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■ Worst-Case Performance for LFTs

■ Divide and Conquer, based on upper and lower bounds

■ Lower Bound

■ Upper Bound

■ Correlating two uncertain parameters

■ Application to NASA X-38 Crew Return Vehicle
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Systems under consideration:

■ Linear systems with

◆ parametric uncertainty, and/or

◆ unmodelled dynamics

■ Performance objective involves keeping specific transfer functions

“small”

M(s)

∆-

�
��

∞
max
‖∆‖≤1

Uncertain relationship between d and e is

e = [M22 +M21∆(I −M11∆)M12] d

=: Fu (M,∆) d

=: Td→e(∆)d
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M(s)

∆-

�
��

∞
max
‖∆‖≤1

In this diagram, the known elements are separated from unknown

elements in this feedback connection.

■ Known contains: nominal plant model, controller, manner in

which uncertainty enters, disturbances, errors

■ Unknown contains: uncertainty in parameters of differential

equations, unmodeled dynamics
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■ Before stability is lost, performance degrades unacceptably.

■ Worst-Case Performance, over parameter uncertainties and

unmodelled dynamics, is easy to motivate, and uses same

mathematical tools as Robust Stability calculations.

■ For problems with only real parametric uncertainty modeled,

Robust Stability quantities can be discontinuous (in data and

frequency)
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Question: is the quantity

max
allowable ∆

max
ω

|Td→e(∆, ω)|

a good measure of “worst-case behavior?”

■ Honeywell SRC applied this type of analysis to Shuttle in 1984+.

■ Frequency domain criterion – connection to time domain is less

precise than usually desired.

■ T must be chosen carefully to reflect variables of interest.

■ One strategy: assess and normalize the nominal level of

performance being achieved by current controller
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One method to pick T :

■ Start with nominal model, and candidate controller

■ Plot closed-loop frequency response from commands (r) and

gusts (g) to tracking error e

e = Gnom

[
r

g

]

■ Find simple weighting functions W1, W2 such that

|W1(jω)Gnom
1 (jω)| ≈ 1, |W2(jω)Gnom

2 (jω)| ≈ 1

for all frequencies

■ Hence, the nominal model with controller achieves weighted

closed-loop performance

max
ω

∥
∥
∥
∥

W1(jω)Gnom
1 (jω)

W2(jω)Gnom
2 (jω)

∥
∥
∥
∥
≈ 1.4
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■ For perturbed system, use this objective, and see how “bad” it

can be made, relative to 1.4 (nominal performance)

T (∆) :=

[
W1G1(∆)

W2G2(∆)

]

■ Find

max
∆ allowable

‖T (∆)‖∞
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Treat two types of model uncertainty:

1. Uncertain real-valued parameters in differential equation model

2. Unmodeled dynamics, with frequency dependent bounds

Normalizing (absorbing offsets and weights into “known” part of

system) yields uncertain matrices of the form

∆ = diag
[

δ1Ik1
, · · · , δnIkn

, ∆̂1(s), · · · , ∆̂f (s)
]

each real and transfer function parameter assumed to satisfy

|δi| ≤ 1, max
ω

∣
∣
∣∆̂i(jω)

∣
∣
∣ ≤ 1

Easy Fact: Given any complex number γ, with |γ| ≤ 1, and any

frequency ω0 > 0, there is a stable transfer function ∆̂(s) satisfying

max
ω

∣
∣
∣∆̂(jω)

∣
∣
∣ = |γ| , ∆̂(jω0) = γ

Implication: Ultimately treat the Worst-Case-Performance
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For the problem, there is a “worst” frequency. At that frequency, the

mathematical problem is a single matrix problem. How? Allowable ∆

satisfy

∆ = diag
[

δ1Ik1
, · · · , δnIkn

, ∆̂1(s), · · · , ∆̂f (s)
]

with

|δi| ≤ 1, max
ω

∣
∣
∣∆̂i(jω)

∣
∣
∣ ≤ 1

Original problem is

max
∆(s) allowable

max
ω

∣
∣
∣Fu

(

M̂(jω),∆(jω)
)∣
∣
∣
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Interchange the “max”

max
ω

max
∆(s) allowable

∣
∣
∣Fu

(

M̂(jω),∆(jω)
)∣
∣
∣

But at any fixed frequency, the transfer function entries of ∆(jω) can

be any complex number with magnitude ≤ 1. So, at each frequency,

view ∆ as a constant matrix (real and complex entries)

max
ω

max
∆

∣
∣
∣Fu

(

M̂(jω),∆
)∣
∣
∣

︸ ︷︷ ︸

constant matrix problem

Grid frequency range, based on domain-specific expertise, with finite

frequencies, ω1, ω2, . . . , ωN , and solve only there

max
1≤i≤N

max
∆

∣
∣
∣Fu

(

M̂(jωi),∆
)∣
∣
∣
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Focus on constant matrix problem (and solve at many frequencies).

■ M ∈ C(k+ne)×(k+nd), complex since this will typically be

response of M̂ at a certain frequency.

■ Integers k1, . . . , kn, kn+1, . . . , kn+f , with k := k1 + · · · + kn+f .

■ n uncertain real parameters, δ1, . . . , δn, each varies

independently in range, ai ≤ δi ≤ bi.

■ f uncertain matrices, ∆1 ∈ Ckn+1×kn+1 , . . . ,∆f ∈ Ckn+f×kn+f .

■ Associated with the indices ki, D denotes the operation which

takes δ := (δ1, . . . , δn) and ∆ := (∆1, . . . ,∆f ) into the k × k

block-diagonal matrix.

Dδ∆ := diag [δ1Ik1
, . . . , δnIkn

,∆1, . . . ,∆f ]



Worst-Case Performance: Constant Matrix (cont’d)
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Problem: Given M and the intervals [ai bi], estimate lower and upper

bounds for

max
ai≤δi≤bi

σ̄(∆i)≤1

σ̄
[

M22 +M21Dδ∆ (I −M11Dδ∆)
−1
M12

]

M

Dδ∆
-

�

��σ̄



Divide-and-Conquer: Real Parameters
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Given M , a and b. Need easily computable bounds L and U

■ Lower bound, L(a, b,M), satisfying

L(a, b,M) ≤ max
ai≤δi≤bi

σ̄(∆i)≤1

σ̄
[

M22 +M21Dδ∆ (I −M11Dδ∆)
−1
M12

]

■ Upper bound, U(a, b,M), satisfying

max
ai≤δi≤bi

σ̄(∆i)≤1

σ̄
[

M22 +M21Dδ∆ (I −M11Dδ∆)−1
M12

]

≤ U(a, b,M)

Bounds L and U presented today have property that for a = b, L is

reasonably close to U . For a < b, gap increases, and a

“Divide-and-Conquer” reduces the gap.



Divide-and-Conquer: Real Parameters (cont’d)
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Steps of Divide & Conquer

1. Initialize list of cubes to the initial cube,

[a1, b1] × [a2, b2] × · · · [an, bn]

2. Call upper and lower bounds computations on the initial cube.

3. Find cube in ACTIVE list with largest upper bound.

4. Split cube along longest edge into two cubes, compute bounds

on both of these new cubes, and replace.

5. Make any current cube whose upper bound is lower than another

cube’s lower bound INACTIVE. Go to 3.

We do not divide on complex {∆i}. Simply accept gap in L and U

that exists even when a = b.



Lower Bounds: Iterations
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Problem: Given M and the intervals [ai bi], estimate lower and upper

bounds for

max
ai≤δi≤bi

σ̄(∆i)≤1

σ̄
[

M22 +M21Dδ∆ (I −M11Dδ∆)
−1
M12

]

drawn as

M

Dδ∆
-

�

��σ̄
max

ai≤δi≤bi

σ̄(∆i)≤1

Recall,

Dδ∆ := diag [δ1Ik1
, . . . , δnIkn

,∆1, . . . ,∆f ]



Lower Bounds: Iterations (cont’d)
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Strategy – coordinatewise across δ and ∆, but with different

approaches:

1. Hold complex uncertainties (∆j) fixed, maximize over real

parameters using coordinate-wise ascent.

2. Holding real parameters (δi) fixed, maximize over complex

uncertainties using power method.

3. Iterate.

The individual steps are as follows...
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Given M , intervals [a1, b1], . . . , [an, bn], estimate lower bound for

max
ai≤δi≤bi

σ̄
[

M22 +M21Dδ (I −M11Dδ)
−1
M12

]

Evaluating anywhere in the cube gives a lower bound on the maximum

– try to improve this

■ Start at center of [a1, b1] × [a2, b2] × · · · × [an, bn]

■ Iterate as follows:

◆ Holding δ2, . . . , δn fixed at their “current” values, adjust δ1
in [a1, b1] to maximize σ̄.

◆ Holding δ1, δ2, . . . , δi−1, δi+1, . . . , δn fixed at their

“current” values, adjust δi in [ai, bi] to maximize σ̄.

◆ and so on, cycling back and forth through the δ’s



Lower Bounds: Real Parameters (cont’d)
Worst-Case Performance

Setup

Justification

Performance Objective

Uncertainty Model

Real Parameters

Lower Bounds

Algorithm

Scalar LFT

Power Method

Upper Bound

Small Gain

Normalize

Feasability

Correlated Parameters

Curves

wcgain

wcmargin

wcsens

wcgopt

Bibilography

GTM Analysis

GTM Simulation

Uncertainty

Linearization

Flight Data 1

Flight Data 2

Worst-Case Response

Worst-case Simulation

c©MUSYN Inc. 2005 CIRA Short Course – 20 / 95

Issues:

■ Order of cycling (in general) affects final convergence.

■ Initial starting point need not be the center, and (in general)

affects final convergence.

■ No guarantee that iteration converges to maximum, but it always

does at least as good as taking the value at the center.

■ For a fixed M , as the width of the intervals go to zero, this

“bounding” technique gets the right answer.

■ How do we maximize over each individual δi?



Single Real Parameter: Maximization
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With all but one of the δ’s held fixed, the problem appears as (with

different M , depending on values of parameters being held fixed)

Problem: Given M ∈ C(k+ne)×(k+nd). Solve

max
−1≤δ≤1

σ̄
[
M22 + M21δ (I − δM11)

−1
M12

]

Mimicking Hamiltonian methods for state-space H∞ norm . . .

Lemma: Take γ > ‖M22‖. If there is a δ0 ∈ [−1, 1] such that
Fu (M, δ0Ik) has a singular value equal to γ, then the matrix Hγ

[
M11 M12M∗

12

0 M∗
11

]

+

[
M12M∗

22

M∗
21

]
(
γ2I − M22M∗

22

)−1 [
M21 M22M∗

12

]

has a real eigenvalue λ satisfying |λ| ≥ 1 (specifically, δ0 = 1
λ).



Single Real Parameter: Maximization (cont’d)
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How:
Fu (M, δ0Ik) has a singular value equal to γ

m
γ2I − Fu(M, δ0Ik) [Fu(M, δ0Ik)]

∗
is singular

m
Kγ(δ) :=

[
γ2I − Fu(M, δIk) [Fu(M, δIk)]∗

]−1
has a pole at δ = δ0

Poles of Kγ(δ) are (subset of) reciprocals of eigenvalues of Hγ .

Remarks:

■ The real eigenvalues of 2k × 2k complex matrix Hγ give limited

information about the sublevel sets of f(δ) := σ̄ [Fu(M, δIk)].

■ Iterative algorithm to bound maximum by repeatedly computing

the eigenvalues of Hγ for increasing γ.

■ Controllability/Observability assumptions on (M11,M12) and

(M11,M21) render the theorem necessary and sufficient.
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Algorithm: choose relative stopping tolerance ε > 0.

1. Set γ̄ := max {σ̄ [Fu (M,−I)] , σ̄ [Fu (M, 0)] , σ̄ [Fu (M, I)]}.
Let p̄ be the maximizer from {−1, 0, 1}.

2. Define γ := (1 + ε)γ̄. Form Hγ and compute eigenvalues.

3. If there are no real eigenvalues with magnitude ≥ 1, STOP.

Bounds are γ̄ ≤ max−1≤δ≤1 σ̄(·) < (1 + ε)γ̄, with lower bound

achieved by δ := p̄.

4. If there are any real eigenvalues, with magnitude = 1, denote

their reciprocals as {ri}N
i=1.

5. Let {pi}N−1
i=1 denote the midpoints, pi := 1

2 (ri + ri+1).

6. Redefine p̄ to be the maximizer below

γ̄ := max
1≤i≤N−1

σ̄
[

M22 +M21pi (I − piM11)
−1
M12

]



Single Real Parameter: Algorithm (cont’d)
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One Parameter Maximization: Scalar LFT
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With all but one of the δ’s held fixed, the problem appears as (with

different M , depending on values of parameters being held fixed)

Problem: Given M ∈ C(k+1)×(k+1), and a < b, find

max
a≤δ≤b

|Fu (M, δIk)|

Dependence is rational, namely

Fu (M, δIk) = m22 +m21δ (I −M11δ)
−1
m12 =

n(δ)

d(δ)

where

■ n and d are k’th order polynomials

■ coefficients of n and d are complex (since M is)

■ n and d are easily computed from M
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Write n(δ) = f(δ) + jg(δ) where f and g are real and imaginary parts.

Similar for d(δ) = h(δ) + jq(δ). Note that

∣
∣
∣
∣

n(δ)

d(δ)

∣
∣
∣
∣

2

=
f2 + g2

h2 + q2

is differentiable, and has critical points (slope equal 0) at same

locations as |Fu (M, δIk)|.

Task: Find δ ∈ [a, b] where either

d

dδ

(∣
∣
∣
∣

n(δ)

d(δ)

∣
∣
∣
∣

2
)

= 0, or d(δ) = 0

These are precisely the roots of the polynomial

c := [ff ′ + gg′]
(
h2 + q2

)
− [hh′ + qq′]

(
f2 + g2

)
= 0.

which is order 4k − 2.
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Procedure:

1. Compute n and d from M .

2. Form c(δ), and compute roots.

3. Evaluate Fu (M, δIk) at a, b and all real roots in interval (a, b).

4. Maximum value of |Fu (M, δIk)| occurs at one of these.
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For just complex uncertainties,

∆ :=
{
diag [∆1, . . . ,∆f ] : ∆i ∈ Cmi×mi

}

a power-method works well for worst-case gain. Assume (I −M11∆) is

nonsingular for all ∆ ∈ B∆. If

max
∆∈B∆

σ̄
[

M22 +M21∆[I −M11∆)−1
M12

]

=: γ2

(+ technical conditions) then there exist unit-vectors a, b, z and w

a = Mγb

z1 = ‖w1‖
‖a1‖ a1, . . . zf =

‖wf‖
‖af‖ af , zf+1 =

‖wf+1‖
‖af+1‖ af+1

w = M∗
γ z

b1 = ‖a1‖
‖w1‖w1, . . . bf =

‖af‖
‖wf‖wf , bf+1 =

‖af+1‖
‖wf+1‖wf+1
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where

Mγ :=










H1,1 · · · H1,f
1

γ
H1,f+1

..

.
. . .

..

.
..
.

Hf,1 · · · Hf,f
1

γ
Hf,f+1

1

γ
Hf+1,1 · · · 1

γ
Hf+1,f

1

γ2 Hf+1,f+1










=:

[

M11
1

γ
M12

1

γ
M11

1

γ2 M22

]

Try to find solutions by iterating, in the order written. Two facts about

solutions (existence and what they mean)

■ Any solution (a, b, w, z, γ) yields a ∆ ∈ B∆ achieving a gain of

(at least) γ

■ The maximum achievable gain is always a solution
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A few observations at this point

■ Based on comparisons, the coordinate-wise approach to

worst-case gain with real parameter uncertainties is favorable to

the mixed (real/complex) power algorithm.
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k
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2
 = ... = k

n
 = 1
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n=2

■ Complex uncertainties can also be individually maximized over.

Interestingly, this approach appears to be inferior to existing

complex power methods.

■ “Coordinate-wise” across the group of real parameters and the

group of complex uncertanties is adequate, but could be

improved...
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Suppose real parameters only (for notation): associated with

dimensions k1, k2, . . . , kn, define sets of matrices

D :=
{
diag [D1, D2, . . . , Dn] : 0 < Di = D∗

i ∈ Cki×ki
}

and

G :=
{
diag [G1, G2, . . . , Gn] : Gi = −G∗

i ∈ Cki×ki
}

Applications of the S-procedure (separating hyperplane) yields:

Theorem: If there is an D ∈ D, G ∈ G and β > 0 such that

A(M, X, G, β2) :=
[

D 0

0 β2I

]

− M∗
[

D 0

0 I

]

M + M∗
[

G 0

0 0

]

−
[

G 0

0 0

]

M ≥ 0

then

max
−1≤δi≤1

σ̄ [Fu (M,Dδ)] ≤ β
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Get best bound via minimization of γ := β2, subject to the constraints

D ∈ D, G ∈ G, γ > 0, A(M,X,G, γ) ≥ 0

Useful properties

■ Linear objective, over the variable (D,G, γ)

■ Convex constraints

Question: When repeating the computation on a subdivided cube, can

anything be re-used from the original cube’s computation?
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T and B are compatiably partitioned matrices, with T22B11

well-defined, and square. Consider the constraints

[
y1

z

]

= T

[
u1

w

]

,

[
w

y2

]

= B

[
z

u2

]

drawn as

B

T

T ∗B

z w

�

�

����
XXXX

�

�

�

�

y1

y2

u1

u2

Fact: For each u1, u2, there exist unique vectors z, w, y1 and y2
solving the constraints if and only if det (I − T22B11) 6= 0.

In that case, the “star product (T ∗B) is well-posed,” and T ∗B is

defined as the 2 × 2 block matrix relating the ui to the yi.
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Lemma: Suppose T ∈ C(n1+n1)×(n1+n1) and M ∈ C(n1+n2)×(n1+n2)

are compatibly partitioned matrices, with I − T22M11 invertible.

Assume T21 is invertible, and g ∈ C, with Re(g) = 0. If

M∗M + g (M −M∗) < I and T ∗T + g (T − T ∗) ≤ I,

then

(T ∗M)
∗
(T ∗M) + g

[
(T ∗M) − (T ∗M)

∗]
< I

For g = 0, this is just: If

M∗M < I and T ∗T ≤ I, equivalently σ̄(M) < 1 and σ(T ) ≤ 1,

then

(T ∗M)
∗
(T ∗M) < I equivalently σ̄ (T ∗M) < 1

which is an easy case.
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Again: T21 is invertible, T ∗M well-posed, g purely imaginary,

M∗M + g (M −M∗) < I and T ∗T + g (T − T ∗) ≤ I.

Then

(T ∗M)
∗
(T ∗M) + g

[
(T ∗M) − (T ∗M)

∗]
< I

Proof: By assumption, T ∗M is well-posed. Let ui ∈ Cni be arbitrary,

not both 0. Let yi and z and w be the unique solutions to the defining

star-product equations

[
y1

z

]

= T

[
u1

w

]

,

[
w

y2

]

= M

[
z

u2

]
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Since T21 is invertible, it follows that u2 and z are not both zero.

The two hypothesis each combine with the star-product constraints to

respectively give

w∗w + y∗2y2 + g [(z∗w + u∗2y2) − (w∗z + y∗2u2)] < z∗z + u∗2u2

y∗1y1 + z∗z + g [(u∗1y1 + w∗z) − (y∗1u1 + z∗w)] ≤ u∗1u1 + w∗w

Adding these, and cancelling leaves y∗y + g (u∗y − y∗u) < u∗u, which,

since u was arbitrary, and y = (T ∗M)u, implies the desired

conclusion. ]

Remarks: Suppose T satisfies ‖T‖ ≤ 1, and T = T ∗. It is easy to

verify that for all imaginary g, T satisfies the hypothesis. Moreover, if

T21 is not invertible, then both < are changed to ≤
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Suppose T and M given, with I − T22M11 invertible. T21 is invertible.

Quantities β > 0, D = D∗ > 0 and G = −G∗ are also given.
If

M∗
[

D 0

0 I

]

M +

[
G 0

0 0

]

M − M∗
[

G 0

0 0

]

<

[
D 0

0 β2I

]

and

T ∗
[

D 0

0 D

]

T +

[
G 0

0 G

]

T − T ∗
[

G 0

0 G

]

≤
[

D 0

0 D

]

then

(T ∗M)∗
[

D 0

0 I

]

(T ∗M)+
[

G 0

0 0

]

(T ∗M) − (T ∗M)∗
[

G 0

0 0

]

<

[
D 0

0 β2I

]

Proof: Extension of the previous result.
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Remark: Suppose that T satisfies ‖T‖ ≤ 1, T = T ∗, and

GTij = TijG, D1/2Tij = TijD
1/2

for 1 ≤ i ≤ 2, 1 ≤ j ≤ 2. Then T satisfies

T ∗
[
D 0

0 D

]

T +

[
G 0

0 G

]

T − T ∗
[
G 0

0 G

]

≤
[
D 0

0 D

]

(the main hypothesis).

If T21 is not invertible, then both < are changed to ≤
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Well-posed star products are associative.

Suppose that T,M and B are compatibly partitioned matrices, Assume

that T ∗M is well-posed, and that M ∗B is well-posed.

Then

(T ∗M) ∗B is well posed ⇔ T ∗ (M ∗B) is well posed

Under these conditions,

B

M

T

�

�
����

XXXX

�

�
����

XXXX

�

��

�

(T ∗M) ∗B

=

B

M

T

�

�
����

XXXX

�

�
����

XXXX

�

��

�

T ∗ (M ∗B)
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For a given pair a and b, representing the cube

Q[a,b] := [a1 b1] × [a2 b2] × · · · × [an bn]

define “center” and “radius” matrices

C[a,b] :=








b1+a1

2 Ik1
0 · · · 0

0 b2+a2

2 Ik2
· · · 0

...
...

. . .
...

0 0 · · · bn+an

2 Ikn








and

R[a,b] :=








b1−a1

2 Ik1
0 · · · 0

0 b2−a2

2 Ik2
· · · 0

...
...

. . .
...

0 0 · · · bn−an

2 Ikn







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Define MCR as below

R1/2

C

R1/2

M
��b���

��

-

?

MCR

Clearly

max
ai≤δi≤bi

σ̄ [Fu (M,Dδ)] = max
−1≤ξi≤1

σ̄ [Fu (MCR,Dξ)]

Recentering/Normalizing: consider the unit cube when useful
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Suppose two cubes are given, by vectors a, b and ã, b̃. Associated with

each, define center and radius matrices, C, C̃, R and R̃. How do we

transform from MCR →MC̃R̃?

Start with MCR

R
1
2

C

R
1
2

M
��a���

��

-
?

MCR

Cancel C and R, replacing with C̃ and R̃

R
1
2

C

R
1
2

M
��a��

-

��

-
?

MCR

−C

C̃R− 1
2 R− 1

2

R̃
1
2 R̃

1
2

-

- 6
a--

-

?

- -
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leaving MC̃R̃

R̃
1
2

C̃

R̃
1
2

M
��a���

��

-
?

MC̃R̃

Define matrix T as

T :=

[

0 R̃
1
2R− 1

2

R− 1
2 R̃

1
2 R− 1

2

(

C̃ − C
)

R− 1
2

]

Block diagram of T is

- -

T −C
C̃R− 1

2 R− 1
2

R̃
1
2 R̃

1
2

-

-
6
b--

-

?

- -
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Through the star-product, T relates MCR to MC̃R̃

R
1
2

C

R
1
2

M
��b��

-

��

-

?

MCR

T −C
C̃R− 1

2 R− 1
2

R̃
1
2 R̃

1
2

-

-
6
b--

-

?

- -

T

MCR

z w

�

�

�����
XXXXX

�

�

�

�

y1

y2

u1

u2

leaving MC̃R̃ = T ∗MRC
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The quantity ‖T‖ determines whether the cube defined by
(

C̃, R̃
)

is

contained in the cube defined by (C,R).

The scalar version is:

Lemma: Given c, c̃ ∈ R, and r > 0, r̃ ≥ 0. Then

c− r ≤ c̃− r̃, and c̃+ r̃ ≤ c+ r

if and only if

σ̄




0

√
r̃
r√

r̃
r

c̃−c
r



 ≤ 1.
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Hence, Q[ã,b̃] ⊂ Q[a,b], if and only if the associated T

T =

[

0 R̃
1
2R− 1

2

R− 1
2 R̃

1
2 R− 1

2

(

C̃ − C
)

R− 1
2

]

satisfies σ̄ (T ) ≤ 1. In any case, T = T ∗.

Moreover, the structure of D and G imply that for i, j = 1, 2

GTij = TijG, D1/2Tij = TijD
1/2

Combining all of these ideas yields the desired result.
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Theorem: Given M and two cubes Q[a,b] and Q[ã,b̃]. Let R, C, R̃ and

C̃ be the associated “radius/center” matrices. Assume that I −M11C

invertible. If there exist D ∈ D, G ∈ G and β > 0 such that

M∗
RC

[

D 0

0 I

]

MRC +

[

G 0

0 0

]

MRC −M∗
RC

[

G 0

0 0

]

<

[

D 0

0 β2I

]

and Q[ã,b̃] ⊂ Q[a,b], then also

M∗
R̃C̃

[

D 0

0 I

]

MR̃C̃ +

[

G 0

0 0

]

MR̃C̃ −M∗
R̃C̃

[

G 0

0 0

]

<

[

D 0

0 β2I

]

Implication: When subdividing a cube in Divide-and-Conquer scheme,

■ the decision variables (D,G, β) obtained in the previous

optimization are feasable for subdivided cube.

■ hence, the optimization need not first obtain feasability.

This seems to save about 25-30% in total upper bound computation.
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■ Bounds are valid for cube aligned with (δ1, δ2, ..., δn) axis

■ In X-38 model, two aerodynamic coefficients, CLdr and CNdr

are correlated, and their uncertainties, δCLdr
and δCNdr

are

correlated, assumed to lie in region below

-

6

@
@

@

@
@

@ δCLdr

δCNdr

■ Create LFT functions that approximately map a unit cube into

such a region, for example

-
6

n1

n2

into

-
6

@
@@

@
@@ δCLdr

δCNdr

or

-
6@
@

@
@

@
@ δCLdr

δCNdr
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Some formulae which approximately map the cube (n1, n2) to (δ1, δ2)

δCLdr
= − n1√

2

(√
2 − 2β

n2
2

1 + n2
2

)

+
βn2√

2

δCNdr
=

n1√
2

(√
2 − 2β

n2
2

1 + n2
2

)

+
βn2√

2

where n1 and n2 each independently range from [-1,1]. An example,

with β = 1
2
√

2
is shown below.
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How is this represented as an LFT? Define 5 × 5 matrices Sl, Sn

Sl :=











0 −β
√

2 0 0 1

0 0 1 0 0

0 −1 0 0 1

0 0 0 0 β√
2

−1 0 0 1 0











, Sn :=











0 −β
√

2 0 0 1

0 0 1 0 0

0 −1 0 0 1

0 0 0 0 β√
2

1 0 0 1 0











Then for any n1, n2, letting N denote

N :=







n1 0 0 0

0 n2 0 0

0 0 n2 0

0 0 0 n2







gives

Fu(Sl, N) = −
n1√

2

(√
2 − 2β

n2
2

1 + n2
2

)

+
βn2√

2

and

Fu(Sn, N) =
n1√

2

(√
2 − 2β

n2
2

1 + n2
2

)

+
βn2√

2
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So: replace every instance of δCLdr
with Fu(Sl, N), and every instance

of δCNdr
with Fu(Sn, N)

Observation: Nice approximation to region, but LFT representation

involves 6 copies of n2 for every copy of δCLdr
and δCNdr

in the

original problem.
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Simpler, though cruder approximation to map the cube (n1, n2) to

desired region is

δCLdr
= −n1 − 1

4n2

δCNdr
= n1 − 1

4n2

where n1 and n2 each independently range from [-1,1]. This is shown

below.
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-
6

δCLdr

δCNdr

m44h26

2.88 ≤ WCP ≤ 2.88

q

-
6

δCLdr

δCNdr

q
jscm44h25t10

3.84 ≤ WCP ≤ 3.86

-
6

δCLdr

δCNdr q

jscm7h42t10

2.44 ≤ WCP ≤ 2.44

-
6

δCLdr

δCNdr q

m7h42t10

4.26 ≤ WCP ≤ 4.32
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-
6@
@

@@
@

@
@@ δCLdr

δCNdrq

m44h26

2.06 ≤ WCP ≤ 2.09

-
6@
@

@@
@

@
@@ δCLdr

δCNdr

q
jscm44h25t10

3.98 ≤ WCP ≤ 3.98

-
6@
@

@@
@

@
@@ δCLdr

δCNdr

q
jscm7h42t10

1.91 ≤ WCP ≤ 1.91

-
6@
@

@@
@

@
@@ δCLdr

δCNdrq

m7h42t10

2.10 ≤ WCP ≤ 2.11
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-
6

@
@@

@
@@ δCLdr

δCNdrq

m44h26

2.03 ≤ WCP ≤ 2.04

-
6

@
@@

@
@@ δCLdr

δCNdr

q
jscm44h25t10

3.84 ≤ WCP ≤ 3.84

-
6

@
@@

@
@@ δCLdr

δCNdr

q
jscm7h42t10

1.82 ≤ WCP ≤ 1.82

-
6

@
@@

@
@@ δCLdr

δCNdrq

m7h42t10

1.80 ≤ WCP ≤ 1.82



Worst-Case Performance Margin
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Generally, “robustness computations” refer to determining specific attributes of the

system performance degradation curve. The commands robuststab, robustperf

and wcgain all compute single scalar attributes of the system performance

degradation curve.
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Worst-Case Gain: wcgain
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The worst-case gain, wcgain, measure is the maximum achievable system gain over

all uncertain elements whose normalized size is bounded by 1.
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Worst-Case Gain: wcgain (cont’d)
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Determining the maximum gain over all allowable values of the uncertain elements is

referred to as a worst-case gain analysis. “Gain” refers to the frequency response

magnitude.
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Worst-Case Gain: wcgain (cont’d)
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WCGAIN can perform two types of analysis on uncertain systems:

pointwise-in-frequency worst-gain analysis

yields the frequency-dependent curve of

maximum gain, corresponds to maximum

value at each and every frequency.

peak-over-frequency worst-gain analysis

(default) computes the largest value of

frequency-response magnitude across all

frequencies.
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[MAXGAIN,MAXGAINUNC,INFO] = WCGAIN(SYS)

■ MAXGAIN contains

◆ UpperBound peak (across frequency) upper bound on

worst-case gain,

◆ LowerBound peak lower bound on worst-case gain.

◆ CriticalFrequency frequency at which the maximum

gain occurs.

■ MAXGAINUNC worst-case uncertainty values (of size UpperBound).

■ INFO Structure with the following fields:

Sensitivity: Structure of percentages corresponding to MAXGAIN

sensitivity to variations in each uncertainty level.

Frequency: Frequency vector used in analysis.

ArrayIndex: Array index (for arrays of uncertain systems)

where the maximum gain occurs. Value is scalar,



Worst-Case Margin: wcmargin
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Worst-case margin, wcmargin, calculates the largest disk margin such

that for values of the uncertainty and all gain and phase variations

inside the disk, the closed-loop system is stable.

[wcmargi,wcmargo] = wcmargin(L), (wcmargin(P,C))

Worst-case input and output loop-at-a-time gain/phase margins of the

feedback loop consisting of loop transfer function L with negative

feedback (C in negative feedback with P).

e - L
6−

1-dof architecture

e- C - P
6−

1-dof architecture

wcmargi and wcmargo are structures corresponding to the

loop-at-a-time worst-case, single-loop gain and phase margin of the

channel. wcmargi and wcmargo contain the fields:

■ GainMargin, PhaseMargin, Frequency, MarginSens



Worst-Case Sensitivity: wcsens
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wcsens calculates the worst-case sensitivity and complementary

sensitivity functions of a plant-controller feedback loop.

wcst = wcsens(L,type,scaling,opt)

wcst = wcsens(P,C,type,scaling,opt)

-d1 j

−
-

6
e1

P -e4

?j� d2�

?
e3

C�e2

6

Input Sensitivity (Si: TF ): (I + CP )−1



Worst-Case Sensitivity: wcsens
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wcst = wcsens(P,C,type,scaling,opt)

Each sensitivity substructures, WCST.Si, WCST.Ti, etc, contains five fields:

MaximumGain Lower bound, LowerBound, and upper bound, Up-

perBound, on the sensitivity function, maximum gain

at, CriticalFrequency

.

BadUncertainValues Structure of uncertain elements value which maxi-

mize the System gain.
System Sensitivity transfer matrix.

BadSystem Worst-case sensitivity transfer matrix (FRD object).

Sensitivity Each entry indicates local sensitivity of

MaximumGain.



Worst-Case Gain Option: wcgopt
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Used by wcgain, wcmargin, wcsens, and wcnorm

options = wcgopt(’name1’,value1,’name2’,value2,...)

Object Property Description

Sensitivity Margin sensitivity to individual uncertainties. Default ’on’.

LowerBoundOnly If LowerBoundOnly is ’on’, only lower bound computed. Default ’off’

FreqPtWise Set to 1 applies stopping criteria at every frequency point. Default = 0.

ArrayDimPtWise For indices specified for stopping

Default Default values of all wcgopt properties

Meaning Description of all wcgopt properties

VaryUncertainty % uncertainty variation for sensitivity calculations. Default is 25.

AbsTol Upper and Lower Absolute Stopping Tolerance. Default = 0.02.

RelTol Upper/Lower Relative Stopping Tolerance. Default = 0.05.

MGoodThreshold Multiplicative (UpperBound) Stopping Threshold, Default = 1.04.

AGoodThreshold Additive (UpperBound) Stopping Threshold, Default = 0.05.

MBadThreshold Multiplicative (LowerBound) Stopping Threshold, Default = 5.

ABadThreshold Additive (LowerBound) Stopping Threshold, Default = 20.

NTimes Number LowerBound Restarts. Default = 2.

MaxCnt Number of LowerBound cycles. Default = 3.

MaxTime Maximum computation time (secs). Default = 720.
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MUSYN developed tools and performed analysis as part of Barron

Associates Inc., Alec Bateman PI, ROME Phase II SBIR contract.

■ 5.5% dynamically-scaled, remotely piloted, twin-turbine swept

wing aircraft, NASA Langley Research Center.

■ Simulation modified to include 18 parametric aerodynamic

coefficients uncertainties, 8 dynamic actuator uncertainties.
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■ Aerodynamic coefficient and unmodeled actuator dynamic

uncertainties in GTM plant block.

■ NASA’s baseline level 2 controller

Any modifications to the original gtm_design_r415
simulation have been prefixed with "BAI".  BAI−added

blocks are colored magenta, and NASA blocks with
internal modifications are outlined in magenta.

All other blocks are unaltered from the original.  

BAI Output

3

Linearize Output

2

Trim Output

1

InSurf

Aux

Xout

SelectOutputs NamedStore

sout

GTM Design−Simulation Model
Subversion Info: $LastChangedRevision: 415 $

Last modified by gary balas on 15−Jul−2009 23:26:07

Input Generator

surfaces  

throttle 

winds

AC_Params

GTM_plant

surface cmds

throtle cmds

winds

EOM_Xdot

AuxVars

Thrust

SurfacePos

EOM_State

Clock

BAI Outputs

bai_outputs

AC_parameters

Linearizing Input

1

surf

EAS_TAS_ALP_BETA_GAM_GNDT

eom

aux

thrust

EOMstates

xdot

time
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Yaw and roll axes controller scheduled with air speed: KCAS 1 at 50

knots, 0 at 100 knots

■ 95 knots, 1320 ft altitude: roll and yaw controllers effectively

open-loop.

■ 65 knots, 1320 ft altitude

The cyan blocks were cut and paste from NASA’s model (BaselineFCL−S2.mdl)
that Austin Murch emailed March 19, 2009 to Bateman and Lichter.

Ail El Rud

1

rad to deg3

−K−

rad to deg2

−K−

rad to deg1

−K−

lonscl

1

latscl

1 Yaw InnerLoop

RudCmd (deg)

rdeg  (deg)

CAS (kts)

Rudder (deg)

Internal

Roll InnerLoop

RollCmd (deg)

pdeg  (deg)

CAS (kts)

AILLC (deg)

AILRC (deg)

Internal

Pitch InnerLoop

PitchStick (nd)

PitchTrim (nd)

Engage

alpha (deg)

qdeg (deg)

qbar (psf)

Weight (lbs)

DropOut (ND)

ElCmd (deg)

alpha_cmd (deg)

ELE (deg)

alpha_trim_cmd (deg)

Internal

Pilot pedal

pilot_pedcmd

Pilot
longitudinal stick

pilot_longcmd

Pilot
lateral stick

pilot_latcmd

PedSwitch

LongSwitch

LatSwitch

AuxVars

EOM_State

0

0

0

0

22

1

0

0

<pb>

<qb>

<rb>

<alpha>

<qbar>

<eas>

rudcmd

ptichcmd

rollcmd



Aerodynamic and Unmodeled Dynamic Uncertainty
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Parametric uncertainty in six body-axis aerodynamic coefficients: Cu, Cv, Cw, Cp,

Cq, and Cr. Multiplicative input uncertainty is used to model actuator uncertain

dynamics.

% Body aero coefficients, increments from nominal (+/- 20%)

gainCu = ureal(’gain_Cu’,0,’PlusMinus’,0.2);

gainCv = ureal(’gain_Cv’,0,’PlusMinus’,0.2);

gainCw = ureal(’gain_Cw’,0,’PlusMinus’,0.2);

gainCp = ureal(’gain_Cp’,0,’PlusMinus’,0.2);

gainCq = ureal(’gain_Cq’,0,’PlusMinus’,0.2);

gainCr = ureal(’gain_Cr’,0,’PlusMinus’,0.2);

bai_usys_C6 = diag([gainCu, gainCv, gainCw, gainCp, gainCq, gainCr]);

W_rudder = 1;

bai_usys_rudder = 1+W_rudder*ultidyn(’gain_rudder’,[1 1],’Bound’,0.2);



Aerodynamic and Unmodeled Dynamic Uncertainty
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To reduce the time associated with flight test envelope expansion,

flying the aircraft along a specific trajectory which encounters a variety

of operating conditions can be used to complement standard fixed

operating point tests.

■ ulinearize (R2009b) generates a LTI uncertain system at a

given operating point(s) based on linearize.

■ Generate a family of uncertain linearized models along a

trajectory.



GTM Flight Data and Simulation: 1
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GTM Flight Data and Simulation: 2
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GTM Flight Data and Simulation: 3
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GTM Trajectory: u = 95ft/s, 1320ft altitude
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Linear analysis along constant bank angle turn

loop_op = operpoint(’gtm_design’);

ActOut = [’gtm_design/GTM_plant/Actuators/Bus Selector2’];

loopio_gtm(1) = linio(ActOut,1,’outin’,’on’); % Lail_cmd

loopio_gtm(2) = linio(ActOut,2,’outin’,’on’); % Rail_cmd

loopio_gtm(3) = linio(ActOut,5,’outin’,’on’); % elev_cmd

loopio_gtm(4) = linio(ActOut,6,’outin’,’on’); % rud_cmd

tlin = [1 5 9 11 14 16 18 20];

[ugtmloop,ugtmloopOP] = ...

ulinearize(’gtm_design’,tlin,loopio_gtm,loop_op);
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Classical gain and phase margins, worst-case margins

[cm_gtmloop,dm_gtmloop] = loopmargin(-ugtmloop.Nominal);

om = logspace(-1,1.5,40);

opt = wcgopt(’ArrayDimPtWise’,1,’MaxTime’,0,’Sensitivity’,’off’);

ugtmloopg = frd(ugtmloop,om);

for i=1:length(tlin)

[wcmargi,wcmargo] = wcmargin(-ugtmloopg(:,:,i),opt);

win{i} = wcmargi;

wout{i} = wcmargo;

end

Excellent margins up to 11 seconds, which corresponds to air speeds

between 55 and 65 ft/s, 40 to 50 deg bank angle



GTM Analysis: u = 95ft/s, 1320ft altitude
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Time = 9 seconds Time = 11 seconds

>> dm_gtmloop(1,3) >> dm_gtmloop(1,3)

ans = ans =

GainMargin: [0.0163 61.5273] GainMargin: [0.0193 51.7716]

PhaseMargin: [-88.1377 88.1377] PhaseMargin: [-87.7869 87.7869]

Frequency: 17.8939 Frequency: 16.4869

>> win{3}(1) >> win{3}(1)

ans = ans =

GainMargin: [0.0332 30.0920] GainMargin: [1 1]

PhaseMargin: [-86.1934 86.1934] PhaseMargin: [0 0]

Frequency: 15.1178 Frequency: 0.4375

WCUnc: [1x1 struct] WCUnc: [1x1 struct]

Sensitivity: [] Sensitivity: []



GTM Flight Data and Simulation: 1
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GTM Flight Data and Simulation: 2
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GTM Flight Data and Simulation: 3
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Poor margins at 11 sec, air speed 60 to 70 ft/s, 25 to 30 deg bank angle.
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Worst-case Simulation
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■ Worst-case simulation is a time-domain robust performance test

performed directly on a parameterized nonlinear model.

■ wcsim performs worst-case simulation on a nonlinear Simulink

model that contains uncertain real parameters.

■ Advantage: There is great flexibility in choosing time-domain

performance metrics.

■ Disadvantage: Gradient based optimization can be

time-consuming and is not guaranteed to find the globally

optimal solution.



Worst-case Simulation Problem
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Consider a parameterized set of nonlinear ODEs:

ẋ(t) = f(x(t), t, p)

y(t) = h(x(t), t, p)

x(0) = x0

p ∈ P ⊆ R
np is a constant parameter vector upon which the model depends and P is

the set of allowable parameter value. The worst-case simulation problem is:

max
p∈P

G(yp)

subject to: yp is the output of the nonlinear system for parameter p

l ≤ H(yp) ≤ u

where G and H are objective and constraint functions. For example, G(y) := ‖y‖∞
is the peak magnitude of y and G(y) :=

[∫ tf

0
yT (t)y(t)dt

]1/2

is the L2 norm.

The following slides describe how this problem is formulated in Simulink.



wcsim: Parameters
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■ Robust Control Toolbox (RCT) Uncertain State Space (USS) blocks can be

used to create models of parameter-dependent nonlinear systems within

Simulink.

■ A Simulink model that has USS blocks depending on np real parameters is in

the form of a parameterized nonlinear ODE.

■ The allowable set of parameter vectors is in the form

P := {p ∈ R
np : p

i
≤ p ≤ p̄i, i = 1, . . . , np}.



wcsim: Objective Function
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■ The objective function for a worst-case sim-

ulation is specified with an RCT Objective

Function block.

■ The Objective Function block is similar

to a To Workspace block with the Save

Format set to Structure With Time.

■ The objective function is specified through the

block dialog box.

■ Simulating the system will create an output

variable in the workspace with the all the fields

generated by a To Workspace block: time,

signals, and blockName.

■ The output variable will have the additional

field objective. The Objective function

value is stored in objective.value.



wcsim: Constraint Function
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■ The constraints for a worst-case simulation are

specified with RCT Constraint Function

blocks.

■ The Constraint Function blocks are simi-

lar to the Objective Function blocks.

■ The constraint function is specified through

the block dialog box.

■ The output variable generated by a

Constraint Function will have the

following fields in addition to the normal To

Workspace fields: constraint.value,

constraint.lowerbound, and

constraint.upperbound.



wcsim: Optimization
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■ wcsim uses fmincon to perform the gradient-based optimization and thus

requires the optimization toolbox.

■ wcsim returns the worst-case uncertainties in the structure wcuvars.

■ The total computation time for wcsim with no constraint blocks will be roughly

(np + 1)Mτ where τ is the computation time for one simulation and M is the

number of iterations.

◆ Unconstrained problems with np parameters require np + 1 objective

function evaluations per iteration.

◆ Constrained problems will require additional evaluations and hence will

take more time.

■ The convergence of fmincon depends on the starting value of the parameter

vector.

◆ The initial parameter values can be specified in the Uncertainty Values

field of the USS blocks.



GTM Parameter Uncertainties

c©MUSYN Inc. 2005 CIRA Short Course – 89 / 95

The GTM model was modified to have a total of np = 18 real uncertainties.

■ The forces and moments in the GTM model are calculated using six body-axis

aerodynamic coefficients: Cu, Cv, Cw, Cp, Cq, and Cr.

■ Each of these six coefficients is a sum of three terms: 1) basic airframe

2)control surface increments, and 3) angular rate increments.

■ 20% uncertainty was placed on each of the basic airframe and control surface

coefficients.

■ 40% uncertainty was placed on each of the angular rate increments.



GTM Unconstrained Worst-Case Simulation
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■ For each attitude signal we first performed an

(unconstrained) worst-case simulation with all

combinations of maximizing and minimizing

the L∞ and L2 norms.

■ We set the optimization options to restrict

fmincon to at most four iterations.

■ All parameters were initialized at their nominal

values and all dynamic actuator uncertainties

were held fixed at their nominal values.

■ In all simulations, the baseline GTM controller

was used with the pilot inputs shown in the

figure.
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GTM Unconstrained Worst-Case Simulation Results
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Cost Func. Comp. Time Step 0 Step 1 Step 2 Step 3

maxL∞(φ) 977.4 1.11 1.56 1.98 2.00

minL∞(φ) 888.0 1.11 0.26 0.25 0.24

maxL2(φ) 935.5 4.29 6.05 6.36 6.36

minL2(φ) 867.8 4.29 0.82 0.81 0.81

maxL∞(θ) 905.2 0.64 0.65 0.88 0.89

minL∞(θ) 893.9 0.64 0.53 0.50 0.48

maxL2(θ) 1015.0 1.74 2.37 2.78 2.78

minL2(θ) 907.8 1.74 1.60 1.46 1.44

maxL∞(ψ) 1045.6 7.87 11.13 15.08 15.10

minL∞(ψ) 843.8 7.87 2.54 X X

maxL2(ψ) 1039.2 26.79 50.81 51.02 51.06

minL2(ψ) 1014.1 26.79 11.90 11.88 11.84

Table 1: Comparison of worst-case attitude and computation times

It takes roughly τ = 11.72sec to perform one simulation of the GTM Simulink model. The

total time to run wcsim is expected to be (M + 1)(np + 1)τ = 891 sec. This estimate is in

fair agreement with the actual computation times provided in the Table.
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Figure 1: Nominal and wcsim Roll for maxL∞(φ)
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Figure 2: Nominal and wcsim Roll for minL∞(φ)



GTM Constrained Worst-Case Simulation
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■ One RCT Constraint Function block was added to the GTM Simulink

model to constrain EAS to be less than 175 knots.

■ The objective function is set to maximize the L∞ norm of φ.

■ We set the optimization options to restrict fmincon to six iterations.

◆ Six iterations were needed for convergence in this example.

■ After five iterations, the objective function is ‖φ‖∞ = 1.66. For comparison,

the unconstrained worst-case simulation achieved an objective function of 2.00.

■ wcsim returns parameter values which cause the EAS to just touch the

constraint.

■ The total computation time was 2169.2 sec.



GTM Constrained Worst-Case Simulation Results
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Figure 3: Nominal, unconstrained wcsim, wcsim with EAS Constraint
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