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Abstract

Trevisan showed that many pseudorandom generator constructions give rise to constructions
of explicit extractors. We show how to use such constructions to obtain explicit lossless con-
densers. A lossless condenser is a probabilistic map using only O(log n) additional random bits
that maps n bits strings to poly(log K) bit strings, such that any source with support size K is
mapped almost injectively to the smaller domain.

By composing our condenser with previous extractors, we obtain new, improved extractors.
For small enough min-entropies our extractors can output all of the randomness with only
O(log n) bits. We also obtain a new disperser that works for every entropy, uses an O(log n)
bit seed, and has only O(log n) entropy loss. This is the best disperser construction to date,
and yields other applications. Finally, our lossless condenser can be viewed as an unbalanced
bipartite graph with strong expansion properties.
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1 Introduction

1.1 History and Background

Sipser [28] and Santha [26] were the first to realize that extractor-like structures can be used to save
on randomness. Their structure is now known as a “disperser1.” They showed that good dispersers
exist and left open the problem of actually constructing them. In the early period, there was a
lot of research on special cases of the problem. The general extractor problem was first defined by
Nisan and Zuckerman [18]:

Definition 1.1 (extractor, min-entropy). Function E : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε)-
extractor if for every distribution X having k min-entropy, the distribution obtained by drawing x
from X, y uniformly from {0, 1}t and evaluating E(x, y), is within statistical distance ε from the uni-
form distribution on {0, 1}m. The min-entropy of a distribution X is H∞(X) = mina{− log2 X(a)}.

In other words, extractors get an input from an unknown source distribution X having min-
entropy k, use few (t) truly random bits that are independent of the source, and extract m output
bits that are ε-close to uniform. While random functions are good extractors, useful extractors are
explicit, i.e., computable in polynomial time. Not only do such extractors help save on randomness
in various contexts, but they have had many applications to seemingly unrelated areas. See the
survey [16] for more details.

The goal of explicit extractor constructions is to simultaneously maximize the output length m
(ideally, m = k + t−2 log ε−1−O(1)) and minimize the seed length t (ideally t = log n+2 log ε−1 +
O(1)). Often, constructions work well for only certain values of k, and obtaining a construction
that works for all min-entropies k has been a challenge.

The progress on this problem is summarized in Table 1 for the case of constant error ε. Early
work (e.g., [41, 42, 18, 30, 32, 43]) used hashing and pairwise independence in various forms, and
viewed extractors as sophisticated hash functions. Departing from previous techniques, Trevisan
[35] showed a connection between pseudorandom generators for small circuits and extractors. Thus,
Trevisan’s approach viewed extractors as pseudorandom generators against all statistical tests.
Trevisan then used the Nisan-Wigderson pseudorandom generator [17] to construct a simple and
elegant extractor that uses t = O( log2 n

log k ) truly random bits. As long as the source has at least
k = nΩ(1) min-entropy, this uses only t = O(log n) truly random bits. However, if the min-entropy
k is smaller, then the number of truly random bits t is ω(log n) and approaches log2 n.

A series of papers attacked this bottleneck. Impagliazzo, et al. [10, 11] used sophisticated (and
complex) recursive techniques building on Trevisan’s construction. Reingold, et al. [24] improved
their result by combining the old hashing techniques with the new extractors, together with new
ideas. The actual parameters achieved are stated in Table 1. There was still a tradeoff however: if
one insisted on an extractor that extracted a constant fraction of the min-entropy using the asymp-
totically optimal O(log n) truly random bits, the situation was not good. The only constructions
that achieved this were [30] (for extremely small k = O(log n)), and [43] (for very large k = Ω(n)).
Our results extend the range of min-entropies k for which these parameters can be achieved to all
k ≤ 2log1−o(1) n. Our work was recently improved by Lu, et al. [14] constructing extractors for any
min-entropy k using only O(log(n)) truly random bits, and outputting Ω(k) randomness.

1For a definition see Subsection 1.4.
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required no. of no. of reference
entropy truly random bits t output bits

Lower bound Any k log n + Θ(1) k + t−Θ(1) [20]
and non-explicit
Early Ω(n) O(log2 n) Ω(k) [18]
work Ω(n) O(log n) Ω(k) [43]

Any k polylog(n) m = k [32]
Following Any k O(log2 n/ log k) k1−α [35]
Trevisan Any k O(log n) k/ log n [24]

Any k O(log n) k1−α Cor. 5.8 (1)
Any k O(log(n) Ω(k) [14]

Optimal output length Any k O(log n + log2 k(log log k)2) k + t−O(1) Cor. 5.8 (2)

Table 1: Milestones in building explicit extractors. The error ε is a constant; α is an arbitrary
constant.

We mention that all explicit extractor constructions up to date, lose Ω(k) entropy (except for
very low or very high min-entropies). Breaking the entropy-loss barrier for extractor (and to some
extent also for disperser) constructions seems to be the next major challenge.

Our main contribution is to give a useful method for converting an extractor which works well for
high min-entropies into one that works well for all min-entropies. Roughly, given an extractor using
a seed of length t(n) for min-entropy k, we give an extractor using a seed of length t(k2)+O(log n)
achieving the same output length. Remarkably, our construction is loss-less and does not lose
entropy. This shows that it is enough to construct loss-less extractors for the high-entropy case. In
addition, using this reduction we build a disperser with a much smaller entropy loss than previously
known.

1.2 Our result

We show how to reduce the problem of constructing an extractor for a source with arbitrary min-
entropy k (which has been the focus of [10, 11, 24]) to the problem of constructing an extractor for
a source with large min-entropy (the focus of most of the earlier work on extractors, e.g., Trevisan’s
work), as formalized in the following theorem (see Section 5.2 for the proof):

Theorem 1.2. Suppose that there is an explicit family of (k = k(n) = n1/2, ε(n))-extractors,
{

En : {0, 1}n × {0, 1}t(n) → {0, 1}m(k)
}

.

Then for every k = k(n) ≤ n1/2, there exists an explicit family of (k, k−1/2 + ε(k2))-extractors,
{

E′
n : {0, 1}n × {0, 1}O(log n)+t(k2) → {0, 1}m(k)

}
.

Furthermore, if {En} are strong extractors, then {E′
n} are strong extractors.

We achieve this by constructing “condensers”. A condenser uses a small number of auxiliary
random bits to transform a weak source into a distribution on fewer bits that is close to a weak
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source with about the same min-entropy. Our condenser uses O(log n) random bits to transform
a length n source with min-entropy k into a distribution on (k/ε)1+δ bits that is ε-close to a
source with the same min-entropy k. We can then apply existing extractors to this shorter source.
For example, applying Trevisan’s extractor produces an extractor with seed length O(log n) that
extracts m = k1−α bits from a source with min-entropy k, for any k. Applying better (and more
complicated) constructions we obtain the additional result listed in Table 1.

We remark that Reingold, et al. [24] also build extractors by first using condensers. However,
our condensers differ from theirs in that ours are lossless, which means that they preserve all of the
min-entropy of the source. They therefore give a truly general reduction from the arbitrary min-
entropy case to the high min-entropy case for building extractors. Also, because our condensers
are lossless, they are actually unbalanced bipartite expander graphs with very strong expansion
properties (see Section 1.5).

1.3 Our technique

The main contribution of this paper is a construction of the condensers that prove Theorem 1.2. We
use a simplification of the approach of Impagliazzo, et.al. [10, 11] that has Trevisan’s construction
at its core. In this section we give an overview of our technique; we assume some familiarity with
Trevisan’s extractor.

To simplify our discussion, we will deal only with source distributions X that are uniform on
sets of size 2k, instead of the more general distributions X having min-entropy k. Given such a
distribution X, Trevisan’s function TR : {0, 1}n×{0, 1}t → {0, 1}m uses t = O( log2 n

log ρ ) random bits
to produce two conceptual objects: the output distribution TR(X,Ut) which has m bits, and an
“advice string” for each x ∈ X of length ρm. In these general terms, it is easy to understand and
contrast the three lines of work: Trevisan [35], Impagliazzo, et al. [10, 11], and the present paper.

• Trevisan proved that if TR(X, Ut) is not an extractor, then the advice strings constitute
short descriptions of a non-negligible portion of X. For this to be a contradiction (and hence
prove that TR is an extractor), one needs k > ρm, which forces k to be large (nΩ(1)) if t is
to be O(log n). This is the bottleneck referred to in the introduction.

• Impagliazzo, et al. argued that either TR is an extractor, or the advice strings constitute
short descriptions of a non-negligible portion of X. If the former is true, then one has the
desired extractor; if the latter is true, then one can recursively apply an extractor to the
advice strings themselves (as they retain most of the original min-entropy). There is now no
restriction on ρ and so one can have t = O(log n) for any k. But it is a delicate balancing
act to get the recursion to work properly and to combine the various “candidate” extractors,
and in the process one loses somewhat in various other parameters.

• In the present paper, we simply choose m much larger than k, so that TR cannot be an
extractor, and we output the advice strings themselves. Then, unconditionally, the advice
strings constitute short descriptions of a non-negligible portion of X, and therefore retain the
original min-entropy; in other words, we have condensed n bits into ρm bits. We iterate our
condenser, and in each step we only need to condense the source from n bits to nγ bits, for
some γ < 1 (regardless of the min-entropy k). Therefore, we need ρm ≤ nγ , and we can easily
have ρ = nΩ(1), avoiding the bottleneck altogether.
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Additional randomness t Entropy loss Reference
O(log n) polylogn [33]
O(log n) 3 log n + O(1) this paper

log n + O(1) Ω(1) lower bound [20]

Table 2: Explicit dispersers with constant error.

Size Reference
O(N · 2poly(log log N)) [25]

O(N · polylogN) this paper

O(N · log2 N
log log N ) lower bound, [20]

Table 3: Explicit depth two super-concentrators

In retrospect, our technique may seem an obvious simplification of [10, 11]. But we do need
some new ideas for it to work. For example, we need to deal with entropy instead of min-entropy
for much of the proof, and we need a strengthening of Yao’s next-bit predictor lemma.

1.4 Applications

A disperser is the “one-sided” analog of an extractor, and it is probably best understood as a
bipartite graph.

Definition 1.3 (disperser). A bipartite graph G = (V = [N = 2n],W = [M = 2m], E) with
left-degree D = 2d is a (K, ε) disperser if every subset A ⊆ V of cardinality at least K has at least
(1 − ε)M distinct neighbors in W . A disperser is explicit if the i-th neighbor of vertex v ∈ V can
be computed in poly(n, d) time.

Ideally, K vertices of a degree D graph can have KD neighbors. However, a lower bound of [20]
shows that in any (K, ε) disperser G = (V, W = [M ], E) the size of W must be smaller than KD.
The entropy loss of a disperser is the log of this loss, i.e., log(KD

M ) = log K + log D − log M . The
previous best construction with degree D = poly(n) had entropy loss poly log(n). In this paper we
construct a disperser with entropy loss only 3 log n + O(1), as stated in the following theorem:

Theorem 1.4. For every n, k and constant ε there is a degree D = poly(n) explicit (K = 2k, ε)
disperser G = (V = [N = 2n],W = [Ω(KD/n3)], E).

One consequence of our disperser is an almost optimal explicit depth-2 super-concentrator,
defined below.

Definition 1.5 (depth two super-concentrator). G = ((V1, V2, V3), E) is a depth two super-
concentrator if G is a layered graph with three layers: input vertices V1, middle layer V2, and output
vertices V3, and for all sets X ⊆ V1,Y ⊆ V3 of cardinality k, there are at least k vertex-disjoint
paths from X to Y .
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We achieve optimal size up to polylogarithmic factors. A long line of papers had tried to solve
this problem; the previous best result and our result is summarized in Table 3. We obtain this
result by plugging our disperser into [40]. We also improve a hardness result of Umans [36], as
described in Section 7.

1.5 Unbalanced expanders with near-optimal expansion

An expander graph has the property that every not-too-large subset of the vertices has many
neighbors, relative to its degree. Expanders have had numerous applications in computer science
including network constructions [7], sorting [1, 19], complexity theory [39], cryptography [9], and
pseudorandomness [2]. Many of these applications require bipartite graphs, where only subsets on
one side are required to expand.

Definition 1.6 (expander). A bipartite graph G = (V, W,E) is (K, c) expanding if for every
A ⊆ V of cardinality at most K, |Γ(A)| ≥ c|A|, where Γ(A) is the set of neighbors of A.

The goal is to have the expansion factor c be as close as possible to the left-degree T (T is the
degree of all vertices in V ). Random graphs have c ≥ T−(2 log |V |)/ log |W |−o(1) if K < |V |.49. Yet
for most applications random graphs are not useful; instead, explicit, deterministic constructions
are required.

Historically, constructing explicit expanders has been quite difficult. The explicit construction
of constant degree expander graphs was a major breakthrough [15, 8]. These explicit construc-
tions relied on showing an upper bound on the second largest eigenvalue of the adjacency matrix
corresponding to the graph. Kahale [13] showed that such methods cannot achieve c > T/2. Yet
some applications, such as [4, 29, 5] need c = (1/2 + Ω(1))T , as then the expander has the “unique
neighbors property.” This means that for any subset A of vertices, there are Ω(|A|) vertices that
are neighbors of exactly one vertex in A.

Prior to our work the only method known for constructing graphs with such large expansion
was to show that the graph has large girth [3]. However, this method doesn’t appear to help when
|V | À |W |, which is desired in the above applications. As mentioned above, our lossless condensers
are actually expander graphs with very strong expansion properties. This gives a new method for
constructing unbalanced expanders with non-constant but relatively small degree; we believe this
approach and the following theorem are of independent interest.

Theorem 1.7. For every positive constant α and function ε = ε(N) there is an explicit family of
degree T graphs G = (V = [N ],W = [M ], E) that are (K = 2k, (1 − ε)T ) expanding with either of
the following parameters:

1. T = polylogN and M = 2(k/ε)1+α

2. T = 2O((log log N)2) and M = 2O(k/ε).

Using (2) with ε = .01, for example, gives graphs with M ≤ N c such that every set of size at
most N c′ expands by .99T , where c and c′ are constants.

We mention that after the publication of our work Capalbo et al. [6] constructed explicit loss-
less extractors for high-min-entropy and also explicit slightly unbalanced loss-less expanders with
constant degree. Nevertheless Theorem 1.7 remains the best loss-less expander construction up to
date for the highly unbalanced case.
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2 Preliminaries

A probability distribution D on Λ is a function D : Λ → [0, 1] such that
∑

x∈Λ D(x) = 1. Un

is the uniform distribution on {0, 1}n. The variation distance |D1 −D2| between two probability
distributions on Λ is 1

2

∑
x∈Λ |D1(x)−D2(x)| = maxS⊆X |D1(S)−D2(S)|. We say D1 is ε close

to D2 if |D1 −D2| ≤ ε. The support of a distribution D is the set of all x for which D(x) 6= 0. A
distribution D is flat over its support A ⊆ Λ if D(a) = 1

|A| for all a ∈ A. If A is a set, we use A to
also refer to the flat distribution with support A, when this meaning is clear from context.

If D is a distribution and f a function, then f(D) denotes the distribution obtained by picking d
according to the distribution D and evaluating f(d). Thus, e.g., E(X, Ut) denotes the distribution
obtained by picking x according to the distribution X, picking y uniformly at random from {0, 1}t,
and evaluating E(x, y).

2.1 Distinguishers, next-bit predictors and pseudorandom generators

A distinguisher is a test that distinguishes between a given distribution and the uniform distribution:

Definition 2.1 (distinguisher). A function D : {0, 1}m → {0, 1} ε–distinguishes a distribution
X, if

∣∣∣∣ Pr
x←X

[D(x) = 1]− Pr
u←Um

[D(u) = 1]
∣∣∣∣ ≥ ε.

A next-bit predictor is a special distinguisher that is able to predict well the i’th bit of x ∈ X
given the first i− 1 bits of x, i.e.,

Definition 2.2 (next bit predictor). Let X be a distribution over {0, 1}m. A function T :
{0, 1}<m → {0, 1} is a next-bit predictor for X with success p, if

Pr
i∈[m],x←X

[T (x1, x2, . . . , xi−1) = xi] ≥ p.

Note that a next-bit predictor (or a distinguisher) need not be efficient.
Clearly, a next-bit predictor with success p = 1/2 + ε (i.e., with “ε advantage”) is in particular

an ε–distinguisher. Somewhat surprisingly, Yao showed a converse, that every distinguisher can be
converted into a predictor. However, this converse is less tight. To see that, consider a distribution
that picks m bits independently, with each bit being one with probability 1/2 + ε/m. Then, every
next-bit predictor has at most an ε/m advantage, and yet there exists an Ω(ε)–distinguisher. Yao’s
lemma says this is essentially the worst that can happen:

Lemma 2.3 (Yao’s next-bit predictor lemma). If random variable Y = (Y1, Y2, . . . , Ym) dis-
tributed over {0, 1}m is not ε-close to uniform, then there is a next-bit predictor for Y with success
1
2 + ε

m .

Thus every distinguisher can be converted into a next-bit predictor, but with a loss: an ε-
distinguisher translates to a next-bit predictor with only ε

m advantage. This loss is devastating for
us, and one of the crucial components of our later constructions is a method for avoiding it.

A pseudorandom generator takes a short random string and expands it to a long string that
looks random to all small circuits.
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Definition 2.4 (pseudorandom generator). A function G : {0, 1}t → {0, 1}m is a pseudoran-
dom generator against size s circuits with ε error if there is no size s circuit that ε-distinguishes
the distribution G(Ut). G is efficient if it runs in time polynomial in its output length m.

2.2 Extractors and condensers

We say a distribution X has min-entropy k, if no element x has probability mass larger than 2−k.
Formally:

Definition 2.5 (min-entropy). The min-entropy of a distribution X is H∞(X) = mina{− log2 X(a)}.
Though we deal primarily with min-entropy, some proofs will also require the usual notion of

entropy:

Definition 2.6 (entropy). The entropy of a distribution X is H(X) =
∑

a−X(a) log2 X(a). For
p ∈ [0, 1], the binary entropy function is H(p) = −p log p− (1− p) log(1− p).

For every distribution X, H∞(X) ≤ H(X), with equality iff X is flat.

Definition 2.7 (condenser). Let C : {0, 1}n × {0, 1}t → {0, 1}m.

1. We say C is a (n, k1) →ε (m, k2) condenser if for every distribution X with k1 min-entropy,
C(X,Ut) is ε-close to a distribution with k2 min-entropy.

2. We say C is a strong (n, k1) →ε (m, k2) condenser, if for every distribution X with k1 min-
entropy, Ut ◦ C(X, Ut) is ε-close to a distribution Ut ◦D with t + k2 min-entropy.

3. We say C is a (strong) lossless condenser if it is a (strong) (n, k) →ε (m, k) condenser.

Remark 2.8. Our definition of strong condenser is essentially equivalent to Raz’s definition [21]:
that the average, over y, of the distance of C(X, y) to a min-entropy k2-source is at most ε. That
Raz’s definition implies ours is not hard. To see that ours implies Raz’s, suppose Ut ◦ C(X, Ut) is
ε-close to Ut ◦D, which has min-entropy at least t + k2. Then conditional on Ut = y, D still has
min-entropy at least k2. The rest follows easily.

In this language we can define an extractor as a special case of a condenser (compare with
Definition 1.1).

Definition 2.9 (extractor). Let E : {0, 1}n × {0, 1}t → {0, 1}m. Then E is a (strong) (k, ε)-
extractor if it is a (strong) (n, k) →ε (m,m) condenser.

Both extractors and condensers are explicit if they can be computed in polynomial time. In
the definitions above, we may equivalently take the source distribution X to be a flat distribution.
This follows from two standard facts: (1) any distribution X with min-entropy k1 can be written
as a convex combination of flat distributions with min-entropy k1; and (2) a convex combination of
distributions that are ε-close to distributions with min-entropy k2 is ε-close to a single distribution
with min-entropy k2. The observation that flat distributions suffice will be used repeatedly in the
proofs to follow.
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3 Reconstructive pseudorandom generators

In the next two subsections we discuss the notion of so-called “reconstructive” pseudorandom gen-
erators, first informally, and then formally to establish the framework around which our condensers
are built.

3.1 An informal discussion

In this subsection we omit details and parameters, and ignore issues of worst-case vs. average-case
hardness. In the next subsection we give a rigorous and formal treatment of this material.

An efficient pseudorandom generator (PRG) implies an explicit function in the complexity class
E that is hard for small non-uniform circuits [17]. The converse is also true, but harder to prove.
The first result of this kind is the Nisan-Wigderson (NW) construction [17] (that was later improved
in [12, 31, 27, 37]) that shows how to use a function in f ∈ E that is average-case hard for small
circuits, to construct a PRG.

The NW construction and later improvements are black-box constructions in the following
sense. They start with an explicit function f : {0, 1}` → {0, 1} and construct from it a new
function Gf : {0, 1}t → {0, 1}m (where the notation is meant to indicate that G makes black-box
oracle calls to f) and prove that if f is hard, then Gf is a PRG.

Most importantly for us, this implication is proved by exhibiting a “reconstruction” algorithm.
Namely, the proof describes an efficient “reconstruction” oracle Turing Machine R such that for
every Boolean function2 f : {0, 1}` → {0, 1}, if there is a small circuit C that ε-distinguishes Gf (Ut),
then there exists a short advice string z = A(f) such that RC(z, i) computes f(i). In particular
the existence of R implies:

Lemma 3.1 (informal, [17]). If f : {0, 1}` → {0, 1} is suitably hard then Gf is a pseudorandom
generator.

Proof. (sketch) If there is a small circuit C that ε-distinguishes Gf (Ut), then by hardwiring the
“correct” advice z = A(f), RC(z, i) is a small circuit computing f . The contrapositive then says
that if f cannot be computed by small circuits, then Gf (Ut) is a PRG.

The above result is conditional: if f is a hard function then Gf is a PRG. Trevisan showed that
reconstructive PRG are strong enough to give an unconditional extractor construction:

Lemma 3.2 (informal, [35]). E : {0, 1}2` × {0, 1}t → {0, 1}m defined by E(f, y) = Gf (y) is an
extractor.

Proof. (sketch) Let n = 2` and let X ⊆ {0, 1}n be a large subset. We identify {0, 1}n with the
set of all functions from {0, 1}` to {0, 1}. If E(X,Ut) is not close to uniform, then there exists a
function C that ε-distinguishes E(X, Ut). By averaging, we can even say that C ε/2-distinguishes
E(x,Ut), for many x ∈ X. Therefore, for many x ∈ X there exists a short advice string z = A(x)
for which RC(z, ·) outputs x. The number of strings x with such short descriptions cannot exceed
the number of possible advice strings. We conclude that if E(X,Ut) is not close to uniform, then
X is small. The contrapositive says that if X is large, then E(X, Ut) is close to uniform; in other
words, E is an extractor.

2We treat a Boolean function and its truth-table interchangeably.
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In this paper we use the same argument in a different way. Suppose we could choose the
parameters so that there is a function C that ε-distinguishes E(x,Ut) for almost every x ∈ X. The
above argument shows that such strings x can be identified with their associated advice strings
z = A(x). So we have a (nearly) one-to-one mapping between X and A(X); in other words, the
advice function A defines a lossless condenser! Clearly, the advice can not be too short now –
it must be at least as long as the entropy of X. However, if z is still much shorter than n, we
non-trivially condense the distribution X.

This idea almost works, except for the following technical difficulty. Current reconstruction
arguments, even given a perfect distinguisher, are not able to give a perfect reconstruction (i.e. one
that works for all x ∈ X). Instead, they first convert the distinguisher to a next-bit predictor with
a lossy conversion (see Lemma 2.3), and then use the next-bit predictor in the reconstruction. The
loss in the conversion prevents us from getting a lossless condenser.

This leads us to define “reconstructive extractors” using next-bit predictors directly rather
than distinguishers; i.e., the guarantee is that if T is a good next-bit predictor, than RT is a good
reconstruction procedure. We then show directly, that for a certain choice of parameters there is
always a good (nearly perfect) next-bit predictor.

Summarizing, say Gf is a reconstructive PRG, with advice function A(f). Nisan and Wigderson
[17] used it to deduce that if f is a hard function, than Gf is a PRG. Trevisan [35] used it to show
that E(f, y) = Gf (y) is an extractor. We use it to show that A is a lossless condenser.

3.2 A formal treatment: reconstructive extractors

We first define reconstructive extractors. The formalism in this section is adapted from [38].

Definition 3.3 (reconstructive extractor). A triple (E, A, R) of functions where:

• E : {0, 1}n × {0, 1}rE → {0, 1}m is called the extractor function,

• A : {0, 1}n × {0, 1}rA → {0, 1}a is called the advice function, and,

• R : {0, 1}a × {0, 1}rA × {0, 1}rR → {0, 1}n is called the reconstruction function

is a (p, q) reconstructive extractor if for every X ⊆ {0, 1}n and every next-bit predictor T :
{0, 1}<m → {0, 1} for E(X, UrE ) with success p, we have

Pr
x←X,y,z

[RT (A(x, y), y, z) = x] ≥ q.

We now have two claims. First, we claim that we can choose E such that an almost perfect
next-bit predictor exists, and second that whenever such a predictor exists, A is a lossless condenser.
We begin with:

Lemma 3.4. Let E : {0, 1}n×{0, 1}rE → {0, 1}m be a function, and let X ⊆ {0, 1}n be a subset of
cardinality at most 2k. Then, there exists a next-bit predictor T : {0, 1}<m → {0, 1} for E(X, UrE )
with success 1− k+rE

m .

The proof idea is that if m is much larger than the entropy of X, then E encodes an input x
from X with much redundancy, and hence a good predictor exists. We give the formal proof in
Section 3.3.

Our second claim is that if (E, A, R) is a reconstructive extractor, and if a good next-bit
predictor for E(X, UrE ) exists, then A(X, UrA) retains the entropy of X.
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Lemma 3.5. Let (E, A, R) be a (p, q = 1 − ε) reconstructive extractor and X ⊆ {0, 1}n a subset
such that there exists a next-bit predictor T : {0, 1}<m → {0, 1} for E(X, UrE ) with success p.
Then the distribution UrA ◦ A(X, UrA) is O(ε)-close to a distribution UrA ◦ D with rA + log2 |X|
min-entropy.

Proof. Let us call a pair (x, y) with x ∈ X and y ∈ {0, 1}rA good if

Pr
z

[RT (A(x, y), y, z) = x] > 1/2 (1)

Let G be the set of good pairs (x, y). Since we know Prx←X,y,z[RT (A(x, y), y, z) = x] ≥ 1 − ε, we
obtain, by an averaging argument, that Prx←X,y[(x, y) ∈ G] ≥ 1− 2ε.

Now notice that Equation (1) implies that if (x1, y) and (x2, y) are both good, then A(x1, y) 6=
A(x2, y). This holds because if A(x1, y) = A(x2, y) then Prz[RT (A(x1, y), y, z) = x2] > 1/2,
contradicting Equation (1). In particular, if we define A′(x, y) = y ◦A(x, y), then A′ is one-to-one
on the set of good pairs G.

However, as argued above, almost every element of X × {0, 1}rA is good, and so the flat distri-
bution on the set G is O(ε)-close to the distribution X ◦ UrA . In particular, the probability mass
on elements of A′(X, UrA) with multiple preimages is at most O(ε) (since A′ is one-to-one on G).
By redistributing this mass, we obtain a distribution D ◦ UrA with min-entropy log2 |X|+ rA that
is O(ε)-close to A′(X,UrA), which proves the lemma.

Combining Lemmas 3.5 and 3.4 we get our main theorem that the advice function of a recon-
structive extractor (with long enough output length m) is a lossless condenser:

Theorem 3.6. Assume the triple of functions

E : {0, 1}n × {0, 1}rE → {0, 1}m

A : {0, 1}n × {0, 1}rA → {0, 1}a

R : {0, 1}a × {0, 1}rA × {0, 1}rR → {0, 1}n

is a (1−ε, 1−ε) reconstructive extractor. Then A is a strong (n, k) →O(ε) (a, k) condenser, provided
m ≥ k+rE

ε .

Proof. Let X ⊆ {0, 1}n be an arbitrary subset of cardinality 2k. By Lemma 3.4 there exists a
next-bit predictor T for E(X,UrE ) with 1− k+rE

m = 1− ε success. By Lemma 3.5, UrA ◦A(X,UrA)
is O(ε)-close to a distribution with min-entropy k + rA. Using the observation regarding flat
distributions at the end of Section 2.2, we find that A is the desired lossless condenser.

3.3 Forcing a next-bit predictor

We now prove Lemma 3.4, showing that if the extractor’s output length m is much larger than the
source entropy than a good next-bit predictor exists. We begin with:

Lemma 3.7 (strong next-bit predictor). If a distribution Y = (Y1, Y2, . . . , Ym) over {0, 1}m

has entropy H(Y ) ≤ εm, then there is a next-bit predictor T for distribution Y with success 1− ε.
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Proof. Let us denote

pi,y1,...,yi−1 = Pr[Yi = 1|Y1 = y1, . . . , Yi−1 = yi−1].

Given i, y1, . . . , yi−1, an optimal (and non-explicit) next-bit predictor T predicts 1 if pi,y1,...,yi−1 is
larger than half and 0 otherwise. The error of this next-bit predictor is Ei∈[m],y∈Y [min(pi,y1,...,yi−1 , 1−
pi,y1,...,yi−1)], and we now bound this term. We first notice that

min(p, 1− p) ≤ min(p, 1− p) log
1

min(p, 1− p)

≤ p log
1
p

+ (1− p) log
1

1− p
= H(p)

It therefore follows that

Ei∈[m],y∈Y [min(pi,y1,...,yi−1 , 1− pi,y1,...,yi−1)] ≤ Ei∈[m],y∈Y [H(pi,y1,...,yi−1)]

=
1
m

m∑

i=1

H(Yi|Y1, Y2, . . . Yi−1)

=
1
m

H(Y ) ≤ ε

as required.

We are now ready to prove Lemma 3.4

Proof of Lemma 3.4. H(E(X,UrE )) ≤ H(X) + H(UrE ) ≤ k + rE . If follows by Lemma 3.7 that
the optimal next-bit predictor for E(X,UrE ) has success at least 1− k+rE

m .

4 A concrete example

There are three existing constructions [35, 34, 27] meeting the requirements of Definition 3.3, and
yielding lossless condensers whose parameters suffice to prove Theorem 1.2. In this section we
present one of these constructions in our framework, due to Trevisan [35], based on the Nisan-
Wigderson PRG construction [17], and with refinements due to [23].

4.1 The Trevisan reconstructive extractor

Throughout this section, x is an element of the weak random source X, which is distributed over
{0, 1}n. The construction requires two ingredients: an asymptotically good [n, n, n/3] binary code
C, and a combinatorial object called a weak design, defined below:

Definition 4.1 (weak design [23]). A family of sets ∆ = (S1, S2, . . . Sm) ⊆ [t] is a weak (`, ρ)
design if

1. ∀i |Si| = `, and
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2. ∀i, ∑
j<i 2

|Si∩Sj | ≤ ρ · (m− 1).

We now describe the three functions (E, A,R).

The extractor function. We are given input x (from the weak random source) and seed y. We
first compute x̂ = C(x). We view x̂ as a function x̂ : {0, 1}` → {0, 1} with ` = log n.

We use a weak (`, ρ) design (S1, S2, . . . Sm) ⊆ [t]. The seed length rE will be t. We denote by
y|Si the projection of y ∈ {0, 1}t onto the coordinates in set Si ⊆ [t] (so y|Si ∈ {0, 1}`).

The i-th output bit of E(x, y) is the evaluation of the function x̂ at y|Si . Formally,

E(x, y) = x̂(y|S1) ◦ x̂(y|S2) ◦ · · · ◦ x̂(y|Sm).

The advice function. We are given x (from the weak random source) and a seed y. We first
compute x̂ = C(x) as with the extractor. We view y as being composed of two parts: i ∈ [m]
and β ∈ {0, 1}t−` (so rA = log m + t− `). The output of A comprises the evaluations of x̂ on
a subset of inputs that is determined by i and β; we now describe what these inputs are.

Each input in the set is an ` bit string that is determined by β, together with j and an
additional string γ, where j ranges over [i−1] and γ ranges over all strings of length |Si∩Sj |.
Such a string is obtained by first writing down the t-bit string that has β in coordinates
[t] \ Si, γ in coordinates Si ∩ Sj , and zeros elsewhere, and then projecting onto coordinates
Sj . We denote this final string w(β, j, γ). Note that w(β, j, γ) coincides with β on Sj \ Si,
and it coincides with γ on Sj ∩ Si.

Our advice function outputs the evaluations of x̂ on such strings for all j < i, and all γ ∈
{0, 1}|Si∩Sj |. Formally,

A(x; i, β) = (x̂(w(β, j, γ)))
j<i,γ∈{0,1}|Sj∩Si| .

The advice function A outputs a =
∑

j<i 2
|Si∩Sj | bits. By the weak-design property, for every

i ∈ [m],
∑

j<i 2
|Si∩Sj | ≤ ρm and so a ≤ ρm.

The reconstruction function. In this case the reconstruction algorithm is deterministic (so
rR = 0). Its two inputs are A(x; i, β), and the pair (i, β). The goal of the reconstruction
function is to output x.

We mirror the process used by A to compute its output. For each w ∈ {0, 1}`, we write down
the t-bit string y that has β in coordinates [t] \ Si and w in the coordinates Si. Observe that
for j < i, bj = x̂(y|Sj

) can be found in the advice A(x; i, β). We feed the bits b1, . . . , bi−1 to
the next-bit predictor T ; i.e., we compute z(w) = T (i; b1, b2, . . . , bi−1). This gives a guess for
the value of x̂(y|Si

) = x̂(w). After obtaining guesses for all w, we output x for which x̂(·) is
closest (in Hamming distance) to z(·).

Nisan and Wigderson [17] proved:

Lemma 4.2 ([17]). For every constant ε > 0, (E, A,R) described above is a (1 − ε, 1 − 10ε)
reconstructive extractor.
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Thus, applying Theorem 3.6, we obtain

Corollary 4.3. Assume there exists a weak (` = log n = log n+O(1), ρ) design ∆ = (S1, S2, . . . Sm) ⊆
[t] with m ≥ k+t

ε that can be constructed in poly(m, t) time. Then

A : {0, 1}n × {0, 1}rA → {0, 1}a

described above is an explicit strong lossless (n, k) →O(ε) (a, k) condenser, with a = ρm = ρk+t
ε and

rA ≤ t.

Proof. We may assume that m ≤ n — as the identity function is a condenser for m ≥ n. We can
therefore verify that the seed length rA = log m + t − ` ≤ log n + t − ` = t (using that ` = log n).
The other parameters are immediate.

We now want to see what parameters we get from the construction. For that we need to know
how the weak-design parameters behave. Raz et al. [23] show:

Lemma 4.4 ([23]). For every `,m and ρ ≥ 1, there exists a weak (`, ρ) design ∆ = (S1, S2, . . . Sm) ⊆
[t] that can be constructed in poly(m, t) time, where

t = t(`, ρ) =





⌈
`

ln ρ

⌉
· ` ρ ≥ 3/2

O(`2 log 1
ρ−1) 1 < ρ < 3/2

O(`2 log m) ρ = 1

Plugging in the parameters we get the following two condensers:

Corollary 4.5. For every n,k and ε ∈ (0, 1
2), A : {0, 1}n × {0, 1}t → {0, 1}a described above is

an explicit strong lossless (n, k) →O(ε) (a, k) condenser with either of the following two choices for
parameters a and d:

1. t = O(log3 n) and a = k
ε .

2. t = O(log2 n) and a = O(k+log2 n
ε ).

3. for any constant α > 0, t = O(log n) and a = nα log e
(

k+O(log n)
ε

)
.

Proof. (1) is obtained by taking ρ = 1 and noting that m ≤ n (otherwise we just output the original
source). (2) is obtained by plugging in, say, ρ = 4/3 into Corollary 4.3. (3) is obtained by plugging
ρ = eα` into the same corollary.

5 Composing condensers

The condenser of Corollary 4.5(3) uses O(log n) truly random bits and shrinks the source by a
polynomial factor while preserving all of the entropy. We now take such a condenser and compose
it with itself several times to get a much denser source. We first define this composition.

Definition 5.1. Given two condensers

• C1 : {0, 1}n × {0, 1}t1 → {0, 1}m1, and
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• C2 : {0, 1}m1 × {0, 1}t2 → {0, 1}m2

we define (C2 ◦ C1) : {0, 1}n × {0, 1}t1+t2 → {0, 1}m2 by (C2 ◦ C1)(x; y1, y2) = C2(C1(x, y1), y2).

Lemma 5.2 (condenser composition). Suppose C1 : {0, 1}n × {0, 1}t1 → {0, 1}m1 is a (strong)
(n, k) →ε1 (m1, k1) condenser, and C2 : {0, 1}m1 × {0, 1}t2 → {0, 1}m2 is a (strong) (m1, k1) →ε2

(m2, k2) condenser. Then C2 ◦ C1 is a (strong) (n, k) →ε1+ε2 (m2, k2) condenser.

Proof. Let X ⊆ {0, 1}n be a distribution with min-entropy k.
In the non-strong case, the lemma is easy: C1(X, Ut1) is ε1-close to a distribution X1 with k1 min-

entropy, C2(X1, Ut2) is ε2-close to a distribution with k2 min-entropy, and therefore C2(C1(X, Ut1), Ut2)
is (ε1 + ε2)-close to a distribution with k2 min-entropy.

For the strong case, we start from the observation that Ut1 ◦C1(X,Ut1) is ε1-close to a random
variable Ut1 ◦D′ distributed on {0, 1}t1 ×{0, 1}m1 with min-entropy at least t1 + k1. Note that for
all y ∈ {0, 1}t1 , conditioned on Ut1 = y, D′ still has min-entropy at least k1. Therefore, conditioned
on Ut1 = y, the distribution Ut1 ◦ Ut2 ◦ C2(D′, Ut2) is ε2-close to a distribution having min-entropy
t2 + k2. Replacing Ut1 ◦D′ with Ut1 ◦C1(X, Ut1) we conclude that Ut1 ◦ Ut2 ◦C2(C(X, Ut1), Ut2) is
(ε1 + ε2)-close to a distribution with min-entropy t1 + t2 + k1 + k2.

We now analyze iterated composition of a condenser with itself many times.

5.1 Iterated composition

If C =
{

Cn : {0, 1}n × {0, 1}t(n) → {0, 1}m(n)
}

is a family of (strong) lossless (n, k) →ε (m(n), k)

condensers, we can compose them repeatedly. Given n1, k and ε > 0, define C(1) = Cn1 and, for
i > 1, define

C(i) = Cn′ ◦ C(i−1),

where n′ is the output length of C(i−1). We now prove a lemma about iterated composition:

Lemma 5.3 (iterated composition). Fix n1, k, and ε > 0, and let

C =
{

Cn : {0, 1}n × {0, 1}t(n) → {0, 1}m(n)
}

be a family of (strong) lossless (n, k) →ε (m(n), k) condensers. Assume that ∀n ≤ n1, we have
t(n) ≤ b log n (for some fixed b ≥ 0) and m(n) ≤ na∆ (for some fixed a < 1 and ∆ > 0). Then for
all i ≥ 1,

C(i) : {0, 1}n1 × {0, 1}t → {0, 1}m

is a (strong) lossless (n1, k) →iε (m, k) condenser, with

• m ≤ ∆
1

1−a · n(ai)
1 , and,

• t ≤ b
1−a log n1 + ib

1−a log ∆.
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Proof. We use Lemma 5.2. The error accumulates additively and becomes iε as desired.
Let ni be the input length of C(i) and let ti be the seed length of C(i). We know n1, and for

i > 1, we have ni ≤ ∆ · na
i−1. Thus

m ≤ ni ≤ ∆∆a∆a2
. . .∆ai−1

nai

1 ≤ ∆
1

1−a nai

1 .

For the seed lengths, we have ti ≤ b log ni for all i ≥ 1. Therefore:

t =
i∑

j=1

tj ≤ b
i∑

j=1

log nj

≤ ib

1− a
log(∆) + b log n1

i∑

j=1

ai

≤ ib

1− a
log(∆) +

b

1− a
log n1.

Having that we can prove:

Lemma 5.4. For every n, k, and ε ∈ (0, 1
2), and every constant δ > 0, there exists an explicit

strong lossless (n, k) →ε (n′, k) condenser C : {0, 1}n × {0, 1}d → {0, 1}n′ with t = O(log n) and
n′ = O((k

ε )1+δ).

Proof. First, we may assume that k ≥ log n; otherwise the condenser mentioned in [22] suffices.
Now we plug Corollary 4.5(3) into Lemma 5.3 as follows.

We choose ε′ = O( ε
log log n) and ∆ = O(k/ε′). We also set δ′ = δ/2 and a = α log e = δ′

2+δ′ . By
Corollary 4.5(3) there is a family of explicit strong lossless (n, k(n)) →ε′(n) (m(n), k(n)) condensers
A : {0, 1}n×{0, 1}t(n) → {0, 1}m(n) with t(n) ≤ b log(n) (for some constant b > 1) and m(n) = na∆.

We now look at the composed condenser C = A(i) for i = log 1
a

2 log n
δ′ log ∆ . By Lemma 5.3 C is a

strong lossless (n, k) →iε′ (n′, k) condenser C : {0, 1}n × {0, 1}t → {0, 1}n′ , with

n′ ≤ ∆
1

1−a · nai
= ∆1+δ′/2∆δ′/2 = ∆1+δ′ ≤ O

((
k

ε′

)1+δ′
)
≤ O

((
k

ε

)1+δ
)

.

Also,

t =
b

1− a
log n +

ib

1− a
log ∆.

We notice that b
1−a is a constant, and that i = O(log log n

log ∆) = O( log n
log ∆). Therefore i log ∆ =

O(log n) and t = O(log n). Finally, iε′ = O(ε′ log log n) = O(ε).

Finally, we can compose the condenser of Lemma 5.4 with the condenser of Corollary 4.5(2) to
get:

Corollary 5.5. For every n, k, and ε ∈ (0, 1
2) there is an explicit strong lossless (n, k) →O(ε) (n′, k)

condenser C : {0, 1}n × {0, 1}t → {0, 1}n′ with n′ = O(k
ε ) and t = O(log n + log2(k

ε )).
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5.2 Extractors for low min-entropy

We now get better extractors for low-min-entropies, and also prove Theorem 1.2, by first condensing
the length n input to length k1+δ, and then applying known extractors that work for sources with
min-entropy that is polynomial in the source length. We start with:

Lemma 5.6 (composing an extractor and a condenser). Let C : {0, 1}n×{0, 1}d → {0, 1}n′

be a (strong) lossless (n, k) →′
ε (n′, k) condenser, and let E : {0, 1}n′ × {0, 1}t → {0, 1}m be a

(strong) (k, ε) extractor. Then

E′ : {0, 1}n × {0, 1}d+t → {0, 1}m

defined by E′(x; y, z) = E(C(x, y), z) is a (strong) (k, ε + ε′) extractor.

Proof. The proof is almost identical to the proof of Lemma 5.2 and we omit it.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. Fix n and k = k(n) ≤ √
n. Using Lemma 5.2, compose:

• A (strong) lossless (n, k) →ε=k−1/2 (k2, k) condenser C : {0, 1}n × {0, 1}d → {0, 1}k2

having
d = O(log n), given by Lemma 5.4 and,

• A (strong) (k, ε(k2)) extractor E : {0, 1}k2 × {0, 1}t(k2) → {0, 1}m(k) given in the statement
of the theorem.

This produces the desired extractor.

As a corollary (Corollary 5.8 below), we obtain the extractors listed in Table 1. The second
extractor we produce obtains constant entropy loss, and for that we need the following slight
strengthening of a lemma of [40].

Lemma 5.7 ([23]). Suppose E1 : {0, 1}n × {0, 1}t1 → {0, 1}m1 is a (k, ε1)-extractor with entropy
loss ∆1 and E2 : {0, 1}n+t1 × {0, 1}t2 → {0, 1}m2 is a (∆1 − 1, ε2)-extractor with entropy loss ∆2.
Then E(x, y1 ◦ y2) = E1(x, y1) ◦E2(x ◦ y1, y2) is a (k, 2ε1 + ε2)-extractor with entropy loss ∆2 + 1.

Corollary 5.8. For every n, k, and constant ε > 0, there exist explicit (k, ε) extractors E :
{0, 1}n × {0, 1}d → {0, 1}m with the following parameters:

1. for an arbitrary constant α > 0, d = O(log n) and m = k1−α.

2. d = O(log n + log2 k(log log k)2) and m = k + d−O(1).

Proof. For (1), we use Trevisan’s extractor [35] with seed length O(log n) and output length k1−α

in Theorem 1.2.
We use an extractor from [24] with seed length t1 = O(log2 n(log log n)2) and output length k

as the first extractor E1 in Lemma 5.7. The entropy loss ∆1 is just t1 for this extractor. We then
use as the second extractor E2 in Lemma 5.7 a (k′ = ∆1 − 1, O(1)) extractor from [23] with seed
length O(log3 n), and constant entropy loss. After applying Theorem 1.2, the seed length of this
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extractor becomes O(log n + log3 k′). Altogether, we obtain a constant-error extractor with seed
length

O(log2 n(log log n)2) + O(log n + log(log2 n(log log n)2)3) = O(log2 n(log log n)2)

and constant entropy loss. Plugging this into Theorem 1.2 one more time gives the claimed extrac-
tor.

6 Dispersers with small entropy loss

In this section we construct the dispersers of Theorem 1.4.
We use a technique from Nisan and Ta-Shma [16] to prove Theorem 1.4. Nisan and Ta-Shma

showed how to obtain an efficient somewhere random extractor, which we define soon. They then
show how to get a disperser construction from a somewhere random extractor. We obtain Theorem
1.4 by plugging our improved low-entropy extractors into this construction.

6.1 A formal analysis

We start with the definition of somewhere random sources and somewhere random extractors.
Given a random source with k min-entropy, a (k, ε) extractor outputs a single distribution that is
ε close to uniform. In contrast, a somewhere random extractor outputs many distributions with
the guarantee that at least one of them (and possibly only one) is ε-close to uniform3. Thus, a
somewhere random extractor is a weakening of the extractor notion.

Definition 6.1 (somewhere random source). B = (B1, . . . , Bb) is a (b,m) somewhere random
source if each Bi is a random variable over {0, 1}m and there is a random variable Y over [b] such
that for every i ∈ [b] we have (Bi|Y = i) = Um.

Definition 6.2 (somewhere random extractor). A function E : {0, 1}n×{0, 1}t → ({0, 1}m)b

is a (k, ε) somewhere random extractor if for every distribution X with H∞(X) ≥ k we have that
E(X, Ut) is ε-close to a (b,m) somewhere random source.

Nisan and Ta-Shma proved:

Theorem 6.3 ([16]). Suppose E1 : {0, 1}n × {0, 1}t1 → {0, 1}t2 is an explicit (k1, ε1) extractor
and E2 : {0, 1}n × {0, 1}t2 → {0, 1}m is an explicit (k2, ε2) extractor. Then for any s > 0 there is
an explicit function E : {0, 1}n × {0, 1}t1 → ({0, 1}m)n that is a (k1 + k2 + s, ε1 + ε2 + 8n2−s/3)
somewhere random extractor.

Plugging in our new extractors for low min-entropies we get:

Lemma 6.4. For every n, k and constant ε there is a (k, ε) somewhere random extractor S :
{0, 1}n × {0, 1}t → ({0, 1}m)n with t = O(log n) and m = k + t− (3 log n + O(1)).

3The formal definition is slightly different.
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Proof. Let d(n, k) = O(log n + log2 k(log log k)2) be the seed length of the extractor of Corollary
5.8 (2) for error ε/4. The entropy loss of this extractor is a constant for constant ε, so set ∆ to be
the entropy loss for error ε/4. We define:

s = 3(log n + log ε−1 + 4)
t2 = t(n, k)
t1 = t(n, t2)
k1 = t2 − t1 + ∆
k2 = k − k1 − s.

¿From Corollary 5.8 (2) we have the following explicit extractors:

• a (k1, ε/4) extractor E1 : {0, 1}n × {0, 1}t1 → {0, 1}t2 , and

• a (k2, ε/4) extractor E2 : {0, 1}n × {0, 1}t2 → {0, 1}k2+t2−∆.

Plugging these extractors into Theorem 6.3, we obtain a (k, ε) somewhere random extractor:

E : {0, 1}n × {0, 1}t1 → ({0, 1}k+t1−s−2∆)n.

Note that t1 = O(log n) as required.

Nisan and Ta-Shma proved that a somewhere random extractor is stronger than a disperser.
Namely,

Lemma 6.5 ([16]). Let ε < 1 and let E : {0, 1}n × {0, 1}t → ({0, 1}m)b be a (k, ε) somewhere
random extractor, where E(x, y) = E1(x, y) ◦ . . . ◦ Eb(x, y). Then the function D : {0, 1}n ×
{0, 1}t+log b → {0, 1}m defined by

D(x; y, i) = Ei(x, y)

is a (k, ε) disperser.

Plugging the somewhere random extractor of Lemma 6.4 into Lemma 6.5 proves Theorem 1.4.

7 An application to hardness of approximation

Umans [36] showed that the following Σp
2 optimization problem is Σp

2-hard to approximate to within
an s1/5−ε factor, for any constant ε > 0, where s is the size of the instance:

Succinct Set Cover: given m subsets of {0, 1}n whose union is {0, 1}n, specified
succinctly as the ones of 3-DNFs φ1, φ2, . . . φm, what is the minimum cardinality cover?
i.e., what is the smallest set I ⊆ [m] for which ∨i∈Iφi ≡ 1.

The main combinatorial objects used in the proof are dispersers. In fact, the exponent in the
hardness ratio depends in a straightforward way on the parameters of the disperser used in the
reduction. Specifically, Umans showed:
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Theorem 7.1 ([36]). Suppose there exist explicit (K = 2k, 1/2) dispersers G = (= [N = 2n],W =
[M = 2m], E) with degree D = 2d, and Ω(log n) ≤ k, d ≤ m ≤ O(log n). Set r = 1− (d + log n)/m.
Then Succinct Set Cover is Σp

2-hard to approximate to within sr−ε, for any constant ε > 0, where
s is the size of the instance.

Prior to this work, the best inapproximability factor (of s1/5−ε) was achieved using the extractors
of [30], which use a seed of length 4k + O(log n) to extract k + d − O(1) bits with constant error.
Picking k = c log n in that construction gives r → 1/5 as c goes to infinity.

To achieve an inapproximability factor of s1−ε, which is optimal up to lower order terms, one
needs an extractor (or disperser) for very low min-entropy k = O(log n), that extracts at least k
bits, with a seed length of O(log n) that has a sublinear dependence on k. Theorem 1.2 applied to
an extractor from [23] gives us the required object, which allows us to prove:

Theorem 7.2. Succinct Set Cover is Σp
2-hard to approximate to within s1−ε, for any constant

ε > 0, where s is the size of the instance.

Proof. Let E : {0, 1}n × {0, 1}d → {0, 1}m be the explicit (k = c log n, 1/4) extractor from [23]
with seed length d = O(log3 n) and output length m = k + d − O(1). Applying Theorem 1.2, we
obtain an explicit (k, 1/2) extractor E′ : {0, 1}n × {0, 1}d′ → {0, 1}m with d′ = O(log n + log3 k)
(the hidden constant here is independent of k). Plugging this extractor into Theorem 7.1 gives
r = 1− (d′ + log n)/m ≥ 1−O(log n + log3 k)/k, which approaches 1 as c approaches infinity.

Plugging this new extractor into [36] in the same way as above gives improved inapproximability
results for a number of other problems studied in that paper.

8 Unbalanced expanders

All of our constructions of (strong) lossless (n, k) →ε (n′, k) condensers C have the property that
C is also a (strong) lossless (n, k′) →ε (n′, k′) condenser for all k′ ≤ k. This is because we prove
our constructions are condensers using Lemma 3.4, which guarantees a predictor in certain cir-
cumstances, and Lemma 3.5. When the min-entropy of the source is less than k, the optimal
predictor (and hence the reconstruction function) can only do better, leading to even more efficient
preservation of the min-entropy in the output of C.

Condensers that have this extra property are equivalent to unbalanced expanders. We first prove
this equivalence, and then prove Theorem 1.7 by plugging in specified condenser constructions from
earlier in the paper.

Theorem 8.1. Let C : {0, 1}n × {0, 1}t → {0, 1}n′ be a function. The bipartite graph G = (V =
[2n],W = [2t × 2n′ ], E) defined by

(x; y, z) ∈ E ⇔ E(x, y) = z

is (K = 2k, (1− ε)2t)-expanding with degree 2t if and only if C is a strong lossless (n, k′) →ε (n′, k′)
condenser for all k′ ≤ k.

Proof. In the forward direction, let X be a subset of V with |X| ≤ 2k. Since G is (1−ε)2t expanding,
we know that the distribution D = Ut ◦ C(X, Ut) has support of cardinality at least (1− ε)2t|X|,
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which implies that D is ε-close to a distribution with min-entropy t + log2 |X| = t + H∞(X), as
required.

In the other direction, let X be a subset of {0, 1}n with |X| ≤ 2k. We know that the distribution
D = Ut ◦ C(X,Ut) is ε-close to a distribution D′ on {0, 1}t × {0, 1}n′ with min-entropy at least
t + H∞(X). Let Γ be the support of distribution D. Then

ε ≥ |D −D′| =
∑

w∈Γ

(D(w)−D′(w)) = 1−
∑

w∈Γ

D′(w) ≥ 1− |Γ|2−(t+H∞(X)).

Thus |Γ| ≥ (1− ε)2t+H∞(X) = (1− ε)2t|X|, as required.

Theorem 1.7 (1) follows from plugging the condenser of Lemma 5.4 into the above theorem.
Theorem 1.7 (2) follows from plugging the condenser of Corollary 4.5 (1) into the above theorem.
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