + #edges(G2)

s.t . X ∈ {Π A1Π
T : Π is an n × n permutation matrix}.

Note that the objective function here is affine in the decision variable X . To obtain
lower bounds on the edit distance, one could replace the constraint set by a com-
putationally tractable invariant convex set CG1 containing {Π A1Π

T : Π is an n ×
n permutation matrix}, in the same spirit as in our formulation (P) as described pre-
viously:

GEDQ AP (G1,G2; CG1) = min
X∈Sn

1
2 〈11T − 2A2, X〉 + #edges(G2)

s.t . X ∈ CG1 .

This formulation is weaker than (P) with the same constraint set CG1 , i.e.,
GEDQ AP (G1,G2; CG1) ≤ GEDL B(G1,G2; CG1). To see this, note that the following
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inequalities and equalities hold for each X ∈ CG1 (in fact, for any X ∈ S
n):

1
2‖X − A2‖1 ≥ 1

2 〈11T − 2A2, X − A2〉
= 1

2 〈11T − 2A2, X〉 + 1
2 〈A2, A2〉

= 1
2 〈11T − 2A2, X〉 + #edges(G2).

(4)

The first inequality follows from the observation that the matrix 11T − 2A2 consists
of entries that are ±1. The first equality holds as 〈11T − 2A2,−A2〉 = 〈A2, A2〉.

As an illustration of the utility of our formulation (P) in contrast to the above
QAP-based approach, consider the bound GEDQ AP (G1,G2; CSH(G1)), which can be
computed as follows:

GEDQ AP (G1,G2; CSH(G1)) = 1
2λ

↑(11T − 2A2)λ
↓(A1) + #edges(G2).

Here λ↑(·) and λ↓(·) represent the vector of eigenvalues in ascending and descending
order, respectively. In particular, the optimal solution corresponding to this bound is
given by a matrix with the same eigenvalues as G1 but with the eigenvectors given
by those of 11T − 2A2, which is in general very different from those of any adja-
cency matrix representing G1 as the edits transforming G1 to G2 can change the
eigenspaces substantially. Consequently, even if G1 is structured, e.g., has few dis-
tinct eigenvalues, and the edit distance between G1 and G2 is small, we have that
GEDQ AP (G1,G2; CSH(G1)) < GED(G1,G2); in contrast, in a similar problem setup
our results in Sect. 2 demonstrate that our approach yieldsGEDL B(G1,G2; CSH(G1)) =
GED(G1,G2) provably.

Finally, the reasoning (4) above, which demonstrates that GEDQ AP (G1,G2; CG1) ≤
GEDL B(G1,G2; CG1), leads to the following result:

Proposition 1 Let G1 and G2 be any graphs on n vertices and let S = conv{Π A1Π
T :

Π is an n × n permutation matrix}, i.e., the convex hull of all the adjacency matrices
representing G1. Then we have that

GEDL B(G1,G2;S) = GED(G1,G2).

Proof Based on the sequence of inequalities (4), we have that GEDQ AP (G1,G2;S) ≤
GEDL B(G1,G2;S). However, GEDQ AP (G1,G2;S) = GED(G1,G2) as the optimiza-
tion of an affine function over a constraint set has the same optimal value as the
optimization of the affine function over the convex hull of the constraint set. Finally,
we note that GEDL B(G1,G2;S) ≤ GED(G1,G2), as our approach always yields a
lower bound. Putting these together, we have the desired result. ��
Thus, if we use the convex hull of all the adjacency matrices representing a graph as
our invariant convex set in (P), the optimal value is equal to the graph edit distance
between G1 and G2. Of course, the result is only of theoretical relevance as computing
this convex hull is intractable in general, and the focus of the remainder of this paper
is on analyzing the performance of the computationally efficient invariant convex sets
described in Sect. 1.2.
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Notation We denote the normal cone at a point x ∈ C of a closed convex set C by
NC(x). The projection map onto a subspace E ⊂ R

n is denoted by PE : Rn → R
n .

For a collection of subspaces Ei ⊂ R
n, i ∈ {1, . . . , m}, the operator Pi j : Sn → S

n is
defined as Pi j := PE j ⊗ PEi , i.e., Pi j (A) = PEi APE j . Clearly, Pi j (·) is a contraction
with respect to the operator norm ‖·‖2. The restriction of a (usually self-adjoint) linear
map f : Rn → R

n to an invariant subspace E of f is denoted by f |E : E → E .
The function sign : Sn → S

n is the usual sign function applied entrywise. Given a
symmetric support set in {1, . . . , n} × {1, . . . , n}, we denote the subspace of matrices
in Sn with this support by Ω and the subspace of matrices in Sn with the complement
of the support by Ωc (the support set will be clear from the context). We use PΩ to
denote the projection of a matrix onto the space Ω; PΩ is a contraction with respect
to entrywise matrix infinity norm ‖·‖∞.

2 Theoretical guarantees for the Schur–Horn orbitope constraint

In this section, we give theoretical guarantees that describe conditions under which
employing the Schur–Horn orbitope as an invariant convex constraint set in (P) leads
to the associated lower bound on the graph edit distance being tight, i.e., the optimal
value of (P) equals the graph edit distance. Concretely, we consider conditions on
a graph G and the structure of the edits that transform G to another graph G′ so that
GED(G,G′) = GEDL B(G,G′; CSH(G)). We begin with a description of our main
theoretical results in Sect. 2.1, some consequences of these results for specific graph
families in Sect. 2.2, and finally an experimental demonstration on the utility of the
Schur–Horn orbitope on stylized problems in Sect. 2.3. The proofs of the results of this
section are deferred to Sect. 3. The overall architecture of our analysis follows a primal-
dual certificate approach. Specifically, suppose A is an adjacency matrix representing
G and E∗ is a matrix of edits transforming G to G′ so that G′ is represented by A + E∗;
by leveraging the fact that the problem (P) is convex, we demonstrate under suitable
conditions on G as well as the edits transforming G to G′ that there exists a dual
variable certifying that the pair (A, E∗) is the unique optimal solution of (P).

As the normal cones at extreme points of the Schur–Horn orbitope play a prominent
role in the optimality conditions of (P), we state the relevant result here:

Lemma 1 [8] Let G be any unweighted graph with m eigenvalues. A matrix W is an
extreme point of CSH(G) if and only if it has the same eigenvalues as G (counting
multiplicity). Further, the relative interior of the normal cone relint(NCSH(G)

(W )) at
an extreme point W consists of those matrices Q that satisfy the following conditions:

1. Q is simultaneously diagonalizable with W ,
2. λmin(Q|Ei ) > λmax(Q|Ei+1) ∀ i ∈ {1, . . . , m − 1},
where Ei for i ∈ {1, . . . , m} are eigenspaces of W ordered such that the corresponding
eigenvalues are sorted in a decreasing order.

From Lemma 1 we observe that the relative interior of the normal cones of the Schur–
Horn orbitope at extreme points are ‘larger’ if the underlying graph G consists of few
distinct eigenvalues. This observation along with various properties of the eigenspaces
of G play a prominent role in the analysis in this section.
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2.1 Main results

We present here the statements of our main theoretical results concerning the perfor-
mance of the Schur–Horn orbitope as a constraint set in (P). In addition to various
structural properties of G, our results are described in terms of a parameter d that
denotes the maximum number of deletions/additions of edges that are incident to any
vertex of G. Informally, we should expect the Schur–Horn orbitope constraint to be
effective in exactly computing the graph edit distance if the projection of a matrix
representing the edits from G to G′ onto any of the eigenspaces of G has small norm.
The reason behind this observation is that if the edits were largely concentrated in the
eigenspaces of G, then the eigenspaces of G′ would be close to those of G. This would
result in an identifiability problem from the perspective of the Schur–Horn orbitope,
which is based purely on the spectral properties of G. To formalize this notion, we
present the following definition which plays a key role in our analysis:

Definition 3 Let G be a graph on n vertices with m distinct eigenvalues. Let Pi , i =
1, . . . , m represent projection maps onto the eigenspaces of G indexed by decreasing
order of the corresponding eigenvalues and let Pi i = Pi ⊗ Pi . Fix a positive integer
d and α ∈ [0, 1]m . Define the parameter ξ(α, d,G) to be the smallest value of ξ that
satisfies

∥∥∥∥∥[I −
m∑

i=1

αiPi i ](W )

∥∥∥∥∥
∞

≤ ξ ‖W‖∞ .

for all W ∈ S
n with at most d nonzero entries per row/column.

Remark 1 The maps Pi represent projections onto eigenspaces of an adjacency matrix
representing G, but we simply refer to these as eigenspaces of G with an abuse of
terminology. The reason is that the quantity ξ(α, d,G) is a graph parameter (for each
fixed α, d) and does not depend on a specific labeling of the vertices of G.

Remark 2 The parameter ξ(α, d,G) is a restricted version of the induced (entrywise)
infinity norm

∥∥I −∑m
i=1 αiPi i

∥∥∞→∞, with the key difference being that ξ(α, d,G)

computes the induced gain of the operator I −∑m
i=1 αiPi i restricted to inputs that

have at most d nonzeros per row/column.

The quantity ξ(α, d,G) helps quantify the idea described previously about projec-
tions of matrices corresponding to edits onto the eigenspaces of G having small norm.
As the specific edit pattern is not known in advance, this quantity is agnostic to the
particular edits and is parametrized only in terms of the maximum number of edge
deletions/additions that are incident to any vertex. In our main results described next,
larger values of ξ make it harder to satisfy our sufficient conditions on tightness of our
lower bounds. As the value of ξ depends on the selection of the parameter α, our main
results allow for flexibility in the choice of this parameter, and we describe in Sect. 2.2
how specific choices lead to concrete consequences on the exactness of the relaxation
(P) with the Schur–Horn orbitope constraint for various graph families. We present
next a result that establishes basic optimality conditions of the convex program (P):
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Lemma 2 Let G be a graph on n vertices with m distinct eigenvalues, and let G′ be
a graph that is obtained from G via edge deletions/additions such that each vertex
is incident to at most d edits. Let A, A + E∗ ∈ S

n represent the graphs G and G′,
respectively; that is, E∗ consists of at most d nonzeros per row/column. Let Ω ⊂ S

n

denote the subspace consisting of all matrices with nonzeros contained within the
support of E∗. Suppose a vector α ∈ [0, 1]m and a matrix Q ∈ S

n satisfy the following
conditions:

1. PΩ(Q) = sign(E∗),
2. ||PΩc (Q)||∞ < 1,
3. Q ∈ relint(NSH(G)(A)),
4. ξ(α, d,G) < 1.

Then we have that the convex relaxation (P) with the Schur–Horn orbitope con-
straint exactly computes the edit distance between G and G′, i.e., GED(G,G′) =
GEDL B(G,G′; CSH(G)). Further, when G′ is represented by A + E∗, the optimal solu-
tion is given by (A, E∗); this solution is unique and E∗ specifies an optimal set of
edits.

Conditions 1, 2, and 3 of this lemma essentially require that the subdifferential at
a matrix specifying the edits with respect to the �1 norm has a nonempty intersection
with the relative interior of the normal cone at an adjacency matrix representing G
with respect to the Schur–Horn orbitope.2 In papers on the topic of low-rank matrix
completion and matrix decomposition [7,10], a convenient approach to ensuring that
such types of conic intersection conditions can be satisfied is based on requiring that
the nullspace (the eigenspace corresponding to an eigenvalue of zero) of the low-rank
matrix is suitably ‘incoherent’, i.e., that there are no elements of this nullspace for
which any coordinate has large magnitude. In our context, all of the eigenspaces of
G play a role rather than just a single distinguished eigenspace, and accordingly we
describe next a weighted form of a coherence-type condition:

Definition 4 Let G be a graph on n nodes with m distinct eigenvalues and let
P1, . . . , Pm ∈ S

n denote the projection matrices onto the associated eigenspaces
indexed by decreasing order of the corresponding eigenvalues. Fix any γ ∈ R

m . We
define the parameter ρ(γ,G) as follows:

ρ(γ,G) :=
∥∥∥∥∥

m∑

i=1

γi Pi

∥∥∥∥∥
∞

.

Here the matrix ‖ · ‖∞ norm is the largest entry of the argument in magnitude. In the
literature on inverse problems involving low-rank matrices, one typically considers
the infinity norm of the projection map onto the nullspace as well as variants of this
quantity. Thus, in this sense the parameter ρ(γ,G) is a weighted generalization that
is more suited to our setup. We state next our main theorem in terms of sufficient
conditions involving the two parameters we have introduced in this section:

2 Note that ∂
∥∥E∗∥∥

1 = {V ∈ S
n : Vi j = sign (E∗

i j ) for E∗
i j �= 0, Vi j ∈ [−1, 1] for E∗

i j = 0}.
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Theorem 1 Let G be a graph on n vertices with m distinct eigenvalues, and let G′ be
a graph that is obtained from G via edge deletions/additions such that each vertex is
incident to at most d edits. Suppose the following two conditions are satisfied for some
γ ∈ R

m and α ∈ [0, 1]m:

1. 2 ξ(α, d,G) + ρ(γ,G) < 1,
2. (αi +αi+1) (1+ρ(γ,G)) d

1−ξ(α,d,G)
< γi+1 − γi , ∀ i ∈ {1, . . . , m − 1}.

Then the convex relaxation (P) with the Schur–Horn orbitope constraint exactly com-
putes the edit distance between G and G′, i.e., GED(G,G′) = GEDL B(G,G′; CSH(G)),
with the optimal solution being unique and achieved at a matrix that specifies an opti-
mal set of edits.

This theorem states that the relaxation (P) with the Schur–Horn orbitope constraint
set succeeds in calculating the graph edit distance exactly if 1) d is small enough, 2)
there exists a vector α with small entries such that ξ(α, d,G) is also suitably small,
and 3) there exists an ordered vector γ with well-separated entries that yields a small
value of ρ(γ,G). As discussed in the next subsection, graphs with a small number
of well-separated eigenvalues offer an ideal candidate. Specifically, for such graph
families, we give concrete consequences in terms of bounds on the maximum number
d of edits per vertex via particular choices for α and γ in Theorem 1.

2.2 Consequences for graph families with few eigenvalues

Theorem 1 constitutes our most general result on the tightness of the Schur–Horn
orbitope constraint in computing the graph edit distancewhen employed as a constraint
set in the context of (P). The generality of the result stems from the wide range of
flexibility provided by the vectors γ andα. In Corollary 1, we consider specific choices
of these parameters to obtain concrete bounds in terms of graph parameters that can
be computed easily:

Corollary 1 Let G be a vertex-transitive graph on n vertices consisting of m distinct
eigenvalues, and let κ denote the multiplicity of the eigenvalue with the second-highest
multiplicity. Suppose G′ is a graph on n vertices that can be obtained from G with the
addition or removal of at most d edges incident to each vertex of G. Then there exists
a constant c depending only on m so that the optimal value GEDL B(G,G′; CSH(G))

of (P) equals GED(G,G′) provided

d ≤ c
n

κ
.

The particular dependence on the multiplicity of the eigenvalue with second-largest
multiplicity is due to the choices of α and γ in Theorem 1 that we have employed
in our proof; see Sect. 3 for more details. In the sequel we give consequences of this
result for specific graph families in which the number of distinct eigenvalues is small
(for example, three or four); see [6] for more details on these graph families. In the
context of such graphs, the relaxation (P) is tight even when the number of edits per
vertex is large so long as the value of κ is suitably small. Indeed, for several graph
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Fig. 2 From left to right: Hamming graph H(3,4), 9-Triangular graph, generalized quadrangle-(2,4) graph

families we observe that Corollary 1 produces ‘order-optimal’ bounds as the largest
value of d that is allowed is on the same order as the degree of the underlying graphs.

Johnson graphs A Johnson graph J (k, �) with � > 0 is a graph on n = (k
�

)
vertices

that correspond to the �-element subsets of a set of k elements. Two vertices of a
Johnson graph are connected if the corresponding subsets of these vertices contain
� − 1 common elements. The Johnson graph J (k, �) is vertex-transitive and contains
� + 1 distinct eigenvalues. For k ≥ 2� and j ∈ {0, . . . , �}, the multiplicity of its j’th
eigenvalue is

(k
j

) − ( k
j−1

)
for j > 0 and one for j = 0. For small values of �, the

multiplicity of the secondmost repeated eigenvalue is about k�−1. As a result, for small
fixed values of �, Corollary 1 states that the convex relaxation (P) is tight provided

d �
(k
�

)

k�−1 ∼ n
1
� .

Kneser graphsAKneser graph K (k, �)with � > 0 shares certain aspects with Johnson
graphs. Specifically, the vertices of K (k, �) coincide with the �-element subsets of a
set of k elements, as with Johnson graphs. However, two vertices of a Kneser graph
are connected if the subsets corresponding to these vertices are disjoint. Kneser graphs
are vertex-transitive, and their eigenvalues exhibit the same multiplicities as those of
the Johnson graphs J (k, �). As a result, for small fixed values of �, Corollary 1 implies
that the relaxation (P) is tight provided:

d �
(k
�

)

k�−1 ∼ n
1
� .

Hamming graphs A Hamming graph H(�, q) consists of q� vertices (see Fig. 2a for
a depiction of H(3, 4)). Each vertex of H(�, q) corresponds to a sequence of length
� from a set with q distinct elements. Two vertices are connected if their associated
sequences differ in exactly one coordinate, i.e., their Hamming distance is equal to 1.
Hamming graphs are vertex-transitive, and the spectrum of H(�, q) consists of � + 1
distinct eigenvalues with multiplicities

(
�
i

)
(q − 1)i , i ∈ {0, . . . , �}. Therefore, for a
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small fixed value of �, Corollary 1 states that the relaxation (P) is tight provided:

d � q�

(q − 1)�−1 ∼ n
1
� .

Vertex-transitive strongly regular graphs A strongly regular graph on n vertices with
degree r is defined by the property that every pair of adjacent vertices has da common
neighbors and every pair of nonadjacent vertices has dna common neighbors. Such
graphs are generally denoted srg(n, r , da, dna). Due to their rich algebraic structure,
strongly regular graphs have only three distinct eigenvalues with multiplicities equal

to one and 1
2

[
(n − 1) ± 2r+(n−1)(da−dna)√

(da−dna)2+4(r−dna)

]
. Furthermore, many strongly regular

graphs are also vertex-transitive and as a result, our Corollary 1 is applicable. We
highlight two prominent examples which we revisit in Sect. 2.3:

– A k-Triangular graph Tk on n = (k2
)
vertices is a vertex-transitive strongly regular

graph with parameters srg(k(k − 1)/2, 2(k − 2), k − 2, 4) (in fact, Tk is also
isomorphic to the Johnson graph J (k, 2)); see Fig. 2b for the 9-Triangular graph.
Corollary 1 states that the convex relaxation (P) is tight provided:

d � n
1
2 .

Incidentally, the degree of Tk also scales as n
1
2 ; as a result, Corollary 1 is tight for

this family up to constant factors.
– A generalized quadrangle is an incidence relation satisfying certain geometric
axioms on points and lines. A generalized quadrangle of order (s, t) gives rise
to a strongly regular graph with parameters srg((s + 1)(st + 1), s(t + 1), s −
1, t + 1) denoted by G Q(s, t) on n = (s + 1)(st + 1) vertices—see Fig. 2c for
an illustration of the vertex-transitive graph G Q(2, 4). Considering generalized
quadrangle graphs G Q(s, s2) when they are vertex-transitive, Corollary 1 implies
that the relaxation (P) is tight provided

d � n
1
4 .

2.3 Numerical experiments

We demonstrate the utility of the Schur–Horn orbitope as a constraint set in (P) in
obtaining bounds on the graph edit distance between graphs G and G′. In our exper-
iments, we fix G to be either the 9-triangular graph T9 (Fig. 2b) or the generalized
quadrangle-(2,4) graph G Q(2, 4) (Fig. 2c) introduced previously. The graph T9 con-
sists of 36 vertices and 252 edges and the graph GQ(2,4) consists of 27 vertices and
135 edges. Both of these are strongly regular graphs. In each case, the corresponding
graph G′ is obtained by adding/deleting edges randomly (both addition and deletion
occur with equal probability) to achieve a desired number of edits. When G is T9
we vary the number of edits from four to 200 in increments of four, and when G is
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Fig. 3 Performance of our framework (P) with the Schur–Horn constraint. Left, empirical probability of
discovering the true graph edit path. Right, ratio of average calculated graph edit distance to number of
edit operations. First row corresponds to the 9-triangular graph and the second row to the generalized
quadrangle-(2,4) graph

G Q(2, 4) we vary the number of edits from two to 100 in increments of two. For each
number of edits, we consider 1000 random trials and we report the probability that
GED(G,G′) = GEDL B(G,G′; CSH(G)) and the ratio of the average computed lower
bound GEDL B(G,G′; CSH(G)) to the number of edits, which is an upper bound on the
edit distance. In particular, we declare that GED(G,G′) = GEDL B(G,G′; CSH(G)) if
the infinity norm (maximum entrywise magnitude) of the difference between the opti-
mal solution Ê and the true edit matrix E∗ is less than 0.01. The results are shown in
Fig. 3 and theywere obtained using theCVXparser [20,21] and the SDPT3 solver [43].
As these plots demonstrate, the convex relaxation (P) with a Schur–Horn orbitope as
an invariant convex constraint set is tight when the number of edits is small and leads
to effective lower bounds when the number of edits is large.

3 Proofs of results from Sect. 2

3.1 Constructing a dual certificate

We describe here a method for constructing a suitable dual certificate satisfying the
conditions of Lemma 2, and we prove that this construction is valid whenever certain
conditions involving the parameters ξ and ρ from Sect. 2 are satisfied. Our proofs
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are presented in the context of two intermediary lemmas, which are then used to
prove Theorem 1. Specifically, our approach to constructing Q ∈ S

n that satisfies the
requirements of Lemma 2 is to express Q as follows:

Q = R + Δ.

Here R ∈ S
n plays the role of a ‘reference’ matrix that depends purely on the underly-

ing graph G, while Δ ∈ S
n is a perturbation that additionally depends on the specific

edits that transform G to G′. We begin by stating an easily-proved result that serves as
the basis for our subsequent development:

Lemma 3 Consider the same setup as in Lemma 2. Let Pi ∈ S
n, i = 1, . . . , m

denote projection maps onto the eigenspaces of A indexed by decreasing order of the
corresponding eigenvalues. Suppose a vector α ∈ [0, 1]m, a vector γ ∈ R

m, and a
matrix Δ ∈ S

n satisfy the following conditions with R =∑i γi Pi :

1. PΩ(Δ) + PΩ(R) = sign(E∗),
2. ||PΩc (Δ)||∞ + ||PΩc(R)||∞ < 1 ,
3. Pi j (Δ) = 0, ∀i, j ∈ {1, . . . , m}, i �= j ,
4. ||Pi i (Δ)||2 + ||Pi+1,i+1(Δ)||2 < γi+1 − γi , ∀i ∈ {1, . . . , m − 1},
5. ξ(α, d,G) < 1.

Then the convex relaxation (P) with the Schur–Horn orbitope constraint exactly com-
putes the edit distance between G and G′, i.e., GED(G,G′) = GEDL B(G,G′; CSH(G)),
with the optimal solution being unique and achieved at a matrix that specifies an opti-
mal set of edits.

Proof The conditions of Lemma 2 are satisfied by setting Q = R + Δ. In particular,
with this choice for Q conditions 1 and 4 of Lemma 2 follow directly from assumptions
1 and 5, respectively. Condition 2 of Lemma 2 follows from assumption 2 via an
application of the triangle inequality. Finally, assumptions 3 and 4 combined with the
triangle inequality and Lemma 1 imply condition 3 of Lemma 2, as the resultingmatrix
Q is by construction simultaneously diagonalizable with A and satisfies the desired
eigenvalue separation conditions. ��

This lemma highlights the role of the parameter γ , in particular demonstrating that
larger separation among the values of γ makes condition 4 easier to satisfy but may
also increase the value of ||PΩc(R)||∞, thus making condition 2 potentially harder to
satisfy.

We now move on to the perturbation term Δ. As this matrix must satisfy several of
the constraints discussed in Lemma 3, its construction is somewhat delicate. We build
on the ideas developed in [11] in the context of low-rank matrix recovery, but with
certain adaptations that are crucial to our setting. We construct Δ as an element in the
range of an operator Lα : Sn → S

n that is parametrized by α ∈ [0, 1]m :

Lα :=
(

m∑

i=1

αiPi i

)
PΩ

[
I −

(
I −

m∑

i=1

αiPi i

)
PΩ

]−1

.
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All of the operators here are as defined before. A point of the departure in the descrip-
tion of this operator relative to the ideas in [11] is that our version allows for ‘fractional’
contractions (as well as integral ones) based on the choice of α.When it is well-defined
(i.e., the term involving the inverse is indeed invertible), the operator Lα possesses
a number of properties that lead to a convenient approach for constructing a suitable
dual variable:

(P1) Pi jLα = 0 ∀i, j ∈ {1, . . . , m}, i �= j
(P2) PΩLα = PΩ .

Here, property (P1) holds as Pi jPkk = 0 ∀i, j, k ∈ {1, . . . , m}, i �= j . Property (P2)
holds due to the following:

PΩLα = PΩ

[
I −

(
I −

m∑

i=1

αiPi i

)]
PΩ

[
I −

(
I −

m∑

i=1

αiPi i

)
PΩ

]−1

= PΩ

[
I −

(
I −

m∑

i=1

αiPi iPΩ

)][
I −

(
I −

m∑

i=1

αiPi i

)
PΩ

]−1

= PΩ.

In the context of Lemma 3, property (P1) ensures that Δ is completely contained
in a desired subspace, as stipulated by condition 3 of Lemma 3. Further, property
(P2) implies that condition 1 of Lemma 3 is satisfied—in particular, we make use of
this property to ensure that Δ takes on a desired value when restricted to Ω . Con-
ditions 2 and 4 of Lemma 3 require that the quantities ‖Pi i (Δ)‖2 and ‖PΩc (Δ)‖∞
to be sufficiently small—these conditions are satisfied by the operator Lα as well, as
documented next:

Lemma 4 Consider the same setup as in Lemma 2. Fix any α ∈ [0, 1]m such that
ξ(α, d,G) < 1. Then the operator Lα : S

n → S
n is well-defined (i.e., the term

containing the inverse is indeed invertible) and the following inequalities hold:

1. ‖[PΩcLα](X)‖∞ ≤ ξ(α,d,G)‖X‖∞
1−ξ(α,d,G)

,

2. ‖[Pi iLα](X)‖2 ≤ αi d‖X‖∞
1−ξ(α,d,G)

.

We present the proof of Lemma 4 in Sect. 3.2. In addition to providing upper bounds
that serve as a foundation for the proof of our main theorem, Lemma 4 conveys
the significance of the parameter ξ(α, d,G). Specifically, a suitably small value of
ξ(α, d,G) guarantees that Lα is well-defined, along with the conclusion that elements
in the range of Lα have small infinity norm (when restricted to Ω) and small operator
norm (restricted to eigenspaces of G). The lemma also suggests that the operator norm
of the restriction of Lα(X) to any eigenspace of G scales with the corresponding entry
of α. Consequently, one can adjust α and γ to ensure that every inequality in Lemma 3
condition 4 is satisfied. Identifying the best values of α and γ to achieve this may be
accomplished in special cases based on underlying structure in G, as demonstrated by
Corollary 1 and the many concrete consequences that are described in Sect. 2.2. In
particular, in the proof of Corollary 1, we choose γ such that the separation between
consecutive γi ’s is proportional to the sum of consecutive αi ’s andwe demonstrate that
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this approach yields easily-computable bounds based on properties of the underlying
graph G on the highest number d of tolerable edits per vertex.

3.2 Proofs

3.2.1 Proof of Lemma 2

The first three conditions imply that the pair (A, E∗) is an optimal solution of (P) by
a direct application of the KKT conditions (see, for example, Theorem 27.4 in [38]).
We now proceed to proving the uniqueness of (A, E∗). To this end, we first introduce
subspaces Ω and T :

Ω = {M ∈ S
n | PΩ(M) = M},

T = {M ∈ S
n | Pi i (M) = 0, ∀i ∈ {1, . . . , m}}.

For any M ∈ Ω ∩ T and for any α, we have [(I −∑m
i=1 αiPi i )PΩ ](M) = M .

However, ξ(α, d,G) < 1 for some α, hence Ω ∩ T = {0}.
Let (A−T , E∗ +T ) be another optimal solution of convex program (P) where−T

is a tangent direction from the extreme point A of CSH(G). Since Q is a subgradient
of ‖·‖1 at E∗, it satisfies the subgradient condition ‖E∗ + T ‖1 − ‖E∗‖1 ≥ Tr(QT ).

Suppose that Pi i (T ) �= 0 for some i ∈ {1, . . . , m}. Consider any matrix B ∈ T ⊥.
Since Q ∈ relint(NCSH(G)

(A)), for some small enough ε, Q + εB ∈ NCSH(G)
(A))

and thus Tr((Q + εB)(−T )) ≤ 0 ⇒ Tr(QT ) > 0. By the subgradient condition, this
implies (A−T , E∗+T ) cannot be an optimal solution. Thus, T ∈ T and Tr(QT ) = 0.

Now consider QE ∈ S
n , PΩ(QE ) = E∗ and PΩc (QE ) = sign(PΩc (T )). Note

that QE is a subgradient of ‖·‖1 at E∗ as well, since E∗
i j ∈ {−1, 0, 1} ∀i, j due to the

assumptions of the Lemma. Then:

Tr(QE T ) = Tr
((
PΩc (QE ) + Q − PΩc (Q)

)
(T )
)

= Tr
((
PΩc (QE ) − PΩc (Q)

)
PΩc (T )

)

≥ ‖PΩc (T )‖1 (1 − ‖PΩc (Q)‖∞).

Here, the last inequality follows by the definition of PΩc (QE ), the inequality
Tr
(
PΩc(Q)PΩc (T )

) ≤ ‖PΩc (T )‖1 ‖PΩc (Q)‖∞ and regrouping. Therefore, unless
PΩc (T ) = 0, Tr(QE T ) > 0 and (A − T , E∗ + T ) cannot be an optimal solution.
Then, T ∈ Ω ∩ T = {0}, proving the uniqueness of (A, E∗). ��

3.2.2 Proof of Lemma 4

Our proof is analogous to that of [11, Lemma 8]. In order to avoid notational clutter,
we denote (I −∑m

i=1 αiPi i ) as PT . Then from the definition of ξ(α, d,G), we have:

‖[PTPΩ ](X)‖∞ ≤ ξ(α, d,G) ‖X‖∞ . (5)
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Due to the assumption that ξ(α, d,G) < 1, we have that the series I + PTPΩ +
PTPΩPTPΩ + · · · converges and is equal to (I − PTPΩ)−1. As such, the operator
Lα is well-defined.

Next, we proceed to the upper bounds. First we have that:

∥∥[PΩcLα](X)
∥∥∞ =

∥∥∥[PΩcPTPΩ(I − PTPΩ)−1](X)

∥∥∥∞
≤
∥∥∥[PTPΩ(I − PTPΩ)−1](X)

∥∥∥∞
≤ξ(α, d,G)

∥∥∥(I − PTPΩ)−1(X)

∥∥∥∞

≤ξ(α, d,G) ‖X‖∞
1 − ξ(α, d,G)

.

One can check that the first equality holds based on a term-by-term comparison.
The first inequality follows by dropping the projection PΩc . Bounding the resulting
quantity from above using ξ(α, d,G) yields the second inequality. The last inequality
follows from the geometric convergence of (I − PTPΩ)−1.

Next we bound the quantity involving the operator norm:

∥∥[Pi iLα](X)
∥∥
2 =

∥∥∥[αiPi iPΩ(I − PTPΩ)−1](X)

∥∥∥
2

≤ αi

∥∥∥[PΩ(I − PTPΩ)−1](X)

∥∥∥
2

≤ αi d
∥∥∥[PΩ(I − PTPΩ)−1](X)

∥∥∥∞
≤ αi d

∥∥∥[(I − PTPΩ)−1](X)

∥∥∥∞

≤ αi d ‖X‖∞
1 − ξ(α, d,G)

.

The first inequality holds by dropping the projection Pi i . The second inequality holds
due to the fact that the operator norm of amatrix with at most d entries per row/column
can be bounded above by d times the maximum element in magnitude of the matrix.
The third inequality holds by dropping the operator PΩ . The final inequality follows
from geometric convergence, as before. ��

3.2.3 Proof of Theorem 1

We prove that under the assumptions of this theorem the sufficient conditions of
Lemma 3 are satisfied. Set R = ∑m

i=1 γi Pi where Pi ∈ S
n is the projection matrix

corresponding to the i’th eigenspace of G. Denote the edits by a matrix E∗ ∈ S
n , and

let the subspace of matrices with nonzero entries contained inside the support of E∗ be
denotedΩ . Set M = sign(E∗)−PΩ(R) and note that M ∈ Ω , ‖M‖∞ ≤ 1+ρ(γ,G).
Condition 5 of Lemma 3 is satisfied based on assumption 1 of Theorem 1. As a
result, the operator Lα is well-defined by Lemma 4. Set Δ = Lα(M). We prove that
Q = R + Δ satisfies the requirements of Lemma 3.
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Condition 1 of Lemma 3: One can check that:

PΩ(Δ) + PΩ(R) = PΩ(Lα(M)) + PΩ(R) = PΩ(M) + PΩ(R) = sign(E∗).

Here the second equality holds due to property (P2) of the operator Lα .
Condition 2 of Lemma 3: We have that:

‖PΩc (Δ)‖∞ + ‖PΩc (R)‖∞ ≤ ξ(α, d,G) ‖M‖∞
1 − ξ(α, d,G)

+ ‖R‖∞

≤ ξ(α, d,G) + ρ(γ,G)

1 − ξ(α, d,G)
< 1.

The first inequality employed assertion 1 of Lemma 4, the second inequality follows
from the triangle inequality and the definition of M , and the last inequality holds by
assumption 1 of the theorem.

Condition 3 of Lemma 3: Follows from property (P1) of operator Lα .
Condition 4 of Lemma 3: One can check that:

‖Pi i (Δ)‖2 + ∥∥Pi+1,i+1(Δ)
∥∥
2 = ∥∥[Pi iLα](M)

∥∥
2 + ∥∥[Pi+1,i+1Lα](M)

∥∥
2

≤ (αi + αi+1)(1 + ρ(γ,G)) d

1 − ξ(α, d,G)
< γi+1 − γi ,

∀ i ∈ {1, . . . , m − 1}.
Here the first inequality follows from assertion 2 of Lemma 4 and the triangle inequal-
ity, and the second inequality follows from the assumption of the theorem. ��
3.2.4 Proof of Corollary 1

For this proof we require the notion of coherence of a subspace, which measures
how well the subspace is aligned with the standard basis vectors. This notion appears
prominently in results on sparse signal recovery via convex optimization [15].

Definition 5 Let S ⊆ R
n be a subspace and let PS be the corresponding projection

onto S. The coherence of S is denoted μ(S) and is defined as

μ(S) := max
i

‖PSei‖2.

Here ei is the i’th standard basis vector.

For any projection matrix PS , one can check that the inequality ‖PS‖∞ ≤ μ(S)2 is
satisfied.

Remark 3 For vertex-transitive graphs, the diagonal entries of a projection matrix
associated to any eigenspace of the graph are identical. As a result, the coherence of
an eigenspace E of a vertex-transitive graph on n vertices is equal to

μ(E) =
√
dim(E)

n
.
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We now proceed to the proof of the corollary. Denote the eigenspaces of G by Ei

for i ∈ {1, . . . , m} ordered by decreasing eigenvalue order. Remark 3 implies that

μ(Ei ) =
√

dim(Ei )
n . Denote the second largest coherence of the eigenspaces of G by

μ̄ =
√

κ
n , and denote the index of the eigenspace with the highest coherence by �. Set

α� = 1 and the remaining entries of α to 0. Furthermore, choose γ such that:

γi+1 − γi = c1
αi + αi+1

μ̄2 + ε, ∀ i ∈ {1, . . . , m − 1}, for some c1 > 0, ε > 0.

Here c1 and ε are positive constants that can be as small as desired. To establish condi-
tion 2 of Theorem1,we prove that the inequality belowholds for all i ∈ {1, . . . , m−1}:

(αi + αi+1) (1 + ρ(γ,G)) d

1 − ξ(α, d,G)
≤ γi+1 − γi − ε = c1

αi + αi+1

μ̄2 , ∀ i ∈ {1, . . . , m − 1}.

Clearly, if αi + αi+1 = 0 for some i , then the corresponding inequality is satisfied.
All the remaining inequalities can be collapsed to a single one by dividing both sides
of all such inequalities by αi + αi+1:

(1 + ρ(γ,G))d

1 − ξ(α, d,G)
≤ c1

n

κ
,

a sufficient condition for which is:

(1 + ρ(γ,G))c

1 − ξ(α, d,G)
≤ c1. (6)

Note that the term c in Eq. (6) corresponds to the c specified in Corollary 1. In the
remainder of the proof, we show that our particular choice of γ and α satisfy inequality
(6) and Theorem 1 condition 1.

We bound ρ(γ,G) from above via a change of variable. Setting γ̃ = γ1
μ̄2

c1
, we have

that:

ρ(γ,G) =
∥∥∥∥∥

m∑

i=1

γi Pi

∥∥∥∥∥
∞

=
∥∥∥∥∥∥

m∑

i=1

[
γ1 +

i−1∑

j=1

(
c1(α j + α j+1)

μ̄2 + ε)
]

Pi

∥∥∥∥∥∥∞
(7)

≤
∥∥∥∥∥∥

m∑

i=1

[
γ1 +

i−1∑

j=1

c1(α j + α j+1)

μ̄2

]
Pi

∥∥∥∥∥∥∞
+

m∑

i=1

i−1∑

j=1

ε ‖Pi‖∞

(8)

≤ c1
μ̄2

∥∥∥∥∥∥

m∑

i=1

[
γ̃ +

i−1∑

j=1

(α j + α j+1)
]

Pi

∥∥∥∥∥∥∞
+ εc3 (9)
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≤ c1
μ̄2

m∑

i=1

[
|γ̃ +

i−1∑

j=1

(α j + α j+1)| ‖Pi‖∞
]

+ εc3 (10)

≤ c1c2 + εc3. (11)

Here (8) follows by grouping all terms with ε and using the triangle inequality, (9)
follows by the change of variables described above and bounding all the terms in
the right summand from above by one, and (10) follows from the triangle inequality.
We choose the remaining degree of freedom γ̃ to eliminate the contribution of the
subspace with the highest coherence parameter in the left summand. Consequently,
(11) follows by bounding the infinity norms of the remaining projection matrices from
above by μ̄2. Crucially, the fact that α ∈ [0, 1]m and m are viewed as fixed enables us
to bound the sum from above with positive constants c2 and c3 that depend only on m.

Next, we use our particular choice for α to bound ξ(α, d,G) from above. In partic-
ular, for any W ∈ S

n we have:

∥∥∥∥∥
[
(I −

m∑

i=1

αiPi i )PΩ

]
(W )

∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥

m∑

i=1
i �=�

(
PiPΩ(W ) + PΩ(W )Pi − PiPΩ(W )Pi

)
−

m∑

i=1
i �=�

m∑

j=1
j �=i,�

PiPΩ(W )Pj

∥∥∥∥∥∥∥∥
∞

≤
m∑

i=1
i �=�

(
‖PiPΩ(W )‖∞ + ‖PΩ(W )Pi‖∞ + ‖PiPΩ(W )Pi‖∞

)

+
m∑

i=1
i �=�

m∑

j=1
j �=i,�

∥∥PiPΩ(W )Pj
∥∥∞

≤

⎡

⎢⎢⎣
m∑

i=1
i �=�

2μ(Ei )
√

d +

⎛

⎜⎜⎝
m∑

i=1
i �=�

μ(Ei )
2 +

m∑

i=1
i �=�

m∑

j=1
j �=i,�

μ(Ei )μ(E j )

⎞

⎟⎟⎠ d

⎤

⎥⎥⎦ ‖W‖∞

≤ (c4μ̄
√

d + c5μ̄
2d) ‖W‖∞

= (c4

√
κd

n
+ c5

κd

n
) ‖W‖∞

≤ (c4
√

c + c5c) ‖W‖∞ , (12)

for some positive real numbers c4 and c5 depending only onm. Here, the first equality is
obtainedbydecomposing the argument into its row space and column space projections
and accounting for double counted components. Specifically, we use the equality∑m

i=1 Pi = I and recall that Pi j (A) = Pi APj ∀A ∈ S
n, i, j ≤ m. The first

inequality is due to the triangle inequality, and the second inequality is a consequence
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of the following inequalities:

‖PiPΩ(W )‖∞ ≤ μ(Ei )
√

d ‖W‖∞ ,

‖PΩ(W )Pi‖∞ ≤ μ(Ei )
√

d ‖W‖∞ ,
∥∥PiPΩ(W )Pj

∥∥∞ ≤ μ(Ei )μ(E j )d ‖W‖∞ ;

which hold for all i, j ∈ {1, . . . , m}. Specifically, the first of these inequalities holds
since‖PiPΩ(W )‖∞ = maxk,l eT

k PiPΩ(W )el ≤ maxk ‖Pi ek‖2 maxl ‖PΩ(W )el‖2 ≤
μ(Ei )

√
d ‖W‖∞, as PΩ(W ) has at most d nonzero entries per row/column. The

same reasoning holds for the second inequality. The final inequality can be estab-
lished in an analogous fashion:

∥∥PiPΩ(W )Pj
∥∥∞ ≤ maxk,l eT

k PiPΩ(W )Pj el ≤
μ(Ei )μ(E j ) ‖PΩ(W )‖2 ≤ μ(Ei )μ(E j )d ‖W‖∞.

Equations (11) and (12) assert that ρ(γ,G) and ξ(α, d,G) can be lowered as desired
by reducing the constants c1, ε and c. Consequently, one can check that both condition1
of Theorem 1 and equation (6) (which implies condition 2 of Theorem 1) can be
satisfied by first choosing a sufficiently small c1 and ε (both depending on m) to bound
ρ(γ,G) from above, and then suitably choosing a sufficiently small c depending on
m, c1 and ε. ��

4 Numerical illustrationswith invariants based on stable sets and cuts

In this section we evaluate the utility of two invariant convex sets based on (tractable
relaxations of) the inverse of the stability number and the maximum cut value, both
of which are described in Sect. 1.2. Our investigation is via numerical experiments
rather than theoretical bounds as in Sect. 2. The primary reason for this choice is
that we do not have a detailed understanding of the face structure of the invariant
convex sets considered in this section; in contrast, we have a precise (and convenient
for the purposes of analysis) characterization of the geometry of the Schur–Horn
orbitope, which played a crucial role in the theoretical results of the previous section.
Nonetheless, we pursue a systematic approach in the present section by identifying
classes of graphs that are ‘brittle’ in the sense that deleting / adding a small number
of edges results in large changes in their stability number / maximum cut value. Such
graph families present excellent examples for which invariant convex sets based on
the inverse of stability number and the maximum cut value are particularly well-suited
to obtaining useful bounds on the graph edit distance. More broadly, our discussion in
this section highlights the larger point that our framework (P) can be tailored to the
particular structural properties of the underlying graphs to yield useful lower bounds
on the edit distance.

4.1 Constraining the inverse of the stability number

The function f described in Eq. (2) is an efficiently computable lower bound on the
inverse of the stability number of a graph, and further it is a concave graph invariant.
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Consequently, super-level sets of this function provide tractable invariant convex sets
thatmay be employed in our framework (P). Given a graphG, we denote the associated
set by CIS(G):

CIS(G) := {M ∈ S
n | f (M) ≥ f (A)}

= {M ∈ S
n | ∃μ ∈ S

n, μ ≥ 0, I + M − μ − f (A)11T � 0}. (13)

Here A is any adjacency matrix representing G. The second line can be derived by
considering the dual problem associated to the variational formulation of the function
f from (2). When employed in the context of CIS(G), which is defined as a superlevel
set of f , the minimization problem in (2) corresponds to a universal quantifier and
leads to an infinite collection of linear constraints on the variable M . By rewriting this
expression in terms of the dual, we obtain a formulation that consists of an existential
quantifier, thus yielding the tractable description in the second line. This principle of
transforming descriptions consisting of universal quantifiers to ones with existential
quantifiers via duality is central in many areas of optimization, most notably in robust
optimization in providing efficient reformulations of robust cone programs [2]. From
this description, it is immediately clear that for any edit to G that corresponds to an
increase in the value of the function f , the constraint CIS(G) is inactive. Adding edges
to a graph can only reduce the stability number, and hence can potentially only increase
the inverse of the stability number. Although the function f is only a lower bound on
the inverse of the stability number, it satisfies a similar monotonocity property in that
the value of f is non-decreasing with the addition of edges to a graph. The following
lemma formalizes matters by describing the tangent cone at an adjacency matrix of a
graph G with respect to the set CIS(G):

Lemma 5 For any graph G on n vertices and associated adjacency matrix A ∈ S
n,

the tangent cone at A with respect to the set CIS(G) is denoted TCIS(G)
(A) and is

described as follows:

TCIS(G)
(A) = {T ∈ S

n | ∃μ, Λ ∈ S
n, μ ≥ 0, Λ � 0, T + I + A − α∗11T = μ + Λ}.

Proof The proof of this lemma follows from the reformulation of CIS(G) in (13)
and the observation that the tangent cone is the closure of cone generated by the set
{Z − A | Z ∈ CIS(G)}. ��

The description of the tangent cone in Lemma 5 is based on the dual of the cone of
doubly nonnegative matrices; see [4] for more details on this connection. In particular,
this lemma implies that entrywise nonnegativematrices belong to the tangent cone at an
adjacencymatrix A representing a graphG with respect to the setCIS(G); consequently,
edits to G consisting purely of addition of edges are feasible directions with respect
to the set CIS(G) and for such edits this set does not provide useful lower bounds on
the edit distance. Thus, we investigate the utility of the constraint CIS(G) in settings in
which the edits consist mainly of edge deletions. Such problems arise in the context
of graph completion in which the objective is to add edges to a given graph so that the
resulting graph satisfies some desired property.
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Fig. 4 Left to right, E(n) for n = 3s, n = 3s + 1, n = 3s + 2. For n = 3s + r , these graphs are formed by
connecting (s − r) K3’s and r K4’s through edges connecting to a specific vertex

Building on this discussion, the constraint set CIS(G) is most likely to be useful
for graphs G in settings in which the deletion of even a small number of edges of
G results in an increase in the stability number. Graphs that have a large number
of stable sets with cardinality equal to the stability number offer a natural prospect
for further exploration. Fortunately, such graphs have been studied in extremal graph
theory literature, from which we quote the following result [26]:

Theorem 2 [26] For s, n ∈ N with n ≥ 6, let

h(n) =

⎧
⎪⎨

⎪⎩

2 × 3s−1 + 2s−1, if n = 3s,

3s + 2s−1, if n = 3s + 1,

4 × 3s−1 + 3 × 2s−2, if n = 3s + 2.

Let G be any connected graph on n vertices, and denote the cardinality of the set of
all maximum independent sets of G by φ(G). Then φ(G) ≤ h(n) with equality if and
only if G is isomorphic to one of the graphs shown in Fig. 4.

This theorem states that the graphs E(n) shown in Fig. 4 are precisely the connected
graphs that have the largest number of distinct maximum independent sets. As such,
they present a natural test case to investigate the utility of the constraint set CIS(G) in
providing bounds on the graph edit distance, at least in settings in which the edits are
composed predominantly of edge deletions. We illustrate here the results of numerical
experiments conducted on the graph E(30), which is a sparse graph with 39 edges and
396 nonedges. The setup of this experiment is the same as that described in Sect. 2.3
with one notable exception: in the present experiment, we assume asymmetric edits
rather than symmetric edits so that 80% of the edits are edge deletions while 20% are
edge additions. We range the total number of edits from 5 to 45 with increments of 5,
and for each number of editswe repeat our experiment 1000 times. In each iteration,we
obtain a bound on the graph edit distance between E(30) and the modified graph using
our framework (P) with three different constraint sets: the Schur–Horn orbitope, the
constraint set CIS(G), and an invariant convex set based on the Goemans–Williamson
relaxation of the maximum cut value (which is discussed in greater detail in the next
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Fig. 5 Ratio of average computed lower bound on graph edit distance to number of edit operations. Exper-
iment conducted on E(30) graph. The edit operations are 80% edge deletions and 20% edge additions

subsection). Figure 5 reports the ratio of the average computed lower bound on the
graph edit distance to the number of edit operations for each constraint set. (The
number of edits is an upper bound on the true graph edit distance.) As one might
expect, the relaxation based on the constraint CIS(G) yields the best lower bounds
of the three approaches. Specifically, even when a majority of the edges of E(30)
are removed, the constraint set CIS(G) continues to provide lower bounds that are
at least 40% of the number of edit operations. In contrast, the bounds provided by
the Schur–Horn orbitope constraint are much weaker, and those obtained using the
Goemans–Williamson relaxation of the maximum cut value are ineffective.

4.2 Constraining themaximum cut value

In analogy with the inverse of the stability number, the function g(A) due to Goemans
and Williamson [19] that is described in Sect. 1.2 provides an efficiently computable
upper bound on the maximum cut value of a graph. As this function is invariant to
conjugation of its argument by permutation matrices, its sublevel sets are invariant
convex sets. For a graph G, we denote the associated set by CMC(G):

CMC(G) :={M ∈ S
n | g(M) ≤ g(A)}

={M ∈ S
n | ∃D ∈ S

n diagonal, M − D � 0,
1

4
Tr(M11′ − D) ≤ g(A)},

(14)

where A is an adjacency matrix representing G. The derivation of the reformulation in
the second line follows in an analogous manner to the derivation of (13) via duality.
Reasoning in a similar manner as in the previous subsection, we observe that edits
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(a) Windmill graph D(4, 7) (b) Windmill graph D(5, 5)

Fig. 6 Two sample Windmill graphs

corresponding to a decrease in the value of the function g represent feasible directions
with respect to the set CMC(G), and for such edits the constraint CMC(G) is inactive.
Deleting edges from a graph reduces its maximum cut value, and one can check that
directions represented by entrywise nonpositive matrices belong to the tangent cone
at an adjacency matrix A representing G with respect to CMC(G). Consequently, we
should only expect the constraint CMC(G) to potentially provide useful lower bounds
on the graph edit distance in settings in whichmost of the edits to a graph G correspond
to edge additions. In some sense, this type of a graph inverse problem—removing the
smallest number of edges from a graph so that it satisfies a desired property—is a
complement of the graph completion problem discussed in the previous subsection.

Building further on the preceding discussion, we remark that the constraint set
CMC(G) is most likely to be effective if adding even a small number of edges to G
increases the value of the function g. A prominent example of such graphs are the so-
called Windmill graphs shown in Fig. 6. The Windmill graph D(m, n) is constructed
by taking m copies of the complete graph Kn and intersecting them at a single vertex.
Due to the ample amount of symmetry in these graphs, there are many partitions
of the vertices into two sets that achieve the maximum cut value—the number of
such partitions is

(n−1
n/2

)m
for even n and

( n
(n−1)/2

)m for odd n. Thus, Windmill graphs
present a natural test family to evaluate the power of the constraint set CMC(G) when
the graph edits consist primarily of the addition of edges. We present the results of
numerical experiments on theWindmill graph D(4, 7) in a setting that closely mirrors
the one in the previous subsection. TheWindmill graph D(4, 7) is a graph on 25 nodes
with 84 edges and 216 non-edges. The spectrum of D(4, 7) consists of four distinct
eigenvalues (− 3, − 1, 5 and 8) with multiplicities 1, 20, 3, 1, respectively. The edits
made to this graph consist mostly of edge additions—80% are edge additions and
the remaining 20% are edge deletions. We vary the number of edits from 10 to 200
with increments of 5 and consider 1000 random instances of perturbations for each
number of edits. For each problem instance, we obtain a lower bound on the edit
distance by utilizing our framework (P) with the Schur–Horn orbitope constraint, the
Motzkin–Straus relaxation from the previous subsection, and the constraint CMC(G).
We report the average ratio of the computed lower bound on the graph edit distance
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Fig. 7 Ratio of average computed lower bound on the graph edit distance to number of edit operations.
Experiment conducted on Windmill graph D(4, 7). The edit operations are 80% edge additions and 20%
edge deletions

to the number of edit operations in Fig. 7. (As before the number of edits is an upper
bound on the graph edit distance.)

From Fig. 7 we see that the Schur–Horn orbitope constraint produces the best
lower bounds for the graph edit distance when the number of edits is small, whereas
the constraint CMC(G) produces the best lower bounds when the number of edits is
large.3 On average, both of these constraints provide bounds that are consistently better
than 50% of the total number of edits. As the edits consist mainly of edge additions,
the constraint based on the Motzkin–Straus relaxation of the inverse of the stability
number performs poorly.

5 Experiments with real data

In this section, we present experimental results that demonstrate the utility of our
framework on real data. We begin by introducing an extension of our framework to
allow for edits that include vertex additions and deletions.We then describe the bounds
obtained on two widely studied datasets consisting of molecular structures.

5.1 Enabling vertex additions and deletions

In many situations, one wishes to obtain bounds on the edit distance between two
graphs consisting of different numbers of vertices. In such cases one allows vertex
insertions and deletions in addition to the usual operations of edge insertions and

3 We remark that the Schur–Horn orbitope constraint performs well in producing graph edit distance lower
bounds for D(4, 7), as this graph has a spectrum consisting of eigenvalues with large multiplicities.
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deletions that we’ve considered thus far. To extend our framework to this setting, we
allow an adjacency matrix to take on nonzero values on the diagonal to denote the
presence or absence of a vertex. Specifically, we consider a “vertex-indexed adjacency
matrix” A ∈ S

n with entries equal to either zero or one and in which Ai j = 1, j �= i
implies that Aii = 1. In words, a value of one on the i’th diagonal entry implies that a
vertex corresponding to that index is ‘present’ in the graph, and an edge being incident
on a vertex implies that the vertex must be present in the graph. (Note that a value of
one on a diagonal entry does not represent a “vertex weight” but instead the presence
of a vertex in a graph.) With this notation in hand, we are now in a position to describe
a generalization of our framework that allows for vertex deletions and insertions. Let
G1 and G2 be two unweighted and unlabeled graphs on n1 and n2 vertices, respectively,
and let n := max{n1, n2}. Letting A2 ∈ S

n specify a vertex-indexed adjacency matrix
forG2 with zeros on the diagonal corresponding to those indices that do not correspond
to a vertex (when n2 < n), consider the following convex optimization problem:

GEDL B(G1,G2; CG1) = min
X ,E∈Sn

∑

1≤i≤ j≤n

|Ei j | (Pext )

s.t . X + E = A2

X ∈ CG1

Xi j ≤ Xii , Xi j ≤ X j j ∀i, j ∈ {1, . . . , n}.

Here the set CG1 is an invariant convex set associated to G1, and the matrices X , A1
and A2 are to be interpreted as vertex-indexed adjacency matrices. There are two main
differences between the convex program (Pext ) and the convex problem (P). The first
is in the objective function in which we only sum the upper triangular elements of
the matrix E in the program (Pext ), as we do not wish to double-count the edge edits
relative to vertex edits. The second modification arises in the constraint in the last line
of (Pext ) based on the observation that if edges are incident to a vertex, then this vertex
must be ‘present’. Using a line of reasoning similar to that following the presentation
of (P), one can conclude that the optimal value of the convex program (Pext ) provides
a lower bound on the graph edit distance between G1 and G2 with the permissible edit
operations being vertex additions/deletions and edge additions/deletions. Finally, we
note that our framework can also accommodate situations in which the cost of a vertex
edit operation is different from that of an edge edit operation.

5.2 Experimental results on chemistry datasets

We employ the convex program (Pext ) to obtain lower bounds on graph edit dis-
tance problems arising in chemistry. Specifically, we conduct experiments on two
datasets known as the Polycyclic Aromatic Hydrocarbons (PAH) dataset and the
Alkane dataset.4 Both of these datasets consist of unlabeled, unweighted graphs repre-
senting chemicals, with the vertices of the graphs corresponding to carbon atoms in a
molecule and edges specifying bonds between two carbons. These datasets have been

4 Available online at https://brunl01.users.greyc.fr/CHEMISTRY/.
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used as benchmarks for evaluating the performances of graph edit distance algorithms;
for example, see [1,13] for comparisons of the performance of various algorithms on
these datasets. For each dataset, we compare upper bounds on the average edit distance
taken over all pairs of graphs (obtained using other procedures) with lower bounds on
the average obtained using our method.

The Alkane dataset consists of 150 unlabeled, acyclic graphs representing alkanes,
with the number of vertices ranging from 1 to 10 vertices (the average is 8.9) and an
average degree of 1.8. As these graphs are relatively small in size, the average pair-
wise graph edit distance for this dataset can be calculated exactly using combinatorial
algorithms such as the A∗ procedure [22]. The PAH dataset consists of 94 graphs rep-
resenting polycyclic aromatic hydrocarbons. As with the Alkane dataset, the vertices
of the graphs in this dataset denote carbon atoms, and two vertices are connected if
there exists a bond between the corresponding carbons. Unlike the Alkane dataset, the
chemicals in the PAH dataset represent large compounds: the smallest graph in PAH
has 10 vertices, the largest graph has 28 vertices, and the average number of vertices
is 20.7. The average degree of the graphs in the PAH dataset is 2.4. Due to this larger
size, calculating the exact average pairwise graph edit distance of the PAH dataset is
prohibitively expensive. In fact, to the best of our knowledge, the exact average pair-
wise graph edit distance of the PAH dataset is unknown to this date [5]. Consequently,
obtaining guaranteed lower bounds on the average graph edit distance of the PAH
dataset is especially useful as a way to compare to known average upper bounds.

For each pair of graphs, we employ the convex program (Pext ) twice by switching
the roles of G1 and G2, and take the larger optimal value as our lower bound. In
each case we utilize four different types of invariant convex set constraints: the Schur–
Horn orbitope (CSH), theMotzkin–Straus bound on the inverse of the stability number
(CIS ), the Goemans–Williamson bound on themaximum cut value (CMC), and finally
the intersection of all these three constraints (CSH∩CIS ∩CMC). In our experiments,
we follow the convention adopted in the graph edit distance literature with these two
datasets, namely that the cost of an edit operation is equal to three.5 The average
pairwise lower bounds obtained using our convex program (Pext ) on the Alkane and
PAH datasets are given in Table 1.

There are a number of interesting aspects to these results. For both datasets, a con-
straint based only on the Goemans–Williamson relaxation seems to produce the worst
lower bounds (4.66 and 12.01), while the Schur–Horn orbitope constraint produces
the best lower bounds (9.58 and 20.29) when only a single type of invariant convex
constraint is employed. As expected, the combination of all three individual constraint
sets produces the best overall lower bounds (10.72 and 21.60). More broadly, these
results demonstrate the effectiveness of our approach in producing useful lower bounds
for graph edit distance problems arising from real data in a computationally tractable
manner. Specifically, for the Alkane dataset the average lower bound 10.72 is obtained
using our convex programming framework and the exact value of the average graph
edit distance is 15.3 (which is obtained via combinatorial approaches). Our results
have more interesting implications for the PAH dataset as it is prohibitively expensive

5 The reason for this choice in that community is that vertex/edge deletions/insertions are considered more
significant edit operations than vertex/edge label substitutions which have a lower cost of one associated to
them (in this paper, we do not consider such edits based on substitutions.)
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to compute the exact average graph edit distance for this dataset due to the large size
of its constituents. In particular, the best-known upper bound on the average graph
edit distance of PAH is 29.8 [13]. Our convex relaxation framework produces a lower
bound of 21.6 on the average graph edit distance over all pairs of graphs in PAH,
which provides a floor on the possible improvement that one should expect to obtain
via better algorithms for computing graph edit distances.

6 Discussion

In this paper we introduce a framework based on convex graph invariants for obtaining
lower bounds on the edit distance between two graphs. Much of the literature on this
topic provides methods for computing upper bounds on the edit distance between two
graphs by identifying a feasible sequence of edits to transform one graph to the other.
Our approach is qualitatively different in that it is based on convex relaxation and it
leads to guaranteed lower bounds on the edit distance. Further, our approach can be
adapted to the structure underlying the two graphs. We provide both theoretical and
empirical support for our method.

There are a number of potential directions for further investigation arising from
our paper. First, our analysis of the performance of the Schur–Horn relaxation could
potentially be tightened in order to obtain sharper conditions for the success of our
algorithm. For example, Corollary 1 only utilizes information about the second most-
repeated eigenvalue, and while this provides order-optimal scaling results for families
such as triangular graphs, it may be possible to improve our analysis to obtain order-
optimal bounds for other families as well. More broadly, a key step in carrying out
a precise theoretical analysis of the power of an invariant convex constraint set is
to obtain a full understanding of the facial structure of the set, and it would be of
interest to develop such a characterization for a larger suite of invariant convex sets
than those presented in this paper. Finally, a commonly encountered question in many
applications is to test whether a given graph is a minor of another graph, and it would
be useful to extend the framework described in our paper to address this problem.
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