
Worst-case Simulation With the GTM Design Model

Peter Seiler, Gary Balas, and Andrew Packard

peter.j.seiler@gmail.com, balas@musyn.com

September 29, 2009

1 Overview

We applied worst-case simulation analysis to NASA’s Generic Transport Model (GTM), a remote-controlled
5.5 percent scale commercial aircraft. NASA has constructed a high fidelity 6 degree-of-freedom Simulink
model of the GTM. This model was modified to include 18 parametric uncertainties in the aerodynamic
coefficients and 8 dynamic actuator uncertainties. We then used worst-case simulation to investigate the
effects the parametric uncertainties in the aerodynamic coefficients.

In this report we first formulate a worst-case simulation analysis problem for nonlinear dynamical systems
with uncertain parameters. We then describe how worst-case simulation analysis can be performed on
uncertain Simulink models. Robust Control Toolbox (RCT) uncertain state space (USS) blocks can be used
to create Simulink models with uncertain parameters. The wcsim function uses gradient-based optimization
to approximately solve the worst-case simulation problem for uncertain Simulink models. Finally, we present
worst-case simulation results for the uncertain GTM model.

2 Worst-case Simulation

2.1 Problem Formulation

For many systems, the robustness with respect to variations in the model is an important property. Worst-
case simulation is a robustness analysis performed directly on a nonlinear simulation model. Consider the
following nonlinear system:

ẋ(t) = f(x(t), t, p)

y(t) = h(x(t), t, p) (1)

x(0) = x0

where t ∈ R is time, x(t) ∈ R
nx is the state at time t, y(t) ∈ R

ny is the output at time t, and x0 ∈ R
nx

is the initial condition at time t = 0. p ∈ P ⊆ R
np is a constant parameter vector upon which the model

depends and P is the set of allowable parameter values. f : R
nx × R × R

np → R
nx is the vector field and

h : R
nx × R × R

np → R
ny is the output equation.

There is a rich body of mathematical results providing technical conditions which ensure the existence
and uniqueness of solutions over a time interval [0, tf]. We assume that the vector field, output equation,
and initial condition are such that for each p ∈ P there exists a unique solution x ∈ Lnx

2 [0, tf] and output
y ∈ L

ny

2
[0, tf]. The solution and output depend on the parameter vector p and where necessary we explicitly

denote this dependence using the notation xp(t) and yp(t).
We are interested in studying the variation in the output with respect to the model parameters. We

assume the performance of the output can be measured with a scalar quantity. Let G : L
ny

2 [0, tf] → R denote
an objective function that quantifies the performance of the output by G(y). For example, G(y) := ‖y‖∞ is

the peak magnitude of y and G(y) :=
[

∫ tf

0
yT (t)y(t)dt

]1/2

is the L2 norm. Let C : L
ny

2 [0, tf] → R
m denote a

1

constraint function that defines a set of m constraints on the output. The worst-case simulation problem is:

max
p∈P

G(yp) (2)

subject to: yp is the output of the nonlinear system (Equation 1)

l ≤ H(yp) ≤ u

l ∈ R
m and u ∈ R

m specify the lower and upper bounds on the constraint function. Maximization is without
loss of generality since minp∈P G(yp) = −maxp∈P [−G(yp)].

We have made no assumptions about the objective function G, constraint function H , or how the pa-
rameter vector p enters into the system dynamics and output equation. Consequently, this maximization is
a computationally difficult problem to solve. In general, it is not a concave optimization and it may have
many local optima that are not global optima. Our goal will be to use gradient-based optimization to find
a parameter vector that achieves a local maxima. This will generally not find a global maxima. However,
it does provide a means to improve upon ’bad’ parameter vectors found with other heuristic methods. For
example, the structured singular value µ and worst-case gain problems are robustness analysis tools for linear
systems. A heuristic for the worst-case simulation problem is: 1) Linearize the nonlinear model about an op-
erating point or trajectory to obtain a linear system with a rational dependence on the parameters. 2) Solve
µ or worst-case gain problems using the linear model to obtain a set of bad parameter vectors. Frequency
gridding in either of these problems will produce a worst-case parameter vector at each frequency in the grid.
3) Simulate the nonlinear system at the bad parameter vectors found with linear analysis and further inves-
tigate those that achieve the largest value of the nonlinear objective function. In contrast, gradient-based
worst-case simulation is directly applied to the nonlinear system and to the nonlinear objective function. It
can also be used in conjunction with linear robustness analysis. Specifically, the parameter vectors generated
by linear robustness analysis can be used to seed the gradient-based optimization.

2.2 Matlab/Simulink Implementation

Robust Control Toolbox (RCT) Uncertain State Space (USS) blocks can be used to create models of
parameter-dependent nonlinear systems within Simulink. These USS blocks model system components that
have a rational dependence on uncertain real, complex, and/or linear time-invariant objects. Uncertain real
parameters are specified by a nominal value and an interval of allowable values. Thus a Simulink model that
has USS blocks depending on np real parameters is in the form of the nonlinear system in Equation 1. The
allowable set of parameter vectors is in the form P := {p ∈ R

np : p
i
≤ p ≤ p̄i, i = 1, . . . , np}. More infor-

mation on the uncertain objects and the USS Simulink block can be found in the Robust Control Toolbox
documentation.

The objective function for a worst-case simulation is specified with an RCT Objective Function block.
The block dialog box has a pull-down menu to select simple objective function types, e.g. L2 norm or L∞

norm. Generic objective functions can be specified via an m-file interface. The dialog box also allows the
user to select between maximization or minimization of the objective function. The Objective Function

block is similar to a To Workspace block with the Save Format set to Structure With Time. Simulating
the system will create an output variable in the workspace with all the fields generated by a To Workspace

block: time, signals, and blockName. The output variable will have the additional field objective. The
Objective function value is stored in objective.value.

The constraints for a worst-case simulation are specified with RCT Constraint Function blocks. The
Constraint Function blocks are similar to the Objective Function blocks. Simple constraint functions
can be selected from a pull-down menu and more complicated constraint functions can be specified via an
m-file interface. The dialog box also has fields for the upper and lower bounds on the constraint. The output
variable generated by a Constraint Function will have the following fields in addition to the normal To
Workspace fields: constraint.value, constraint.lowerbound, and constraint.upperbound.

The wcsim function uses a gradient-based optimization to find a local maxima for the worst-case simulation
problem specified in Equation 2. A Simulink model specifies the parameter-dependent nonlinear system and
the objective function is specified by the RCT Objective Function block. wcsim returns the worst-case
uncertainties in the structure wcuvars. The gradient-based optimization is performed by fmincon and thus
requires the optimization toolbox. At each iteration of an unconstrained problem fmincon evaluates the
objective function at the current parameter values as well as at small perturbations along each parameter
direction. If the model contains np uncertain parameters, fmincon will perform np + 1 simulations at each

2

iteration. Simulating the system will typically be responsible for the bulk of the computation time to perform
a worst-case simulation. Thus the total time for wcsim with no constraint blocks will be roughly (np +1)Mτ

where τ is the computation time for one simulation and M is the number of iterations. If the model contains
constraint blocks then additional function evaluations (simulations) are typically required.

The convergence of fmincon depends on the starting value of the parameter vector. wcsim initializes the
optimization search with the values specified in the Uncertainty Values field of the USS blocks. wcsim also
allows for some parameter values to be held fixed at the values specified in the Uncertainty Values field.
This is useful to restrict the optimization search space when a Simulink model contains many uncertain real
parameters. wcsim currently only optimizes over uncertain real parameters; uncertain complex and uncertain
linear time invariant objects that exist in the Simulink model are held fixed at the values specified in the
Uncertainty Values field. The help documentation for wcsim (Appendix A) provides additional syntax
information. Information on simulation and optimization settings can be found in the documentation for sim
and fmincon.

3 GTM Worst-Case Simulation

In this section we apply worst-case simulation analysis to the NASA GTM Simulink model. We briefly
describe the real and dynamic uncertainty introduced into the NASA GTM Simulink model. Then we
provide worst-case simulation results. Further details on the baseline GTM model (without the uncertainty
models) are provided in the GTM documentation.

3.1 Parametric Aerodynamic Coefficient Uncertainty

The forces and moments in the GTM model are calculated using six body-axis aerodynamic coefficients: Cu,
Cv, Cw, Cp, Cq, and Cr. Each of these six coefficients is a sum of three terms: 1) basic airframe aerodynamic
coefficients computed as functions of angle of attack and sideslip, 2) increments to account for the effect
of the control surfaces, and 3) increments for dynamic derivatives. These aerodynamic coefficients are not
precisely known and it is useful to study the effects of aerodynamic uncertainty on the system performance.
We use a multiplicative uncertainty model for each aerodynamic coefficient term. For example, we model
20% uncertainty in the basic airframe coefficients as C = (I6 + ∆)Cnom where Cnom ∈ R

6 is a vector of the
nominal airframe coefficients computed with look-up tables. ∆ := diag(p1, . . . , p6) ∈ R

6×6 satisfies |pi| ≤ 0.2
for i = 1, . . . , 6. This ∆ was created in Matlab using the ureal command:

% Body aero coefficients, increments from nominal (+/- 20%)

gainCu = ureal(’gain_Cu’,0,’PlusMinus’,0.2);

gainCv = ureal(’gain_Cv’,0,’PlusMinus’,0.2);

gainCw = ureal(’gain_Cw’,0,’PlusMinus’,0.2);

gainCp = ureal(’gain_Cp’,0,’PlusMinus’,0.2);

gainCq = ureal(’gain_Cq’,0,’PlusMinus’,0.2);

gainCr = ureal(’gain_Cr’,0,’PlusMinus’,0.2);

bai_usys_C6 = diag([gainCu, gainCv, gainCw, gainCp, gainCq, gainCr]);

The commands to create the uncertainties for the other two terms of the aero coefficients are given in
Appendix B.

These parametric uncertainties were introduced into the Simulink model using Robust Control Toolbox
Uncertain State Space (USS) blocks. Figure 1 shows the USS blocks introduced to model the parametric
uncertainties in each of the three coefficient terms (magenta USS blocks). Each of the three USS block
contains uncertainties for the six aero coefficients for a total of eighteen parametric uncertainties (np = 18).
Figure 2 shows the dialog box for the basic airframe USS block. Note that it contains the bai usys C6

uncertainty which accounts for the uncertainty to the basic airframe coefficients. The “Uncertainty value” is
set to nominal which corresponds to ∆ = diag(0, 0, 0, 0, 0, 0).

3.2 Dynamic Actuator Uncertainty

The GTM model was also modified to include actuator uncertainty. The GTM model has a total of nine
control inputs: left/right ailerons, left/right spoilers, elevator, rudder, flaps, stab, and landing gears. The
landing gears are not used for flight control and are not considered in this analysis. The actuators for the

3

Figure 1: Aerodynamic Coefficient Uncertainty Model

4

Figure 2: Aero USS Dialog Box

remaining eight control inputs are modeled by first order transfer functions with rate and position limits.
This dynamic actuator model is rather simple and it would be useful to study the effects of uncertainties in
these dynamics. We use a multiplicative uncertainty model for each actuator. For example, the uncertainty
model for the rudder actuator is:

Rudder Position = Arud(s)(1 +Wrud(s)∆(s)) · Rudder Command

where Arud(s) = ω
s+ω is the nominal first-order actuator behavior, ∆(s) is a norm-bounded uncertainty

(‖∆‖∞ ≤ 1), and Wrud(s) is a weighting function which models the magnitude of the rudder actuator
uncertainty at each frequency. The (1 +Wrud(s)∆) term was created using the ultidyn command:

W_rudder = 1;

bai_usys_rudder = 1+W_rudder*ultidyn(’gain_rudder’,[1 1]);

W rudder = 1 is a simplification and more complicated uncertainty models can be created. Our focus will
be on the parametric uncertainties and so detailed actuator uncertainty modeling will not be explored. The
commands to create all actuator uncertainties (assuming W=1) are given in Appendix B.

These multiplicative uncertainties were introduced into the Simulink model using the Robust Control
Toolbox Uncertain State Space (USS) block. Figure 3 shows the USS blocks introduced to model the eight
actuator uncertainties. Figure 4 shows the dialog box for the rudder USS block. Note that it contains the
bai uss rudder uncertainty specified above. The “Uncertainty value” is set to nominal which corresponds
to bai uss rudder = 1.

3.3 Worst-Case Simulation Results

For each attitude signal we performed a worst-case simulation with all combinations of maximizing and
minimizing the L∞ and L2 norms. We set the optimization options to restrict fmincon to three iterations:

optimopt = optimset(’display’,’iter’,’MaxIter’,3);

5

Figure 3: Actuator Uncertainty Model

Figure 4: USS Rudder Dialog Box

6

ufixed = [];

wcuvars = wcsim(’gtm_design’,ufixed,optimopt)

All parameters were initialized at their nominal values and all dynamic actuator uncertainties were held fixed
at their nominal values. In all simulations, the baseline GTM controller was used with the pilot inputs shown
in Figure 7.

The results for all possible combinations of the objective function, max/min, and attitude signal are
summarized in Table 1. The first column of the table gives the objective function for the worst-case simulation.
The second column provides the total computation time for the worst-case simulation. Columns 3-6 provide
the cost function evaluated at each iteration of the optimization. The cost function in column 3 (Step 0)
is the cost evaluated at the nominal parameter values. The cost function in column 6 (Step 3) is the final
worst-case cost found with by fmincon. For each case, the units for the objective function are in radians.
Note that in each case fmincon appears to converge close to a local optima within the first few steps. The
optimization for maxL∞(ψ) terminated after Step 1 since the solver determined that no improvement could
be made in the objective function.

It takes roughly τ = 11.72sec to perform one simulation of the GTM Simulink model. Thus the total
time to run wcsim is expected to be roughly 891 sec ≈ 15 min 1. This rough estimate is in fair agreement
with the actual computation times provided in Table 1.

Figure 8 shows the aircraft attitude and rates for the nominal system and for the uncertain parameters
found by wcsim for the maxL∞(φ) objective function. The equivalent airspeed and angle of attack are also
shown. The uncertain parameters returned by wcsim were:

wcuvars =

gain_Cp: -0.2000

gain_Cq: -0.2000

gain_Cr: 0.2000

gain_Cu: 0.2000

gain_Cv: 0.0106

gain_Cw: -0.1988

gain_L_ail: 0

gain_L_spoiler: 0

gain_R_ail: 0

gain_R_spoiler: 0

gain_dCp_act: 0.2000

gain_dCp_dyn: -0.4000

gain_dCq_act: 0.2000

gain_dCq_dyn: -0.0053

gain_dCr_act: -0.2000

gain_dCr_dyn: -0.4000

gain_dCu_act: -0.0072

gain_dCu_dyn: -0.3997

gain_dCv_act: -0.0030

gain_dCv_dyn: 4.8835e-004

gain_dCw_act: -0.2000

gain_dCw_dyn: 0.0406

gain_elevator: 0

gain_flap: 0

gain_rudder: 0

gain_stab: 0

The aerodynamic coefficients are time-varying due to their dependence on angle of attack, sideslip, attitude
rates, and control surfaces. The uncertain parameters listed in wcuvars indicate that some aero coefficients
have minimal impact on the roll, e.g. gain Cv:0.0106 indicates Cv has minimal impact. Other coefficients
are set to their maximal perturbations and these should be further investigated. Figure 9 shows the aircraft

1The model contains no constraint blocks and has np = 18 real parametric uncertainties. fmincon starts at iteration = 0
and so specifying MaxIter=3 will results in M = 4 total iterations. Thus the time for wcsim is expected to be (M + 1)(np +
1)τ=4*19*11.72 sec.

7

Cost Func. Comp. Time Step 0 Step 1 Step 2 Step 3

maxL∞(φ) 977.4 1.11 1.56 1.98 2.00
minL∞(φ) 888.0 1.11 0.26 0.25 0.24
maxL2(φ) 935.5 4.29 6.05 6.36 6.36
minL2(φ) 867.8 4.29 0.82 0.81 0.81
maxL∞(θ) 905.2 0.64 0.65 0.88 0.89
minL∞(θ) 893.9 0.64 0.53 0.50 0.48
maxL2(θ) 1015.0 1.74 2.37 2.78 2.78
minL2(θ) 907.8 1.74 1.60 1.46 1.44
maxL∞(ψ) 1045.6 7.87 11.13 15.08 15.10
minL∞(ψ) 843.8 7.87 2.54 X X
maxL2(ψ) 1039.2 26.79 50.81 51.02 51.06
minL2(ψ) 1014.1 26.79 11.90 11.88 11.84

Table 1: Comparison of worst-case attitude and computation times

attitude, attitude rates, equivalent airspeed, and angle of attack for the nominal system and for the uncertain
parameters found by wcsim for the minL∞(φ) objective function. Figures 8 and 9 show the range of roll
tracking behaviors that can be observed over the specified range of aerodynamic coefficients. It is interesting
that the angle of attack is not very sensitive to the perturbations generated by this objective function.

Finally, we demonstrate a worst-case simulation with signal constraints. One RCT Constraint Function

block was added to the GTM Simulink model to specify a constraint on equivalent airspeed (EAS). The input
to this block is the equivalent airspeed and the dialog box for this block is shown in Figure 10. In this case
the dialog box specifies that the peak magnitude of the equivalent airspeed must remain less than 175 knots.
The objective function is set to maxL∞(φ), i.e. wcsim maximizes the L∞ norm of φ while constraining
the equivalent airspeed to be less than 175 knots. We set the optimization options to restrict fmincon to
five iterations. Five iterations were needed for convergence in this example. The results for this worst-
case simulation are shown in Figure 11. This figure shows the nominal results, worst-case simulation with
out constraints, and worst-case simulation with equivalent airspeed constraint. The green line in the EAS
subplot shows the 175 knot constraint. wcsim returns parameter values which cause the EAS to just touch this
constraint. After five iterations, the objective function is ‖φ‖∞ = 1.66. For comparison, the unconstrained
worst-case simulation achieved an objective function of 2.00 (first row of Table 1). The objective function
value after each iteration of the constrained wcsim was: 0) -1.11, 1) -1.11, 2) -1.11, 3) -1.53, 4) -1.70
[Constraint not satisfied], and 5) -1.66. As mentioned previously, constrained problems can take more than
np + 1 function evaluations (model simulations) per iteration. For this problem, iterations 1 and 2 required
33 function evaluations and all other iterations required only 19 function evaluations. The total computation
time was 2169.2 sec.

8

Figure 5: Worst-Case Simulation Objective Function

Figure 6: Objective Function Dialog Box

9

0 5 10 15 20 25 30
−1

−0.5

0

0.5

lo
ng

itu
di

na
l s

tic
k

0 5 10 15 20 25 30

−0.2

−0.1

0

0.1

la
te

ra
l s

tic
k

0 5 10 15 20 25 30
−1

0

1

Time (sec)

pe
da

l

Figure 7: Pilot Inputs for Worst-Case Simulations

10

0 10 20 30
50

100

150

200

250

E
A

S
 (

K
no

ts
)

0 10 20 30
0

5

10

α
(r

ad
)

0 10 20 30

0

1

2

3

ph
i (

ra
d)

0 10 20 30
−2

−1

0

1

th
et

a
(r

ad
)

0 10 20 30
0

10

20

ps
i (

ra
d)

Time (sec)

0 10 20 30
−0.5

0

0.5

1
p

(r
ad

/s
ec

)

0 10 20 30

0

0.5

1

q
(r

ad
/s

ec
)

0 10 20 30

0

0.2

0.4

r
(r

ad
)

Time (sec)

Nominal
Worst−case

Figure 8: Nominal and wcsim Roll for maxL∞(φ)

11

0 10 20 30
50

100

150

200

250

E
A

S
 (

K
no

ts
)

0 10 20 30
0

5

10

α
(r

ad
)

0 10 20 30

0

1

2

3

ph
i (

ra
d)

0 10 20 30
−2

−1

0

1

th
et

a
(r

ad
)

0 10 20 30
0

10

20

ps
i (

ra
d)

Time (sec)

0 10 20 30
−0.5

0

0.5

1
p

(r
ad

/s
ec

)

0 10 20 30

0

0.5

1

q
(r

ad
/s

ec
)

0 10 20 30

0

0.2

0.4

r
(r

ad
)

Time (sec)

Nominal
Worst−case

Figure 9: Nominal and wcsim Roll for minL∞(φ)

12

Figure 10: Constraint Function Dialog Box

13

0 10 20 30
50

100

150

200

250

E
A

S
 (

K
no

ts
)

0 10 20 30
0

5

10

α
(r

ad
)

0 10 20 30

0

1

2

3

ph
i (

ra
d)

0 10 20 30
−2

−1

0

1

th
et

a
(r

ad
)

0 10 20 30
0

10

20

ps
i (

ra
d)

Time (sec)

0 10 20 30
−0.5

0

0.5

1
p

(r
ad

/s
ec

)

0 10 20 30

0

0.5

1

q
(r

ad
/s

ec
)

0 10 20 30

0

0.2

0.4

Nominal
Worst−case
With EAS Constraint

Figure 11: Nominal, wcsim, wcsim with EAS Constraint (wcsim Objective maxL∞(φ)). Constraint on EAS
shown in green.

14

15

A wcsim Documentation

WCSIM finds worst case uncertainty values in a Simulink model

WCUVARS = WCSIM(’mdl’) optimizes the USS blocks in the Simulink model

’mdl’ and returns the optimized values in the structure WCUVARS. The

field names and values of WCUVARS are the names of the uncertain

variables and the optimized values. The optimization objective and

constraint functions are specified with RCTObjective and RCTConstraint

blocks. The optimization is performed with FMINCON and requires

repeated simulations of the model. Only uncertain UREAL parameters are

varied in the optimization. They are initialized to the values

specified in the Uncertainty Values field of the USS block. All other

uncertain variable types are held fixed during the optimization at the

values specified in the Uncertainty Values field.

WCUVARS = WCSIM(’mdl’,UFIXED) specifies additional parameters to hold

fixed during the optimization. UVARS is a cell array of strings that

specifies uncertain UREAL parameters to be held fixed. Set UFIXED=[]

to optimize over all UREAL parameters.

WCUVARS = WCSIM(’mdl’,UFIXED,OPTIMOPT) specifies optimization options

to be passed to FMINCON. See FMINCON help for details.

WCUVARS = WCSIM(’mdl’,UFIXED,OPTIMOPT,SIMOPT) specifies simulation

options to be passed to SIM. All trailing input arguments of wcsim

are passed directly to SIM. Set SIM help for details. WCSIM

currently forces the ’SrcWorkspace’ and ’DstWorkspace’ options to be

set to ’base’.

See also sim, fmincon, optimset, optimget, ufind

16

B Uncertainty Object Creation

% Body aero coefficients, increments from nominal (+/- 20%)

gainCu = ureal(’gain_Cu’,0,’PlusMinus’,0.2);

gainCv = ureal(’gain_Cv’,0,’PlusMinus’,0.2);

gainCw = ureal(’gain_Cw’,0,’PlusMinus’,0.2);

gainCp = ureal(’gain_Cp’,0,’PlusMinus’,0.2);

gainCq = ureal(’gain_Cq’,0,’PlusMinus’,0.2);

gainCr = ureal(’gain_Cr’,0,’PlusMinus’,0.2);

bai_usys_C6 = diag([gainCu, gainCv, gainCw, gainCp, gainCq, gainCr]);

% Increments to aero coefficients, due to actuators

gainCu = ureal(’gain_dCu_act’,0,’PlusMinus’,0.2);

gainCv = ureal(’gain_dCv_act’,0,’PlusMinus’,0.2);

gainCw = ureal(’gain_dCw_act’,0,’PlusMinus’,0.2);

gainCp = ureal(’gain_dCp_act’,0,’PlusMinus’,0.2);

gainCq = ureal(’gain_dCq_act’,0,’PlusMinus’,0.2);

gainCr = ureal(’gain_dCr_act’,0,’PlusMinus’,0.2);

bai_usys_dC6_act = diag([gainCu, gainCv, gainCw, gainCp, gainCq, gainCr]);

% Increments to aero coefficients, due to dynamic derivs

gainCu = ureal(’gain_dCu_dyn’,0,’PlusMinus’,0.4);

gainCv = ureal(’gain_dCv_dyn’,0,’PlusMinus’,0.4);

gainCw = ureal(’gain_dCw_dyn’,0,’PlusMinus’,0.4);

gainCp = ureal(’gain_dCp_dyn’,0,’PlusMinus’,0.4);

gainCq = ureal(’gain_dCq_dyn’,0,’PlusMinus’,0.4);

gainCr = ureal(’gain_dCr_dyn’,0,’PlusMinus’,0.4);

bai_usys_dC6_dyn = diag([gainCu, gainCv, gainCw, gainCp, gainCq, gainCr]);

% Actuator Dynamic Uncertainties (Weight=1 for all uncertainties)

bai_usys_L_ail = ultidyn(’gain_L_ail’,[1 1]) + 1;

bai_usys_R_ail = ultidyn(’gain_R_ail’,[1 1]) + 1;

bai_usys_L_spoiler = ultidyn(’gain_L_spoiler’,[1 1]) + 1;

bai_usys_R_spoiler = ultidyn(’gain_R_spoiler’,[1 1]) + 1;

bai_usys_elevator = ultidyn(’gain_elevator’,[1 1]) + 1;

bai_usys_rudder = ultidyn(’gain_rudder’,[1 1]) + 1;

bai_usys_stab = ultidyn(’gain_stab’,[1 1]) + 1;

bai_usys_flap = ultidyn(’gain_flap’,[1 1]) + 1;

17

