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Abstract

We propose formal means for synthesizing switching protocols that determine the sequence
in which the modes of a switched system are activated to satisfy certain high-level specifications
in linear temporal logic. The synthesized protocols are robust against exogenous disturbances
on the continuous dynamics. Two types of finite transition systems, namely under- and over-
approximations, that abstract the behavior of the underlying continuous dynamics are defined.
In particular, we show that the discrete synthesis problem for an under-approximation can be
formulated as a model checking problem, whereas that for an over-approximation can be
transformed into a two-player game. Both of these formulations are amenable to efficient,
off-the-shelf software tools. By construction, existence of a discrete switching strategy for the
discrete synthesis problem guarantees the existence of a continuous switching protocol for the
continuous synthesis problem, which can be implemented at the continuous level to ensure
the correctness of the nonlinear switched system. Moreover, the proposed framework can be
straightforwardly extended to accommodate specifications that require reacting to possibly
adversarial external events. Finally, these results are illustrated using three examples from

different application domains.
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I. INTRODUCTION

The objective of this paper is synthesizing switching protocols that determine the
sequence in which the modes of a switched system are activated to satisfy certain high-
level specifications formally stated in linear temporal logic (LTL). Different modes may
correspond to, for example, the evolution of the system under different, pre-designed
teedback controllers [1], [2], so-called motion primitives in robot motion planning [3], [4],
or different configurations of a system (e.g., different gears in a car or aerodynamically
different phases of a flight). Each of these modes may meet certain specifications but
not necessarily the complete, mission-level specification the system needs to satisfy.
The purpose of the switching protocol is to identify a switching sequence such that the
resulting switched system satisfies the mission-level specification.

Specifically, given a family of system models, typically given as ordinary differential
equations potentially with bounded exogenous disturbances, and an LTL specification,
our approach builds on a hierarchical representation of the system in each mode. The
continuous evolution is accounted for at the low level. The higher level is composed of a
finite-state approximation of the continuous evolution. The switching protocols are syn-
thesized using the high-level, discrete evolution. Simulation-type relations [5] between
the continuous and discrete models guarantee that the correctness of the synthesized
switching protocols is preserved in the continuous implementation.

We consider two types of finite-state approximations for continuous nonlinear sys-
tems, namely under- and over-approximations. Roughly speaking, we call a finite tran-
sition system 7 an under-approximation if every transition in 7 can be continuously
implemented for all allowable exogenous disturbances. In the case in which an under-
approximation based finite-state abstraction is used, the switching protocol synthesis can
be formulated as a model checking [6] problem. On the other hand, a finite transition
system 7 is called an over-approximation if for each transition in 77, there is a possibility
(due to either the exogenous disturbances or the coarseness of the approximation) for
continuously implementing the strategy. We account for the mismatch between the
continuous model and its over-approximation as adversarial uncertainty and model

it nondeterministically. Consequently, the corresponding switching protocol synthesis
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problem is formulated as a two-player temporal logic game (see [7] and references
therein and the pioneering work in [8]). This game formulation also allows us to incor-
porate adversarial environment variables that do not affect the dynamics of the system
but constrain its behavior through the specification.

Fragments of the switching protocol synthesis problem considered here have attracted
considerable attention. We now give a very brief overview of some of the existing work
as it ties to the proposed methodology (a thorough survey is beyond the scope of this
paper). Jha et al. [9] focuses on switching logics that guarantee the satisfaction of certain
safety and dwell-time requirements. Taly and Tiwari [10], Cdmara et al. [11], Asarin et
al. [12], and Koo et al. [13] consider a combination of safety and reachability properties.
Joint synthesis of switching logics and feedback controllers for stability are studied by
Lee and Dullerud [14]. The work by Frazzoli et al. [3], [4] on the concatenation of a
number of motion primitives from a finite library to satisfy certain reachability prop-
erties constitutes an instance of switching protocol synthesis problem. Our work also
has strong connections with the automata-based composition of the so-called interfaces
that describe the functionality and the constraints on the correct behavior of a system
[15].

The main contributions of the current paper are in extending the family of systems and
specifications in switching protocol synthesis. The proposed methodology is applicable
to a large family of system models potentially with exogenous disturbances along with
an expressive specification language (LTL in this case). The use of LTL enables to handle
a wide variety of specifications beyond mere safety and reachability, as well as to
account for potentially adversarial, a priori unknown environments in which the system
operates (and therefore its correctness needs to be interpreted with respect to the allow-
able environment behaviors). Furthermore, the methodology improves the flexibility of
switching protocol synthesis by merging ideas from multiple complementing directions
and offering options that trade computational complexity with conservatism (and ex-
pressivity). For example, the resulting problem formulation with under-approximations
of continuous evolution is amenable to highly-optimized software for model checking
[16], [17], yet at the expense of increased conservatism in modeling. On the other hand,

over-approximations are potentially easier to establish, yet the resulting formulation is
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a two-player temporal logic game (with publicly available solvers [18], [7] that are less
evolved compared to the currently available model checkers). Another trade-off is in
the family of two-player games considered here. Such games with complete LTL speci-
fications is known to have prohibitively high computational complexity [19]. Therefore,
we focus on an expressive fragment of LTL, namely Generalized Reactivity (1), with
favorable computational complexity [7].

The remainder of the paper is organized as follows. In the next section, we introduce
finite-state approximations for nonlinear systems subject to exogenous disturbances, and
formulate the switching synthesis problem under consideration. In Section III, we solve
the switching protocol synthesis problem for under- and over-approximations via model
checking and a two-player game approach, respectively. In Section IV, we present three
illustrative examples to demonstrate our results. A brief discussion on how to obtain

under- and over-approximations is included in Appendix A.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. Continuous-time switched systems

Consider a family of nonlinear systems,

x=fx,d), peP, (1)

where x(t) € X C R" is the state at time t and d(t) € D C R is the exogenous disturbance,
P is a finite index set, and { foipe 73} is a family of nonlinear vector fields satisfying
the usual conditions to guarantee the existence and uniqueness of solutions for each of

the subsystems in (1). A switched system generated by the family (1) can be written as

X = folx,d), ()

where ¢ is a switching signal taking values in . The value of o at a given time ¢
may depend on t or x(t), or both, or may be generated by using more sophisticated
design techniques [2]. We emphasize that, although the above formulation does not
explicitly include a control input in its formulation, it can capture different situations
where control inputs can be included, e.g., within each mode p, we may either assign

a constant valued control input u,, which can further belong to a finite number of

September 16, 2011 DRAFT



DRAFT 5

quantized levels {u},, s, ,ull,j” } C R™, or choose a feedback controller u(t) = K,(x(t)).
Depending on different applications, each mode in (1) may represent, for example, a
control component [15], [20], a motion primitive (which belongs to, e.g., a finite library
of flight maneuvers [3], [4], or a set of pre-designed behaviors [21]), and, in general,
an operating mode of a multi-modal dynamical system [9], [10]. To achieve complex
tasks, it is often necessary to compose these basic components. The composition can be
enforced at a high-level control layer by implementing a switching protocol for mission-
level specification. Designing correct switching protocols, however, can be a challenging
issue [9], [12], [13], [15].

The goal of this paper is to propose methods for automatically synthesizing o such
that solutions of the resulting switched system (2) satisfy, by construction, a given linear
temporal logic (LTL) specification, for all possible exogenous disturbances. LTL is a
rich specification language that can express many desired properties, including safety,
reachability, invariance, response, and/or a combination of these [22] (see also [23] for

examples).

B. Problem description and solution strategy

Before formally stating the problem, we present a schematic description of the prob-
lem and its solution approach. Given a family of system models in (1) and its specifi-
cation expressed in LTL, we synthesize a switching control protocol that, by construc-
tion, guarantees that the system satisfies its specification for all allowable exogenous
disturbance. Within the same formulation, we also aim to incorporate environmental
adversaries, which do not directly impact the dynamics of the system but constrain
its behavior through the specification, and synthesize effective switching controllers for
all valid environment behaviors. The solution of this problem enables us to compose
available controllers, which are predesigned to meet certain specifications, to achieve a
high-level specification, as illustrated in Figure 1.

Based on the continuous-time nonlinear system model (1), our hierarchical approach
to the switching synthesis problem consists of two steps.

(i) We first establish finite-state approximations of the family of systems (1), which

are a family of finite transition systems that approximate the dynamics in each
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Fig. 1: P represents a plant subject to exogenous disturbances, {K;(P): i=1,--- ,N}is a
family of controllers, e represents environmental adversaries, which do not directly im-
pact the dynamics of the system but constrain its behavior through the specification. The
objective is to design ¢ such that the overall system satisfies a high-level specification

@ expressed in LTL.

mode.
(i) We then synthesize a switching protocol based on high-level, discrete abstraction
that, when continuously implemented, ensures the correctness of the trajectories

of the resulting switched system (2).

More specifically, we formulate two different types of discrete abstractions, namely
under-approximation and over-approximation, respectively. For an under-approximation,
the synthesis of a switching protocol is formulated as an LTL model checking [6]
problem, which is amenable to highly optimized software implementations [16], [17].
For an over-approximation, we formulate the problem as a two-player temporal logic
game. While solving two-player games with general LTL winning conditions is known
to have prohibitively high computational complexity [19], we restrict ourselves to an
expressive fragment of LTL, namely Generalized Reactivity (1), with favorable compu-
tational complexity [7].

While exogenous disturbances are accounted for in the continuous level, adversarial
environment behaviors are diverse and not necessarily amenable to modeling as an or-
dinary differential equation. Therefore, we defer the formal introduction of environment

variables to Section III-B, where a two-player game formulation allows us to incorporate
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adversarial environment variables that do not affect the continuous-level dynamics of

the system but rather constrain its behavior through the high-level specification.

C. Finite-state approximations

To formally state the synthesis problem, we define two types of finite-state abstrac-
tions of the continuous evolution in (1) and introduce the specification language LTL.
LTL formulas are built upon a finite number of atomic propositions. An atomic proposition
is a statement on system variables of interest that has a unique truth value (True
or False) for a given value (called state) of each system variable. To formulate the
switching synthesis problem, we are at least interested in two types of variables: the
plant variable x and the switching mode variable p. Let I1 := {n;, mp, --- , 71,} be a set
of atomic propositions. For example, each proposition 7t; € Il can represent a domain
in R” and a set of modes in P of interest. Formally, for system (2), we associate an
observation map

h: R'xP — 21

which maps the continuous states and the discrete modes to a finite set of propositions.
Without loss of generality, we consider & to be defined on the whole state space instead
of some bounded invariant set. We also allow overlapping set of propositions since h
is set-valued instead of single-valued.

Abstractions for each of the subsystems in (1) can be considered by defining an
abstraction map T : R" — Q, which maps each state x € R” into a finite set Q :=
{gi:i=1,---,M}. The map T essentially defines a partition of the state space R" by
{T‘l(q): qe€ Q}. We shall refer to elements in Q as discrete states of an abstraction.

Finite-state approximations are defined in the following.

Definition 1. A finite transition system is a tuple 7 := (Q, Qy, =), where Q is a finite set
of states, Q) C Q is a set of initial states, and »C Q X Q is a transition relation. Given

states g, ¢’ € Q, we write ¢ — g’ if there is a transition from g to ¢’ in 7.
Consider a family of finite transition systems

{7;, = (Q QD) pe 50}. 3)
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Definition 2. The family of finite transition systems in (3) is said to be an under-

approximation of (1) if the following two statements hold.
(i) Given states g, 7 € Q such that q° # g, if there is a transition g 5 q’, then for
all xop € T™!(g), there exists some 7 > 0 such that, for all exogenous disturbances

d: [0,7] » D CRY, trajectories & of pth subsystem of (1) starting from x, satisfy
EmeTq) EHeT(PUT() telor].

(ii) For any g € @Q, there is a self-transition g 5 g, then, for all xy € T"'(g) and all
exogenous disturbances d : [0,00) — D C R?, trajectories & of the pth subsystem of

(1) starting from x, satisfy
& eT(g), Vtel0,0),

i.e., T"(g) is a positively invariant set for the pth subsystem under all exogenous

disturbances.

Definition 3. The family of finite transition systems in (3) is said to be an over-approximation
for (1) if the following two statements hold.
(i) Given states g, ¢ € Q such that g’ # g, there is a transition g 5 q’, if there exists
xo € T"Y(g), © > 0, and some exogenous disturbance d : [0,7] —» D C R? such that

the corresponding trajectory & of the pth subsystem of (1) starting from x,, i.e.,

&:10,7] = R"* with
E0)=x0, &) = fp(&(D),d(t)), Yte(0,7),

satisfies

SO eTMg) EHeT quUTg), telo,r].

(ii) For any g € Q, there is a self-transition g LN g, if there exists xy € T"'(g) and some
exogenous disturbance d : [0,00) — D € R? such that the complete trajectory & of

the pth subsystem of (1) on [0, co) starting from x is contained in T7'(g).

Intuitively, in an over-approximation, a discrete transition g LN g’ is included in 7, as
long as there is a possibility (either induced by disturbances or a coarse partition) for

the continuous system to implement the transition, whereas, in an under-approximation,
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a discrete transition g 5 g’ is included in 7, only if the continuous flow can strictly
implement the transition. In other words, an under-approximation includes only transi-
tions that can be implemented by the continuous dynamics and an over-approximation
includes all possible transitions.

In both approximations, time is abstracted out in the sense that we do not care how
much time it takes to reach one discrete state from another. As the focus of this paper is
on the automatic synthesis of switching protocols, we shall assume that we are given or
we can construct a finite abstraction of the subsystems in (1), which is either an under-
approximation or an over-approximation by Definitions2 and 3. A brief discussion on
how to obtain such approximations is given in Appendix A (a detailed study is beyond
the scope of this paper and subject to current research).

For the above finite approximations to be consistent with continuous dynamics, they

should preserve propositions of interest in the sense that for all x, y € R" and p € P,

T(x) = T(y) = h(x,p) = h(y,p), (4)

where /1 is the observation map defined earlier. In other words, if two continuous states
belong to the same subset of the continuous state space corresponding to the same
discrete state in @, they should map to the same propositions under .

The following definitions will be useful when we introduce the semantics of LTL
formulas in the next subsection. They are also used later to formally reason about the

correctness of the continuous implementations of a synthesized switching protocol.

Definition 4. Given a switching signal ¢ : R" — P, trajectories of the continuous-time

switched system (2) are piecewise differentiable functions from R* to IR" that satisfy

X(£) = fou(x(t),d(D), = to.

Without ambiguity, we can write trajectories as pairs (x(t), o(t)) or simply (x, o).

Definition 5. Given a sequence of modes pop1p,---, pi € P, i > 0, a switching execution of
the family of transition systems in (3) is a sequence of pairs (7, p) = (9o, P0)(q1, P1)(G2, P2) - -,

where gy € Q, and, for all i >0, g; € Q and g; LN Gis1-
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D. LTL Syntax and Semantics

We use linear temporal logic (LTL) [24], [22] to formally specify system properties.
Standard LTL is built upon a finite set of atomic propositions, logical operators -
(negation) and V (disjunction), and the temporal modal operators o (next) and U (until).

Formally, given a set of atomic propositions I, the set of LTL formulas over IT can
be defined inductively as follows:

(1) any atomic proposition 7t € IT is an LTL formula;

(2) if @ and ¢ are LTL formulas, so are ¢, op, ¢ V i, and ¢ U.

Additional logical operators, such as A (conjunction), — (material implication), and
temporal modal operators ¢ (eventually), and O (always), are defined by:

@) @AY ==(=pV -y);

(b) ¢ === AY;

(c) O :=TrueUep;

(d) Op :=-=0-¢.

A propositional formula is one that does not include any temporal operators.

In order to reason about the correctness of the trajectories that continuously imple-
ment the switching protocol synthesized at the discrete level, we shall interpret LTL over
both the continuous trajectories of (2) and discrete executions of (3) given by Definitions
4 and 5.

Continuous Semantics of LTL: An LTL formula for the continuous-time switching
system (2) is interpreted over its trajectories (x,0). Formally, given an LTL formula ¢
without the next operator 0, we can recursively define the satisfaction of ¢ over a
trajectory (x(t), o(t)) at time ¢, written (x(t), o(t)) E ¢, as follows:

(1) for any atomic proposition 7t € I'l, (x(t), 0(t)) & 7 if and only if 7 € h(x(t), o(t));

(2) (x(t),0(t)) £ ~p if and only if (x(t), o(t)) £ @;

(3) (x(t),0(t)) k@ v if and only if (x(t),o(t)) E ¢ or (x(t),o(t)) E 1; and

(4) (x(t),0(t)) £ ¢ UY if and only if there exists t' > t such that (x(t'),0(t')) £ ¢ and
(x(s),0(s)) E @ for all s € [t, ).

A trajectory (x,0) starting at t; is said to satisfy ¢, written (x, 0) k4, @, if (x(to), o(to)) F .

If the initial time is not significant, we simply write (x,0) F ¢.
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Remark 1. By allowing the observation map h to be defined on the product space
R"x %P, we are able to put temporal logic constraints on both the state and the switching
mode. Based on the above definition, O¢ holds at time ¢t if and only if ¢ is satisfied by
(x(t'),0(t")) at all future time t’ > t; O¢ holds at time ¢ if and only if ¢ is satisfied by
(x(t'),0(t')) holds at some time ' > t; and the path formula U intuitively expresses
the property that over trajectory (x(t), o(t)), @ is true until ¢ becomes true. For example,
(o(t) = p1)U(0(t) = p2) expresses that the switched system should stay in mode p; until
it eventually switches to mode p,. For p1 # py, (o(t) = p1)U(o(t) # p2) specifies that,
once in mode p;, the system is not allowed to directly switch to mode p,, which can
be useful to rule out unsafe mode transitions. Therefore, we are still able to express
sequential properties of the switching modes without using the next operator o in the

continuous-time setting.

Discrete Semantics of LTL: An LTL formula for a switched system given by the
family of transition systems (3) is interpreted over its switching executions. Given an
LTL formula ¢, we can recursively define the satisfaction of ¢ over a switching execution
(9,p) = (90, P0)(q1,p1)(G2, p2) - - - at position i, written (g;, pi) E ¢, as follows:

(1) for any atomic proposition 7 € I, (g;,p;) £ 7 if and only if there exists x; € T~(g,)
such that 7 € h(x;, p;);

(2) (qi,pi) F ~ if and only if (g pi) ¥ ¢;

(3) i pi) E Op if and only if (g1, pir1) F @;

(4) (gqi,p:) E @ V ¢ if and only if (g, pi) E @ or (g, pi) E Y;

(5) (gi,pi) E @ Uy if and only if there exists j > i such that (g;,p;) £ ¢ and (g, px) £ ¢ for
all k € [i, j).

A switching execution (g,p) = (9o, po)(q1, P1)(92,p2) - - - is said to satisty ¢, written (g,p) E

@, if (4o, po) E .

Remark 2. In the discrete semantics of LTL, the next operator o is allowed, mainly
to enforce the discrete transition relations. In addition, as noted in Remark 1, we may
be interested in specifying formulas such as (p = p1)U(p # p.), where p; # p,, which
excludes unsafe mode transition from mode p; to mode p,. As mentioned earlier, to

be able to solve the synthesis problem as a two-player game in polynomial time, we
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will restrict our LTL formulas to a subclass called Generalized Reactivity (1), or simply
GR(1), formulas. GR(1) formulas, however, do not allow explicit use of the until operator
U. The same specification, nevertheless, can be stated using the next operator o, for
example, by (p = p1) = o(p # p2). Indeed, we can show that the following two LTL

formulas have the same truth value and therefore are equivalent

O((p =p1) = (p=p)U(p # p2)) = O((p = p1) = Op # p2))-

E. Relationship between the continuous and discrete LTL semantics

We discuss the relationship between the continuous LTL semantics and discrete LTL

semantics as follows.

Definition 6. Given a switching execution (q,p) = (4o, po)(q1,p1)(92,p2) - -+, a trajectory
(x,0) is said to be a continuous implementation of (q,p) starting from ¢, if there exists a

sequence of times t) < t; <, <--- such that
() €T q), o) =py, Ve[t ber), VkeZ'.

We use the notation (x,0) <y, (g,p) to represent the above implementation. Furthermore,

the implementation is said to be non-Zeno, if ty — oo as k — oo.

Proposition 1. Let ¢ be an LTL formula without the next operator 0. Given a switch-
ing execution (q,p) = (90,P0)(q1,P1)(q2,p2) - -- and a trajectory (x, o), starting at ¢y, that

continuously implements (g, p) in the sense of Definition 6, i.e., (x,0) <4, (9,p), then
(g9,p) E@ if and only if (x,0) Ey, @.

Proof: The proposition can be proved recursively. For simplicity, we use < to
indicate “if and only”.

We first show that the statement of the proposition holds for all atomic propositions.
Let 7 € I1. By definition, (go,po) F 7 implies that there exists xo € T~!(gy) such that
7t € h(xo, po)- Note that x(ty) € T'(go)) and o(ty) = po by the Definition 6. By (4), we have
h(x(to), po) = h(xo,po) and therefore 1 € h(x(ty), o(tp)), which is (x,0) E 7. On the other
hand, 7t € h(x(t), o(ty)) implies that there exists xo = x(t) € T~1(go) such that 7 € h(xo, po),

which shows (qo, po) E 7.
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Now suppose that the proposition holds for two LTL formulas ¢ and ¢, and we want

to show it also holds for the formulas —¢, ¢ V ¢, and ¢ UY. Indeed, we have

(9o, po) E =p &= (qo, po) ¥ ¢ <= (x(to), o(to)) ¥ ¢ < (x(to), o(to)) F =@,

and

(g0, po) E@ V1 & (go,po) E ¢ or (qo,po) E ¢
& (x(to), 0(to)) F @ or (x(tp),o(ty)) F P & (x(ty), o(ty)) F @ V .

To show the equivalence for ¢ U1, consider two statements:
(a) there exists some j > 0 such that (q;,p;) E ¢ and (qx, px) F @ for all k € [0, j);
(b) there exists some t > t, such that (x(t), o(t)) £ ¥ and (x(s), 0(s)) £ ¢ for all s € [to, ).
Here, (a) characterizes (qo,po) F ¢ Uy and (b) characterizes (x(ty), o(tg)) E @ Up. We
first suppose that (a) holds for some j > 0 and claim that (b) holds for t = t;. To this
end, observe that for each s € [ty t], (gk.,pr.) = (T(x(s)),0(s)) corresponds to one pair
in the finite sequence (qo, Po)(q1,p1) - (4;,p;). Moreover, by definition, (x(s), (s)) is an
implementation of the execution (gx,, px.)(Gk.+1, Pr.+1) - - -, starting at time s. Therefore, (b)
must be true by the recursive assumption. On the other hand, if (b) holds for some ¢,
we can pick j > 0 such that t € [t;,t;;1) and show that (a) holds for this j in a similar
way.

Therefore, we have shown the equivalence for all LTL formulas without the next

operator. u

F. Problem Formulation

Now we are ready to formally state our switching synthesis problems.

Continuous Switching Synthesis Problem: Given a family of continuous-time sub-
systems in (1) and a specification ¢, synthesize a switching strategy that generates only
correct trajectories (x,0) in the sense that (x,0) E ¢.

Discrete Switching Synthesis Problem: Given a family of finite transition systems
in (3) and a specification ¢, synthesize a switching strategy that generates only correct

switching executions (g,p) in the sense that (g,p) F ¢.
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We focus on the discrete synthesis problem and propose two different approaches
depending on the types of abstractions in the sense of Definitions 2 and 3. It will be
shown that, by construction, our solutions to the discrete switching synthesis problems
from both approaches can be continuously implemented to generate a solution for the

continuous switching synthesis problem.

III. SyNTHESIS OF SwiTCHING PROTOCOLS

In this section, we propose two approaches, one for each of the two types of finite-state

approximations, to the discrete synthesis problem formulated in the previous section.

A. Switching synthesis by model checking

We start with the synthesis of switching protocol for an under-approximation of (1).
Given such a finite approximation, the discrete synthesis problem can be reformulated
as a model checking problem. Model checking [6], [25] is an automated verification
technique that, given a finite-state model of a system and a formal specification, system-
atically checks whether this specification is satisfied. If not, the model checker provides
a counterexample that indicates how the model could violate the specification. This
counterexample is usually given as an execution path that that violates the property
being verified [6]. This execution path can either be finite, which leads from the initial
system state to a single state that violates the property being verified, or be infinite,
which leads to a loop of states, which is repeated infinitely many times and violates
the property being verified. The counterexample being finite or infinite depends on the
property being verified. Roughly speaking, a counterexample for safety and invariant
properties is a finite path, while a counterexample for reachability and liveness prop-
erties is an infinite execution path [6].

Formally, to solve the switching synthesis problem by model checking, we construct
a product transition system (Q X P,Qy X Py, =) from the family of transition systems
{‘7},} in (3). Here Q X P is a set of system states that consist of switching modes # and
plant states Q, Q) X P represents initial states, and — C (QXP) X (@ X P) is a transition

relation: given states (q;, p;) and (q;, p;), there is a transition from (g;, p;) to (g;,p;) and we
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write (q;,pi)) — (qj,p)), if g LN g;, i.e., there exists a transition from g; to q; in the mode
pi-

We can solve a switching synthesis problem for a specification given by a temporal
logic formula ¢ in the following procedure:

1) Negate the formula ¢ to get —¢.

2) Given the transition system (@ X P, Q) X Py, =) and the LTL formula —¢, determine

if all executions of the transition system satisfy —¢.

The second step above is a model checking problem and can be solved by off-the-shelf
software, e.g., the SPIN model checker [17] and the NuSMV symbolic model checker
[16], with computational complexity that is linear in the size of the state space [6].
Solving this problem, there are two possible outcomes: (i) the model checker verifies
that —¢ is true for the transition system 7°; (ii) the model checker finds that —¢ is not
true and provides a counterexample.

We are particularly interested in case (ii), since it provides a switching strategy that
realizes ¢ and therefore solves our switching synthesis problem. Actually, a counterex-

ample given by the model checker provides either a finite or infinite path of the form

(q0,p0) = (q1,p1) = (G2, p2) = (@3, p3) = -+~ ()

that violates the formula —¢, or in other words, satisfies ¢. A switching strategy can be
extracted from a counterexample found by model checking and given in the form (5).
Switching Strategy: Given a counterexample in the form (5),
(i) if the path in (5) is infinite, we apply the switching sequence pop1pops - -+ to ensure
that the execution

@,p) = Go, Po)(q1, P1) (G2, P2)(q3,P3) - -+

satisfies ¢;
(i) if the path in (5) is finite and terminates at state (g, p;), we apply any switching

sequence with prefix popi1paps - - - pr to ensure that the execution

(q,p) = (90, Po)(q1, P1)(G2, P2)(q3,P3) - - - (G, ) - - -

satisfies .
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The switching protocol given by model checking is essentially an open loop strategy.
It gives a mode sequence, by executing which the system is guaranteed to satisfy the
specification. The correctness of the above switching strategy relies on the assumption
that executions under the switching strategy can replicate the same state sequence as
provided by the counterexample in the form (5). This assumption is implied if the family
of transition systems (3) are an under-approximation of (1) in the sense of Definition 2.

Formally, this is summarized in the following theorem.

Theorem 1. Given an under-approximation of (1), a switching strategy extracted from a
counterexample found by model checking and given in the form (5) solves the discrete
switching synthesis problem. This strategy can be continuously implemented to give a
solution to the continuous switching synthesis problem, provided that {Tp S P} is an

under-approximation of (1).

Proof: By definition, the switching strategy given by model checking with an under-

approximation of (1) is a definite sequence of discrete states

(q/ P) = (qO/ PO)(ql, pl)(qz, pZ)(q3, PS) R

such that (g,p) ¥ ¢. In view of Proposition 1, the theorem is proved, if we show that
the switching strategy generates trajectories that continuously implement the discrete
execution (g, p). The semantics of the above switching strategy applied to the switched
system (2) are as follows. Given any initial state x(0) € T~'(go), we let 0(0) = po. Therefore,
the corresponding trajectory x(t) follows the dynamics of X = f,(x, d). By the definition of
an under-approximation, the transition (qo, po) L (91, p1) being valid means that 37 > 0
such that
x(1) €T Hq) x() €T Hq) VT (q1), tel0,1]

We then let o(t) = p; and repeat the same argument. It is clear that the trajectory x(t)
generated this way implements (g, p) by Definition 6. |

We remark that even if, based on an under-approximation, a model checker verifies
that —¢ is true for the transition system 7, it does not necessarily mean that the
switching synthesis problem does not have a solution. It could be the case that transition

systems in (3), which serve as an abstract model for the underlying physical systems, are
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too crude for the switching synthesis problem to have a solution. A finer approximation

may be needed for the discrete synthesis problem to be solvable.

B. Switching synthesis by game solving

In this subsection, we consider the case in which the family of transition subsystems
in (3) are an over-approximation of (1). Our approach leverages recent work on reactive
synthesis [7], [26] of controllers for systems interacting with adversarial environments
[27], [23], where a control protocol is synthesized to generate a sequence of control
signals to ensure that a plant meets its specification for all allowable behaviors of
the environment. The synthesis problem is viewed as a two-player game between the
environment and the plant: the environment attempts to falsify the specification and
the plant tries to satisfy it.

We propose a temporal logic game approach to switching synthesis with an abstrac-
tion that gives an over-approximation. Due to nondeterminism inherent in an over-
approximation, we may not be able to exactly reason about the discrete state transitions
within each mode. Rather, we seek to construct mode sequences that can force the system
to satisfy a given specification despite the nondeterminism of the state transitions in
each mode. A game is constructed by regarding the discrete plant variable g as the
environment part, which tries to falsify the specification, and a switching mode p as the
controllable part, which tries to satisfy the specification. While automatic synthesis of
digital designs from general LTL specifications is one of the most challenging problems
in computer science [26], for specifications in the form of the so-called Generalized
Reactivity 1, or simply GR(1), formulas, it has been shown that checking its realizability
and synthesizing the corresponding automaton can be accomplished in polynomial time
in the number of states of the reactive system [7], [26].

We consider GR(1) specifications of the form

(P = (q)q - (Ps)/ (6)

where, roughly speaking, ¢, characterizes the non-deterministic transitions each subsys-
tems can make, and ¢; describes the correct behavior of the overall switching system.

Here, the non-deterministic transitions of the plant, specified in ¢,, are regarded as
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adversaries that try to falsify ¢,, while the switching mode is the controlled variable
that tries to force the overall system to satisfy ¢,. We emphasize that, within the
same framework, we can incorporate real environment into the system, by adding
environment variables e that explicitly accounts for adversaries. Such adversaries do
not impact the continuous dynamics of the system directly, but rather constrain its

behavior through GR(1) specifications of the form

® = (g A pe) = ¢s), ()

where ¢, specifies allowable environment behaviors and ¢ is a system level specifi-
cation that enforces correct behaviors for all valid environment behaviors. To be more
precise, for a € {g,s,e}, each @, in (7) has the following structure:
o= P A\ Op5, A N\ D003,
el el

where ¢f . is a propositional formula characterizing the initial conditions; ¢7; are tran-
sition relations characterizing safe, allowable moves and propositional formulas charac-
terizing invariants; and @3 ; are propositional formulas characterizing states that should
be attained infinitely often. Many interesting temporal specifications can be transformed
into this form. The readers can refer to [7], [26] for more precise treatment on how to
use GR(1) game to solve LTL synthesis in many interesting cases (see also [23] for more
examples). A winning strategy for the system, i.e., a strategy such that formula (7) is
satisfied, can be solved by a symbolic algorithm within time complexity that is cubic in
the size of the state space [7], [26].

We can formally describe our game approach for switching synthesis as follows.
Two-Player Game: A state of the game s = (¢,q,p) is in & X Q X P, where &, Q,
and % represent finite sets of environment states, plant states, and switching modes,
respectively. A transition of the game is a move of the environment and a move of the
plant, followed by a move of the switching mode. A switching strategy can be defined
as a partial function (sos1 - - - s;-1, (g1, €:)) = pr, which chooses a switching mode based on
the state sequence so far and the current moves of the environment and the plant. In
this sense, a switching strategy is a winning strategy for the switching system such that

the specification ¢ is met for all behaviors of the environment and the plant. We say that
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@ is realizable if such a winning strategy exists. If the specification is realizable, solving
the two-player game gives a finite automaton that effectively gives a state-feedback
switching protocol. More specifically, at each state, the system executes a switching
mode, which drives the system to a number of possible states that are allowed in an
over-approximation. By observing which state the system enters, the next switching
mode is chosen accordingly by reading the finite automaton. Figure 2 shows a typical
automaton given by solving a two-player game and how it is interpreted as a switching

strategy for the system.

Fig. 2: Part of a synthesized automaton that can be used to extract a switching strategy.
Shown in this figure, suppose that the system arrives at state number 6, where g = 2.
It chooses mode p = 3 according to the automaton. Following this mode, the system
may end up at three different states 4 = 5, 4 = 8, and g = 11, numbered as 15, 13,
14, respectively, due to non-deterministic state transitions in an over-approximation. By
observing which state the system enters next, a switching mode is chosen accordingly,
which eventually steers the system to a state with g = 10. Then mode p = 2 is chosen

and the system enters q = 9, where p = 4 is chosen as the next mode.

By exploiting properties of an over-approximation, we can show the following result.

Theorem 2. Given an over-approximation of (1), a switching strategy obtained by solv-

ing a two-player game solves the discrete synthesis problem. This strategy can be
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continuously implemented to give a solution to the continuous switching synthesis

problem, provided that {Tp :pE SD} is an over-approximation of (1).

Proof: By definition, the switching strategy given by solving a two-player game is
a finite automaton that represents the winning switching strategy for the system. At
each discrete step, the automaton provides a switching mode for all behaviors of the
environment and the plant. Again, in view of Proposition 1, the theorem is proved, if
we show that the switching strategy generates trajectories that continuously implement
some execution (¢, ¢, p) of the winning automata. The semantics of the above switching
strategy applied to the switched system (2) are as follows. Given any initial state
x(0) € T~1(g), we choose 0(0) = py from the allowable set of initial modes given by
the automaton. Therefore, the corresponding trajectory x(t) follows the dynamics of
X = fy(x,d). By the definition of an over-approximation, there are two possibilities.
First, x(t) could stay in T~!(go) for all t > 0. In this case, we must have the self-transition
9o A qo in the over-approximation. Second, there may exist some 7 > 0 and ¢; € Q such
that

x(1) €T Hq) x() €T Hg) VT Hq1), tel0,1].

In this case, we must have the transition g, A 1. In either case, we can choose the next
mode from the automata, by observing the evolution of the trajectory (among the two
possibilities above) and the environment’s move for e. Once a next mode is generated
at time 7, we repeat the same procedure from t = 7. It is clear that the trajectory x(t)

generated this way implements one discrete execution of the winning automata. |

Remark 3. Given a two-player game structure and a GR(1) specification, the digital
design synthesis tool implemented in JTLV [28] (a framework for developing temporal
verification algorithm [7], [26]) generates a finite automaton that represents a switching
strategy for the system. The Temporal Logic Planning (TuLiP) Toolbox, a collection of
Python-based code for automatic synthesis of correct-by-construction embedded control
software as discussed in [23], [29] provides an interface to JTLV, which has been used for
other applications [27], [23], [30], [29], [31], [32] and is also used to solve the examples

later in this paper.
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Remark 4. We have proposed two procedures for synthesizing switching protocols from
temporal logic specifications: one based on model checking and the other based on
temporal logic games. Model checking, of course, can be seen as a special case of game
solving. Yet there are certain trade-offs among computational complexity, conservatism
in models and approximations, and expressivity of specifications, which may make
one approach preferable to the other. On the one hand, model checking is amenable to
highly-optimized software [16], [17], with computational complexity that is linear in the
size of the state space [6], but it requires an under-approximation that needs to be de-
terministically implemented for all allowable exogenous disturbances. Such approxima-
tions are potentially difficult to obtain. On the other hand, over-approximations account
for mismatch between the continuous model and its approximation as adversarial un-
certainty and model it nondeterministically. Such approximations are potentially easier
to establish and also allow us to further incorporate environmental adversaries, yet the
resulting formulation is a two-player temporal logic game. While games with complete
LTL specifications is known to have prohibitively high computational complexity [19],
we can trade computational complexity with the expressivity of specifications. Here,
we focus on the GR(1) fragment of LTL. The resulting games can be solved with
computational complexity that is cubic in the size of the state space [7] (with publicly
available solvers [7], [18], [28] that are less evolved compared to the currently available
model checkers). Further reduction in computational complexity can be obtained by
restricting specifications to more limited fragments of LTL, e.g., one of the LTL formulas
Oy, Oy, Oy, OOy [34], or a boolean combination of formulas of the form Oy [33],

where 1 is a propositional formula (see [33] for more discussions).

C. Discussions on non-Zeno implementations

We discuss in this subsection the possibility of Zeno behavior in the continuous
implementations of a discrete strategy and propose appropriate assumptions to exclude
such behavior. For both approaches, model checking and two-player game solving, the
continuous implementations of the switching strategy correspond to an execution of
the discrete strategy, which is an infinite sequence of discrete states (g, p). Particularly,

for an execution of a switching strategy given by model checking, this sequence is
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deterministic in the sense that it is uniquely determined by the initial state (go, po). Due
to the finiteness of the abstraction, this infinite sequence consists of a possibly two parts,

a finite part and a periodic part. Explicitly, we can write it as

w
7

@,p) = (go, po)q1, p1) -+ - (g5, pf)((‘]fﬂ; Pre1) - (Gren Pf+l)) (8)

where | € Z* and w indicates a loop of states that are periodically repeated. According
to Definition 6, a Zeno implementation of (g,p) in (8) requires that the time sequence #;
approaches some finite value as k — oco. Here each #; corresponds to a triggering time of
new discrete even (g, px) in the above infinite sequence. Therefore, Zeno behavior can
happen only if the infinite loop part of the execution or a cycle can be implemented in
an infinitesimal time by a continuous trajectory. The following proposition can be used

to rule out Zeno implementation of the execution (g,p) in (8).

Proposition 2. If
I
ﬂ T-1(4s4) = 0, 9)
i=1
then all continuous implementations of (g, p) in (8) are non-Zeno.

Since T™X(q) N T~'(g’) = 0 for g # g, the above emptiness criterion is essentially on the
boundaries of the cells T‘l(qf+i). Furthermore, if we can check that trajectories imple-
menting the discrete transitions can only exit within a subset of the boundaries, such
as the so-called exit set in [35], the above emptiness criterion for non-Zenoness can be
checked for subsets of the partitions T~'(g f+i), which give more relaxed assumptions than
(9). We also remark that even if the assumption is not satistied for all possible executions
of the form (8), Zenoness can still be avoided at the discrete level by recomputing ab-
stractions such that the assumption holds, or by adding appropriate specifications to rule
out executions whose periodic part can violate (9). Particularly, since the discrete states
in the periodic part typically correspond to liveness specifications, by appropriately
designing abstraction and specifying liveness properties, Zenoness can be avoided.

An execution of a switching strategy given by solving a two-player game is slightly
different, which is read from a finite-state automaton with states of the form (e, g, p). In

this case, we look at simple cycles in the finite automaton, i.e., directed paths in the
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tinite automata that start and end with the same state, without no other repeated states
in between. A similar criterion as (9) can be imposed to avoid Zeno executions, which
assumes that ﬂﬁzl T-'(q:) = 0, where {(e;, gi;,pi) : i =1,---,1} enumerates the states in a

simple cycle of length [, for all simple cycles in the synthesized finite automaton.

IV. ExaMPLES
A. Temperature control

Consider a thermostat system [9], [36] with four modes, ON, OFF, Heating, Cooling,
as shown in Figure 3, where the heating and cooling modes are included to capture
what happens while the heater is heating up to a desired temperature and cooling
down to an allowable temperature, respectively. The dynamics of the four modes are
also shown in Figure 3, where x denotes the room temperature and y the temperature
of the heater. In the OFF mode, the temperature changes at a rate proportional to the
difference between the room temperature x and the outside temperature, which is equal
to 16 in this case, according to Newton’s law of cooling. In other modes, the change
is at a rate proportional to the difference between the room temperature x and the
temperature y of the heater. In the ON mode, the temperature of the heater is kept
constant. In the heating mode, the temperature of the heater increases to 22 at a rate
0.1 per second; in the heating mode, the temperature of the heater decreases to 20 at a
rate 0.1 per second.

We want the system to satisfy the following specifications:

(P1) Starting from any room temperature x and heater temperature y, the system has
to reach a room temperature between 18 and 20 and a heat temperature between
20 and 22, i.e.,
O(18 <x<20A20<y<22).

(P2) If the initial temperature is already between 18 and 20, the following safety re-

quirement is enforced
(18<x<20A20<y<22)->0O(18<x<20A20<y<22)).

(P3) Transitions among the different modes have to be in the order shown in Figure 3.
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OFF Heating

x=-0.002 (x-16 x=-0.002 (x -

; (x-16) ; (x-y)
y=0 y=0.1

x =-0.002 (x - x=-0.002 (x -
* (x-y) . (x-y)
y=-0.1 y=0

Cooling ON

Fig. 3: A four-mode thermostat system.

The specification consists of a reachability property and an invariance property in
the (x, y)-plane, together with a sequential constraint in the modes. We start with the
synthesis of a switching strategy that guarantees the reachability property. To obtain
a proposition preserving abstraction, we partition the plane into 12 regions as shown
in Figure 4. The abstraction consists of plant variable g, whose states belong to Q =
{91,--+ ,q12}, and a mode variable p, which takes values in ¥ = {N, F, H, C}, which
represent the ON, OFF, Heating, and Cooling modes, respectively. By determining the
transition relations among the regions in each mode, we obtain an over-approximation

of the system in the sense of Definition 3.

*
4, 4 | 95 | 4
x=20 E
: q7 q] qz qS
x=18 |
L4y 4G | 9% | 1
S Nt ,y

y=18 y=20 y=22

Fig. 4: A partition of the (x,y)-plane for the thermostat system for synthesizing a

switching protocol that guarantees that the system reaches the region g.
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To synthesize a switching protocol that realizes the reachability <(g.), we solve a
two-player game as introduced in Section III-B. The switching protocol can be extracted
from a finite automaton with 32 state.

We then consider the synthesis of a switching protocol that guarantees the invariance
property, i.e., g — Og,. For this purpose, we further partition g, into six subregions
as shown in Figure 5. We again obtain an over-approximation and solve a two-player
game. The winning protocol can be extracted from a finite automaton with 7 state. A
simulation result illustrating a continuous implementation of this protocol is shown in

Figure 6.

20 20.5 21 215 22

Fig. 5: A further partition of the region ¢, (indicated by the red square) in Figure 4 for

synthesizing a switching protocol that achieves invariance within the region g,.

B. Automatic transmission

Consider a 3-gear automatic transmission system [9], [36] shown in Figure 7. The
longitudinal position of the car and its velocity are denoted by 0 and w, respectively.
The transmission model has three different gears. For simplicity, the throttle position,
denoted by u, takes value 1 in accelerating mode and —1 in decelerating modes. The
specification concerns the efficiency of the automatic transmission and we use the

functions X

(w —a)

———1+4+0.01
< 0.0

to model the efficiency of gears i = 1,2,3, where a; = 10, a, = 20, a3 = 30, as similarly

Ni(w) = 0.99 exp (—

considered in [9]. The acceleration in mode i is given by the product of the throttle
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0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t

Fig. 6: A simulation illustrating the continuous implementation of a switching protocol
that guarantees the invariance property 0O(18 < x < 20 A 20 < y < 22): the red line

represents the temperature of the heater and blue line indicates the room temperature.

and transmission efficiency. The switching synthesis problem is to find a gear switching
strategy to maintain a certain level of transmission efficiency when the speed is above

certain value. Formally, we consider a specification
Ow >5—1n2>05) A0 <w < 40),

which consists of a minimum efficiency of 50% when the speed is greater than 5, and

a speed limit of 40.

{

b=w f=w 0=w
o =1 (w)u o = 1,(w)u o =1,(wu
GEAR= 1 GEAR =2 GEAR =3

Fig. 7: A 3-gear automatic transmission.

Since the properties of interest here are related to w only, we partition the w-axis into a
union of intervals Q that preserves the proposition on efficiency. The abstraction consists
of a plant variable g, which takes values in Q, and a mode variable p, which takes values

in P = {0,+1,+2,43}. Here, + denotes accelerating modes and decelerating modes,
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respectively. We also consider a starting mode 0. According to this abstraction, we have
a deterministic transition system for each of the 7 modes. Therefore, the switching
synthesis problem can be solved by model checking. A simulation result is shown in

Figure 8, illustrating a continuous implementation of this strategy.

40

30

20+

L L L L L
0 100 200 300 400 500 600

L L L L
0 100 200 300 400 500 600

Fig. 8: Simulation results for Example 2: the upper figure shows the speed vs. time,
while the lower figure shows the real-time efficiency of the transmission, where the

specified level 50% is indicated by the red line.

C. Robot motion planning
Consider a kinematic model of a unicycle-type wheeled mobile robot [21] in 2D plane:

X cosf 0
v
y|=|sin0® O . (10)
. w
0 0 1
Here, x, y are the coordinates of the middle point between the driving wheels; 0 is the
heading angle of the vehicle relative to the x-axis of the coordinate system; v and w are
the control inputs, which are the linear and angular velocity, respectively.
To cast the motion planning of this robot as a switching synthesis problem, we con-

sider a situation where the heading angles are restricted to a finite set {6,7 p=1---, 8},

where 0, € I, and I, are non-overlapping subintervals of [0,27). Here we allow the
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heading angle to be within certain intervals to capture possible measurements errors or

disturbances. The set of angles considered in this example is shown in Figure 9, where

0; can be an arbitrary angle in ((i — 1)rt/4,in/4), fori=1,---,8.

05

05

Fig. 9: Eight different heading angles of the robot.

Equation (10) can now be viewed as a switched system with four different modes

Vg cos 0, 1)
Vo sin 6, '

where vy > 0 is some constant speed. These dynamics can be achieved with inputs

(v,w) = (vo,0) in (10) with a desired heading angle in 6, € I,. Transitions between

different heading angles are now regarded as mode transitions, and the transition can

be rendered through x = y = 0 and 0 = wy, by letting inputs (v, w) = (0, wp) in (10). In

this sense, transitions can be made freely among different modes.

9

9

Fig. 10: The workspace for Example 3 and its partition.
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We consider a workspace shown on the left side of Figure 10, which is a square of

size 10. The robot is expected to satisfy the following desired properties:

(P1) Visit each of the blue cells, labeled as g1, 4», and g3, infinitely often.
(P2) Eventually go to the green cell g, after a PARK signal is received.

Here, the PARK signal is an environment variable that constrains the behavior of the

robot. The following assumption is made on the PARK signal.

(S1) Infinitely often, PARK signal is not received.

Fig. 11: Simulation results for Example 3: (a) The upper left figure shows simulation
results without obstacles; (b) the upper middle and right figures show simulation results
with different static obstacles; (c) the lower figures show simulation results with a
moving obstacle that occupies a square of size 2 and rambles horizontally under certain
assumptions on its speed. The blue squares are the regions that the robot has to visit
infinitely often. The green square is where the robot should eventually visit once a
PARK signal is received. The obstacles are indicated by red, the trajectories of the robot
are depicted by black curves, and the current positions of the robot are represented by

the magenta dots.
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To synthesize a planner for this example, we introduce a partition of the workspace as
shown on the right side of Figure 10, in which each cell of size 1 is partitioned into two
triangles. In each mode, we can determine the discrete transition relations according
to Definition 3 and obtain an over-approximation of the system. Solving a two-player
game as introduced in Section III-B gives a winning strategy that guarantees that the
robot satisfies the given properties (P1) and (P2). In addition, we synthesize switching
strategies for a workspace occupied with both static and moving obstacles. Snapshots of
simulation results are shown in Figure 11, which illustrate continuous implementations
of different switching strategies that are synthesized to achieve the specification under

different situations with or without obstacles.

V. CONCLUSIONS

In this paper, we considered the problem of synthesizing switching protocols for
nonlinear hybrid systems subject to exogenous disturbances. These protocols guarantee
that the trajectories of the system satisfy certain high-level specifications expressed
in linear temporal logic. We employed a hierarchical approach where the switching
synthesis problem was lifted to discrete domain through finite-state abstractions. Two
different types of finite-state transition systems, namely under-approximations and over-
approximations, that abstract the behavior of the underlying continuous dynamical
system were introduced. It was shown that the discrete synthesis problem for an under-
approximation led to a model checking problem. On the other hand, the discrete synthe-
sis problem for an over-approximation was recast as a two-player temporal logic game.
In both cases, off-the-shelf software can be used to solve the resulting problems. More-
over, existence of solutions to the discrete synthesis problem guarantees the existence
of continuous implementations that are correct by construction.

As discussed in the paper, there are certain trade-offs between the fidelity of the
abstractions, expressiveness of the specifications that can be handled and computational
complexity. To alleviate the latter issue and to further improve the scalability of the
approach, future research directions include combining the results of this paper with a

receding horizon framework and/or a distributed synthesis approach.
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APPENDIX A

CoMPUTING FINITE-STATE APPROXIMATIONS

In this section, we briefly discuss how to compute an over- and under-approximation
of the family of nonlinear systems (1). In general, the procedure of computing a finite-
state approximation starts with a partition of the state space. Most commonly, this
partition can be done through a triangulation of the state domain X. Efficient algorithms
exist for computing a triangulation for polytope-type domains [37]. We shall restrict
ourselves to the case where we are given such a triangulation.

Let S = {S;:i=1,---,M} denote a triangulation of X, i.e., Ufilsi = X. Using the
notation of Definitions 2 and 3, we let Q ={g;: i =1,--- , M} and define the abstraction
map T: X - Q by T(x) = g; if and only if x € S, for all i = 1,--- , M. In other words,
T-Yg;) = S; for all i. We need to determine the transition relations g; LA g; to obtain
either an over- or under-approximation of (1).

The following definitions are adapted from [35], [38].

Definition 7. A facet F of a simplex in § is blocked in mode p if
7 f(x,d)<0, VxeF VdeD, (12)

where 77 is the outward unit normal vector of F and D is the set of exogenous distur-

bances.

Definition 8. A trajectory x of the pth mode of (1), starting in a simplex S, exits S at
some time T > 0, if there exists ¢ > 0 such that x(t) € S, for all t € [0,T], and x(t) ¢ S,
for all t € (T, T + ¢).

It is easy to see that if a trajectory exits S in the pth mode at some time T, then X(T)
belongs to a facet F of S that is not blocked in mode p. Moreover, x will immediately
enter a simplex S’ that shares the common facet F with S. We apply the following

algorithm to determine the transition relations g; 5 g;, for all p € P and all g;,9; € Q.

Algorithm 1. Let S={S;: i=1,--- ,M}.
Fori=1:M
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« For all facet F of S; and each mode p € P, determine whether F is blocked in mode
p by evaluating isBlocked(F, S;, p).
— 1If isBlocked(F, S;,p) = 0, add a transition g LN q’, where T (q) = S;, T'(q') = S},
and S’ is the adjacent simplex that shares the facet F with S;.
« For each mode p, determine whether all the trajectories of the pth mode of (1) exit
S by evaluating exit(S, p).
— If exit(S;, p) = 0, add a self-transition g LN g, where T71(g) = S;.

Proposition 3. Let {‘Tp =(Q Qy,5): pe SD} be the family of finite transition systems
returned by Algorithm 1. If it is deterministic in the sense that for eachg € Q and p € P,
there exists a unique 4’ € Q such that g LN q’, then it is an under-approximation of (1).

Otherwise, it gives an over-approximation of (1).

Apparently, the success of the above computation relies on computationally efficient
algorithms for evaluating isBlocked(F, S;, p) and exit(S;, p). In general, these can be chal-
lenging issues and are certainly beyond the scope of the current paper. For systems with
affine dynamics, e.g., f,(x,d) = Ax + Ed + a, reachability results on simplices developed
by Habets and van Schuppen [35] can be adapted and applied to provide algorithms for
computing isBlocked(F, S;, p) and exit(S;, p). Essentially, due to the affinity of the dynamics,
these boil down to checking a number of linear constraints at a finite number of vertices
of S; and can be solved efficiently using linear programming. For nonlinear systems,
Girard and Martin [38] recently proposed a method that extends the techniques from
Habets and van Schuppen [35] by approximating a nonlinear control system by its linear
interpolation at the vertices of a simplex. To apply results from [38], by assuming that
the dynamics are only affected by additive disturbances, we may approximate f,(x, d) on
a given simplex S by A,x+a,+w, where w is a combining effects of approximation errors
and exogenous disturbances, which belongs to a bounded polytope-type set W,. Then
similar techniques as in [35] can be applied to compute isBlocked(E, S;, p) and exit(S;, p).
We conclude by pointing out that both [38] and [35] solve the problem of synthesizing
reachability controllers for piecewise-affine hybrid systems, whereas our current paper

focuses on the synthesis of switching protocol that guarantees that a nonlinear system
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satisfies a high level LTL specification. Our method shares the conservativeness of their

methods in that it may fail to find a switching law even if one does exist, due to the fact

that our approach relies on a finite approximation of the continuous systems, which is

inevitably conservative in most cases. This should be expected since even reachability

for piecewise-affine hybrid systems is undecidable [39].
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