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1 Overview

Region of attraction analysis is applied to NASA’s Generic Transport Model (GTM), a remote-controlled 5.5
percent scale commercial aircraft. A four-state polynomial approximation of the GTM longitudinal dynamics
is developed and used for the region of attraction analysis. The polynomial model is used to investigated
the stability properties of this nonlinear model around an operating point by estimating of its region of
attraction.

In this report we first describe the computational method for estimating the region of attraction of a
polynomial system. This method relies on connections between sum-of-squares polynomials, semidefinite
matrices, and convex optimization. We briefly describe how to approximate the GTM dynamics with a
polynomial model. Finally, the region of attraction of the polynomial GTM model is estimated around a
trim point. The region of attraction analysis described in this report is still an active area of research. We
anticipate future versions of ROME including this capability for off-line analysis of the aircraft flight control
system.

2 Region of Attraction Estimation

Linear analysis is a local analysis which is only valid near the operating point. Many systems, including the
GTM aircraft, are more accurately described by nonlinear dynamical systems. For linear systems asymptotic
stability of an equilibrium point is a global property. In other words, if the equilibrium point is asymptotically
stable then the state trajectory will converge back to the equilibrium when starting from any initial condition.
A key difference with nonlinear systems is that equilibrium points may only be locally asymptotically stable.
Khalil [1] and Vidyasagar [2] provide good introductory discussions of this issue. The region-of-attraction
(ROA) of an asymptotically stable equilibrium point is the set of initial conditions whose state trajectories
converge back to the equilibrium [1]. If the ROA is small, then a disturbance can easily drive the system
out of the ROA and the system will then fail to come back to the stable equilibrium point. Thus the size
of the ROA is a measure of the stability properties of a nonlinear system around an equilibrium point. This
provides the motivation to estimate the region-of-attraction (ROA) for an equilibrium point of a nonlinear
system. In this section we describe our technical approach to estimating the ROA.

Consider autonomous nonlinear dynamical systems of the form:

ẋ(t) = f(x(t)), x(0) = x0 (1)

where x(t) ∈ R
n is the state vector at time t. We assume that x = 0 is a locally asymptotically stable

equilibrium point. Formally, the ROA is defined as:

R0 =
{

x0 ∈ R
n : If x(0) = x0 then lim

t→∞
x(t) = 0

}

(2)

Computing the exact ROA for nonlinear dynamical systems is, in general, a very difficult problem. There
has been significant research devoted to estimating invariant subsets of the ROA [3–11]. Our approach is
to restrict the search to ellipsoidal approximations of the ROA. The ellipsoid is specified by {xT

0 Nx0 ≤ β}
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where N = NT > 0 is a user-specified matrix which determines the shape of the ellipsoid. Given N , the
problem is to find the largest ellipsoid contained in the ROA:

β∗ =maxβ (3)

subject to: {xT
0 Nx0 ≤ β} ⊂ R0

Determining the best ellipsoidal approximation to the ROA is still a challenging computational problem.
Instead we will attempt to solve for upper and lower bounds satisfying β ≤ β∗ ≤ β̄. If these upper and
lower bounds are close then we have approximately solved the best ellipsoidal approximation problem given
in Equation 3.

The upper bounds are computed via a search for initial conditions leading to divergent trajectories. If
limt→∞ x(t) = +∞ when starting from x(0) = x0,div then x0,div /∈ R0. If we define β̄div := xT

0,divNx0,div

then {xT
0 Nx0 ≤ β̄div} 6⊂ R0. Thus β̄div is a true upper bound on β∗ and {xT

0 Nx0 ≤ β̄div} is an outer
approximation of the best ellipsoidal approximation to the ROA. An exhaustive Monte Carlo search is used
to find the tightest possible upper bound on β∗. Specifically, initial conditions are randomly chosen starting
on the boundary of a large ellipsoid: Choose x0 satisfying xT

0 Nx0 = g where g is sufficiently large that
g � β∗. If a divergent trajectory is found, then an upper bound β̄div on β∗ is computed by finding the
minimum value of p along the divergent trajectory. The state vector xdiv that achieves p(xdiv) = β̄div is
stored and g is decreased by a small factor, e.g. g = 0.995β̄div. The search continues until a maximum
number of simulations is reached. β̄MC will denote the smallest upper bound computed with this Monte
Carlo search.

The lower bounds are computed using Lyapunov functions and recent results connecting sums-of-squares
polynomials to semidefinite programming. To compute these bounds we need to further assume that the
vector field f(x) in the system dynamics (Equation 1) is a polynomial function. The computational algorithm
is briefly described in the following paragraphes. Additional details are provided in literature references
[12–19]. Lemma 1 is the main Lyapunov theorem used to compute lower bounds on β∗. This specific lemma
is proved by Tan [16] but very similar results are given in textbooks, e.g. by Vidyasagar [2].

Lemma 1 If there exists a continuously differentiable function V : R
n → R such that:

• V (0) = 0 and V (x) > 0 for all x 6= 0

• Ωγ := {x ∈ R
n : V (x) ≤ γ} is bounded.

• Ωγ ⊂ {x ∈ R
n : ∇V (x)f(x) < 0}

then for all x ∈ Ωγ, the solution of Equation 1 exists, satisfies x(t) ∈ Ωγ for all t ≥ 0, and Ωγ ⊂ R0.

A function V satisfying the conditions in Lemma 1 is a Lyapunov function and Ωγ provides an estimate of
the region of attraction. Any subset of Ωγ is also inside the ROA. In principle we can compute a lower bound
on β∗ by solving the maximization:

β :=max β (4)

subject to: {xT
0 Nx0 ≤ β} ⊂ Ωγ

Our computational algorithm replaces the set containment constraint with a sufficient condition involving
non-negative functions:

β := maxβ (5)

subject to: s(x) ≥ 0 ∀x

− (β − xT Nx)s(x) + (γ − V (x)) ≥ 0 ∀x

The function s(x), known as a “multiplier” function, is a decision variable of the optimization, i.e. it will
be found as part of the optimization. It is straight-forward to show that the two non-negativity conditions
in Optimization 5 are a sufficient condition for the set containment condition in Optimization 4. If both
V (x) and s(x) are restricted to be polynomials then both constraints involve the non-negativity of polynomial
functions. A sufficient condition for a generic multi-variate polynomial p(x) to be non-negative is the existence
of polynomials {g1, . . . , gn} such that p = g2

1 + · · · + g2
n. A polynomial which can be decomposed in this
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way is appropriately called a sum-of-squares (SOS). Finally, if we replace the non-negativity conditions in
Optimization 5 with SOS constraints, then we arrive at an SOS optimization problem:

β :=max β (6)

subject to: s(x) is SOS

− (β − xT Nx)s(x) + (γ − V (x)) is SOS

It is sufficient to note that there are connections between SOS polynomials and semidefinite matrices. More-
over, optimization problems involving SOS constraints can be converted and solved as a semidefinite pro-
gramming optimization. There is freely available software to set up and solve these problems [20–22]. The
connections between SOS polynomials, semidefinite matrices and optimization are described in more detail
in Appendix A.

The choice of the Lyapunov function which satisfies the conditions of Lemma 1 has a significant impact on
the quality of the lower bound, β. The simplest method is to find P > 0 which solves the Lyapunov equation

AT P + PA = −I. A := ∂f
∂x

∣

∣

∣

x=0

is the linearization of the dynamics about the origin. VLIN (x) := xT Px

is a quadratic Lyapunov function since x = 0 is assumed to be a locally asymptotically stable equilibrium
point. Thus we can solve for the largest value of γ satisfying the set containment condition in Lemma 1:
Ωγ ⊂ {x ∈ R

n : ∇VLIN (x)f(x) < 0}. This problem can also be turned into an SOS optimization with
“multiplier” functions as decision variables. β

LIN
will denote the lower bound obtained using the quadratic

Lyapunov function obtained from linearized analysis.
Unfortunately, β

LIN
is typically orders of magnitude smaller than the upper bound β̄MC . Several methods

to compute better Lyapunov functions exist, including V -s iterations [12–15], bilinear optimization [16], and
use of simulation data [17–19]. We briefly describe the V -s iteration starting from VLIN . In the first step
of the iteration, the multiplier functions and β

LIN
are computed. Then the multiplier functions are held

fixed and the Lyapunov function candidate becomes the decision variable. The SOS constraints of this new
problem are those which arise from the two set containment conditions: Ωγ ⊂ {x ∈ R

n : ∇VLIN (x)f(x) < 0}
and {xT

0 Nx0 ≤ β} ⊂ Ωγ . In the next iteration, the multiplier functions are again decision variables and a
lower bound is computed using the new Lyapunov function computed in the previous iteration. The V -s
iteration continues as long as the lower bound continues to increase. In this iteration, Lyapunov functions are
allowed to be of higher polynomial degree. Increasing the degree of the Lyapunov function will improve the
lower bound at the expense of computational complexity. The computational time grows very rapidly with
the degree of the Lyapunov function and so degree 4 candidates are about the maximum which can be used
for problems like the GTM analysis. β

2
and β

4
will denote the best lower bounds computed with the V -s

iteration for quadratic and quartic Lyapunov functions. Nonlinear analysis code based on SOS optimization
(including demos of the V-S iteration) can be downloaded from:

http://jagger.me.berkeley.edu/software/acc09/

3 GTM Polynomial Modeling

A four-state nonlinear model of the longitudinal aircraft dynamics is given by:

U̇ =
1

m
(Fx cosα + Fz sin α) (7)

α̇ =
1

mU
(−Fx sin α + Fz cosα) + q (8)

q̇ =
My

Iyy

(9)

θ̇ = q (10)

where U is the equivalent airspeed (ft/sec), α is the angle of attack (rad), q is the pitch rate (rad/sec), and
θ is the pitch angle (rad). The forces and moments are given by:

Fx = q̄SrefCx(α, q, δe) + 2TX(δth) − mg sin θ

Fz = q̄SrefCz(α, q, δe) + 2TZ(δth) + mg cos θ

My = q̄Sref c̄Cm(α, q, δe) + 2TX(δth)∆ZENG
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Figure 1: Comparison of Polynomial and Full Nonlinear Simulation Results

where δe is the elevator deflection (rad) and δth is the normalized thrust. TX and TZ are the engine thrust
along the body longitudinal and vertical axes. These are computed by transforming the engine thrust T (δth)
from engine to body coordinates. The GTM has two engines and this accounts for the factor of two in the
engine thrust terms (TX , and TZ). The engine thrust (T ) and the aerodynamic coefficients (Cx, Cz , and Cm)
are provided as look-up tables. Least squares approximation is used to approximate these look-up tables by
polynomial functions. Moreover, least squares is used to create polynomial approximations of trigonometric
functions and 1

U
. 1

U
appears in both the aerodynamic coefficient models and in the state dynamic equations.

The polynomial approximation of 1

U
was only used in the state equations. A reasonable approximation was

obtained by using a constant equivalent airspeed for the 1

U
dependence in the aero coefficient models.

Appendix B provides the Matlab code to construct the four-state, fifth-order polynomial model of the
GTM longitudinal dynamics. All model constants are provided in this appendix. The code requires the
multipoly toolbox for maninpulating polynomial objects which can be obtained from

http://jagger.me.berkeley.edu/software/acc09/.

The polynomial model is simulated with an elevator pulse input. The model is trimmed at straight/level
flight with an equivalent airspeed of 90 knots (=151.9 ft/sec). A two-second elevator pulse was applied to the
GTM longitudinal axis starting at t=1 second of the simulation. Figure 1 compares the polynomial model
response with the results from the full, 4-state nonlinear GTM model (with table look-ups). The results from
the polynomial model provide a good approximation of those from the full nonlinear model.

4 GTM ROA Estimation

The region of attraction of the open-loop GTM polynomial model is estimated about the trim condition EAS
= 150 ft/sec and steady/level flight (flight path angle = 0 deg). The state and input for this trim condition
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are:

U = 150 ft/sec

α = 0.0458 rads = 2.62 degs

q = 0 rads/sec = 0 degs/sec

θ = 0.0458 rads = 2.62 degs

δthr = 0.0859 (Normalized)

δe = 0.0463 rads = 2.66 degs

To improve the numerical conditioning, the states are shifted and scaled using the scaling matrix D:
z := D−1(x − xtrim) where:

D := diag(50ft/sec, 20deg, 50deg/sec, 20deg)

The shape function is defined to be p(z) := zT z. This is an ellipsoid in the original coordinates with radii
along each coordinate given by the entries of D. All results were generated on a 2.66 GHz Intel Core 2 Quad
processor.

First, a Monte Carlo search is run to find the smallest value of p(z) resulting in a divergent trajectory.
After 10000 simulations, the smallest value of p(z) was β̄MC = 3.13. β̄MC is an upper bound on the largest
ellipsoid in the region of attraction. It took 1721 sec ≈ 29min to run these 10000 simulations. The initial
condition leading to a divergent trajectory was:

U = 186.12 ft/sec

α = −0.41 rads = −23.48 degs

q = 0.008 rads/sec = 0.45 degs/sec

θ = 0.38 rads = 21.66 degs

The divergent trajectory starting from this initial condition is shown in Figure 2. The equivalent goes to
zero around t = 6 sec and so the polynomial model is not valid for the entire simulation.
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Figure 2: Divergent Trajectory from Monte Carlo Simulations

6



Next, SOS optimization is used to find the largest value of p(z) that is provably in the region of attraction.
The provable region using the quadratic Lyapunov function from linear analysis was only β

LIN
= 1.89×10−5.

This took 20.9 sec. Running thirty steps of the V-s iteration with quadratic Lyapunov functions increased
the provable region to β

2
= 0.21. This took 362.9 sec. Running seventy steps of the V-s iteration with

quartic Lyapunov functions increased the provable region to β
4

= 1.86. This took 7074.8 sec ≈ 117.9 min.
The progress of the V-s iteration with quadratic and quartic Lyapunov functions is shown in Figure 3 (black
curves). This figure also shows the progress of Monte Carlo search for divergent trajectory as a function of
the number of simulations (red curve). βMC decreased rapidly in the first 500 simulations and then made
only small progress thereafter. No progress in the optimization is made after 5,2223 simulations.

The inner/outer bounds on the region of attraction can be visualized by plotting slices of the ellipsoid
p(z) = β. Figure 4 shows a slice in the EAS/α plane. All curves are drawn in the original coordinates with
respect to the trim condition. The red curve is a slice of the ellipsoid p(z) = βMC . The region of attraction
cannot contain all of this ellipsoid since we found a divergent trajectory on the surface of this ellipsoid. The
black and blue curves are slices of the ellipsoids p(z) = β

2
and p(z) = β

4
, respectively. Every initial condition

of these ellipsoids was proven, via the SOS methods, to be in the region of attraction. Increasing the degree
of the Lyapunov function enables the SOS optimization to prove a larger estimate of the region of attraction.
It is possible that a degree 6 Lyapunov function could prove an even larger region but this would require
significantly more computation. Figure 5 shows another slice in the θ/α plane.

These ROA analysis results indicate that in the EAS/α and θ/α planes the open-loop aircraft will return
to the trim solution: U = 150 ft/sec, α = 2.62◦, q = 0◦/sec, and θ = 2.62◦ for initial perturbations in an
ellipse defined by U between 80 and 220 ft/sec, θ and α perturbations between −24◦ and 30◦. Similarly
analysis can be performed on the closed-loop system to determine the ROA of individual trim points based
on the flight control system. Trim points can be investigated using ROA to identify the best trim point to
return to in the presence of model uncertainty or system faults.

Nonlinear region-of-attraction and disturbance rejection analysis are an excellent complement to the ro-
bust analysis tools developed and implemented within the ROME framework. We for see many opportunities
to improve and accelerate validation of flight control systems both off-line and on-line given the recent ad-
vances in nonlinear analysis. We look forward to the use of ROME on the AirStar platform in the coming
months.
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A Sum of Squares Optimization

In this appendix we provide a brief review of computational methods for sum-of-squares polynomial opti-
mizations. Briefly, a polynomial p is a sum of squares (SOS) if there exist polynomials {fi}

m
i=1 such that

p =
∑m

i=1
f2

i . Sum-of-squares programs are optimization problems involving sum-of-squares polynomial
constraints. As discussed in Section 2, the region of attraction estimation problem can be posed as an SOS
optimization. Many other nonlinear analysis problems can also be posed within this optimization framework.
The computational solutions to these problems rely on connections between semidefinite matrices and SOS
polynomials [3,23,24]. In this appendix we first present notation and background material. Next we discuss
the connections between semidefinite matrices and SOS polynomials. Finally we discuss software available
to solve SOS optimization problems.

A.1 Background

A.1.1 Polynomial Notation

R[x] denotes the set of all polynomials in variables {x1, . . . , xn} with real coefficients. N denotes the set of
nonnegative integers, {0, 1, . . .}, and N

n is the set of n-dimensional vectors with entries in N. For α ∈ N
n, a

monomial in variables {x1, . . . , xn} is given by xα .
= xα1

1 xα2

2 · · ·xαn

n . The degree of a monomial is defined as
deg xα .

=
∑n

i=1
αi. In this notation a polynomial in R[x] is simply a finite linear combination of monomials:

p
.
=

∑

α∈A

cαxα =
∑

α∈A

cαxα1

1 xα2

2 · · ·xαn

n

where cα ∈ R and A is a finite collection of vectors in N
n. Using the definition of deg for a monomial, the

degree of p is defined as deg p
.
= maxα∈A [deg xα].

A polynomial p is a sum of squares (SOS) if there exist polynomials {fi}
m
i=1 such that p =

∑m
i=1

f2
i . The

set of SOS polynomials is a subset of R[x] and is denoted as Σ[x]. We note that if p is a sum of squares then
p(x) ≥ 0 ∀x ∈ R

n. Thus p ∈ Σ[x] is a sufficient condition for a polynomial to be globally non-negative. The
converse is not true, i.e. non-negative polynomials are not necessarily SOS polynomials. This is related to
one of the problems posed by Hilbert in 1900 [25].

A.1.2 Semidefinite Programming

This brief review of semidefinite programming (SDP) is based on a survey by Vandenberghe and Boyd [26]
and a monograph by Boyd, et al. [27]. A symmetric matrix F ∈ R

n×n is positive semidefinite if xT Fx ≥ 0 for
all x ∈ R

n. Positive semidefinite matrices are denoted by F � 0. A semidefinite program is an optimization
problem of the following form:

minλ cT λ
subject to: F0 +

∑r
k=1

λkFk � 0
(11)

The symmetric matrices F0, . . . , Fr ∈ R
n×n and the vector c ∈ R

r are given data. The vector λ ∈ R
r is the

decision variable and the constraint, F0 +
∑r

k=1
λkFk � 0, is called a linear matrix inequality. We refer to

Equation 11 as the primal problem. The dual associated with this primal problem is:

maxZ −Tr [F0Z]
subject to: Tr [FkZ] = ck k = 1, . . . , r

Z � 0
(12)

where Z = ZT ∈ R
n×n is the decision variable for the dual problem. Tr [·] denotes the trace of a matrix.

This dual problem can be recast in the form of Equation 11 and thus it is also a semidefinite program.
While the primal and dual forms may look restrictive, these formulations are quite versatile and SDPs find
applications in many problems of interest. Moreover, SDPs are convex and quality software exists to solve
these problems. In particular, SeDuMi [22, 28] is a freely available MATLAB toolbox that simultaneously
solves the primal and/or dual forms of a semidefinite program.

In some cases, our only goal is to find a decision variable that satisfies the linear matrix inequality
constraint. These are semidefinite programming feasibility problems. The following is an example:

Find λ1, . . . , λr ∈ R such that F0 +

r
∑

k=1

λkFk � 0 (13)
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A.2 Connections Between SOS Polynomials and Semidefinite Matrices

Theorem 1 below gives a concrete statement of the connection between sums of squares and positive semidef-
inite matrices. We require two facts that follow from [29] (refer to Theorem 1 and its preceding Lemma):

1. If p is a sum of squares then p must have even degree.

2. If p is degree 2d (d ∈ N) and p =
∑m

i=1
f2

i then deg fi ≤ d ∀i.

Next, we define z as the column vector of all monomials in variables {x1, . . . , xn} of degree ≤ d: 1

z
.
=

[

1, x1, x2, . . . , xn, x2
1, x1x2, . . . , x2

n, . . . , xd
n

]T
(14)

There are
(

k+n−1

k

)

monomials in n variables of degree k. Thus z is a column vector of length lz
.
=

∑d
k=0

(

k+n−1

k

)

=
(

n+d
d

)

. If f is a polynomial in n variables with degree ≤ d, then f is a finite linear

combination of monomials of degree ≤ d. Consequently, there exists a ∈ R
lz such that f = aT z. The proof of

the following theorem, introduced as a “Gram Matrix” method by Choi, Lam, and Reznick [30], is included
for completeness. This result can be found more recently in [31].

Theorem 1 Suppose p ∈ R[x] is a polynomial of degree 2d and z is the lz × 1 vector of monomials defined

in Equation 14. Then p is a SOS if and only if there exists a symmetric matrix Q ∈ R
lz×lz such that Q � 0

and p = zT Qz.

Proof:

(⇒) If p is a SOS, then there exists polynomials {fi}
m
i=1 such that p =

∑m
i=1

f2
i . As noted above,

deg fi ≤ d for all i. Thus, for each fi there exists a vector, ai ∈ R
lz , such that fi = aT

i z. Define the matrix,
A ∈ R

lz×m, whose ith column is ai and define Q
.
= AAT � 0. Then p = zT Qz.

(⇐) Assume there exists Q = QT ∈ R
lz×lz such that Q � 0 and p = zT Qz. Define m

.
= rank(Q). There

exists a matrix A ∈ R
lz×m such that Q = AAT . Let ai denote the ith column of A and define the polynomials

fi
.
= zT ai. By definition of fi, p = zT (AAT )z =

∑m
i=1

f2
i . �

A.3 Software for SOS Optimizations

A sum-of-squares program is an optimization problem with a linear cost and SOS constraints on the decision
variables [20]:

min
u∈Rn

c1u1 + · · · + cnun (15)

subject to:

ak,0(x) + ak,1(x)u1 + · · · + ak,n(x)un ∈ Σ[x] k = 1, . . .Ns

The polynomials {ak,j} are given as part of the optimization data and u ∈ R
n are decision variables. This

formulation appears far removed from dynamical systems but we’ll show in Section ?? that nonlinear analysis
problems can be posed within this optimization framework.

Theorem 1 provides the bridge to convert an SOS program into a semidefinite-programming problem.
For example, the constraint ak,0(x) + ak,1(x)u1 + · · · + ak,n(x)un ∈ Σ[x] can be equivalently written as:

ak,0(x) + ak,1(x)u1 + · · · + ak,n(x)un = zT Qz (16)

Q � 0 (17)

Q is a new matrix of decision variables that is introduced when we convert an SOS constraint to an LMI
constraint. Equating the coefficients of zT Qz and ak,0(x)+ak,1(x)u1 + · · ·+ak,n(x)un imposes linear equality
constraints on the decision variables u and Q. Thus, Equation 16 can be rewritten as a set of linear equality
constraints on the decision variables. All SOS constraints in Equation 15 can be replaced in this fashion with

1Any ordering of the monomials can be used to form z. In Equation 14, xα precedes xβ in the definition of z if:

deg xα < deg xβ or deg xα = deg xβ and the first nonzero entry of α − β is > 0
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linear equality constraints and LMI constraints. As a result, the SOS program in Equation 15 can be written
in the SDP dual form (Equation 12).

While this may appear cumbersome, there is software available to perform the conversion. For example,
SOSTOOLS [20] and Yalmip [21] are freely available MATLAB toolboxes for solving SOS optimizations.
These packages allow the user to specify the polynomial constraints using a symbolic toolbox. Then they
convert the SOS optimization into an SDP which is solved with SeDuMi [22, 28] or another freely available
SDP solver. Finally these toolboxes convert the solution of the SDP back to a polynomial solution. A
drawback is that the size of the resulting SDP grows rapidly if the SOS optimization involves polynomials
with many variables and/or high degree. While various techniques can be used to exploit the problem
structure [32], this computational growth is a generic trend in SOS optimizations. We have developed some
methods which use simulation to ease this computational growth [17, 18, 33].
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B GTM Polynomial Model

%-------------------------------------------------------------------

% gtmpolymod.m

%

% This file creates a 4-state, 5th order polynomial model for

% the GTM logitudinal dynamics. The states / inputs are

% x = [ Equivalent Air Speed, eas (ft/sec);

% Angle of Attack, alp (rad);

% Pitch Rate, q (rad/sec);

% Pitch Euler Angle, theta (rad)]

%

% u = [ Normalized Throttle Position, dthr (unitless, 0 to 1);

% Elevator Deflection, de (rad)]

%-------------------------------------------------------------------

% ----- Create poly vars for states and inputs

pvar de dthr eas alp q theta;

% ----- Constants

g = 32.17405; % Gravitational accel [ft/sec^2]

rho0 = 0.002375; % Air density [ slugs/ft^3 ]

d2r = pi/180; % Degrees to Radians [ rad/deg ]

r2d = 180/pi; % Radians to Degrees [ deg/rad ]

Sref = 5.9018; % Wing reference area [ ft^2]

mass = 1.5416; % Mass [slugs]

cbar = 0.9153; % Mean chord [ft]

Iyy = 4.2540; % Princ. moment of inertia [lf-ft^2]

% ----- Polynomial Approximations

% Trig approximations

sinth = theta - theta^3/6;

costh = 1 - theta^2/2;

sinalp = alp - alp^3/6;

cosalp = 1 - alp^2/2;

% Second-order least squares fit of 1/eas

Umin = 100;

Umax = 200;

Npts = 100;

Urange = linspace(Umin,Umax,Npts);

Urange = Urange(:);

AA=[ones(Npts,1) Urange Urange.^2];

bb=[1./Urange];

cc=AA\bb;

eas_inv = cc(1)+cc(2)*eas+cc(3)*eas^2;

% ----- Engine Model

engl_ang = [0 2.1460 1.6830];

engr_ang = [0 2.1460 -1.6830];

deltaLEng= [0.4498 -1.1833 0.2976];
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% direction cosines vector (DCV) to transform thrust axis to

% airplane body axis. note only L eng. thrust is used, R eng is

% assumed to be at equal setting as the left.

DCV_LEng = [cosd(engl_ang(2))*cosd(engl_ang(3));...

-sind(engl_ang(3));...

sind(engl_ang(2))*cosd(engl_ang(3))];

DCV_REng = [cosd(engr_ang(2))*cosd(engr_ang(3));...

-sind(engr_ang(3));...

sind(engr_ang(2))*cosd(engr_ang(3))];

% Throttle / Thrust relation

b2=8.871;

b1=9.151;

b0=1.04;

Tdthr = b0+b1*dthr+b2*dthr^2;

% Engine Thrust

Tx = DCV_LEng(1)*Tdthr;

Tz = DCV_LEng(3)*Tdthr;

% ----- Aero coef models

% Assume constant eas in the denominator of Czq and Cmq

qbar = 0.5*rho0*eas^2;

eas_nom = 152;

a31 = -1.0667e-005*r2d^3;

a21 = -3.9326e-004*r2d^2;

a11 = 0.0129*r2d;

a01 = -0.0414;

Cxa = a31*alp^3+a21*alp^2+a11*alp+a01;

Cxde = 0;

Cxq = 0;

Cx = Cxa + Cxde*de + Cxq*q;

a32 = -4.6405e-006*r2d^3;

a22 = 0.0029*r2d^2;

a12 = -0.1101*r2d;

a02 = -0.0045;

Cza = a32*alp^3+a22*alp^2+a12*alp+a02;

Czde = -0.0083*r2d;

Czq = -24*(0.5*cbar/eas_nom);

Cz = Cza + Czde*de + Czq*q;

a33 = -1.0904e-004*r2d^3;

a23 = 0.0022*r2d^2;

a13 = -0.0348*r2d;

a03 = 0.1553;

Cma = a33*alp^3+a23*alp^2+a13*alp+a03;

Cmde=-0.032*r2d;

Cmq = -45*(0.5*cbar/eas_nom);

Cm = Cma + Cmde*de + Cmq*q;

% ----- Forces / Moments
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neng = 2;

Fx = qbar*Sref*Cx + neng*Tx - mass*g*sinth;

Fz = qbar*Sref*Cz + neng*Tz + mass*g*costh;

My = qbar*Sref*cbar*Cm + neng*Tx*deltaLEng(3);

% ----- State derivatives

x = [eas; alp; q; theta];

u = [dthr; de];

xdot(1) = 1/mass * (Fx*cosalp + Fz*sinalp);

xdot(2) = 1/mass * eas_inv * ( -Fx*sinalp + Fz*cosalp) + q;

xdot(3) = My/Iyy;

xdot(4) = q;

xdot = xdot(:);

% ----- Remove terms with deg >5

deg = 0:5;

xdot = cleanpoly(xdot,[],deg);
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