
Pseudorandomness for Approximate Counting and Sampling

Ronen Shaltiel∗

Department of Computer Science
University of Haifa

Mount Carlel, Haifa 31905, Israel.
ronen@haifa.ac.il

Christopher Umans†

Department of Computer Science
California Institute of Technology

Pasadena, CA 91125.
umans@cs.caltech.edu.

Abstract

We study computational procedures that use both ran-
domness and nondeterminism. Examples are Arthur-Merlin
games and approximate counting and sampling of NP-
witnesses. The goal of this paper is to derandomize such
procedures under the weakest possible assumptions.

Our main technical contribution allows one to “boost”
a given hardness assumption. One special case is a proof
that

EXP �⊆ NP/poly ⇒ EXP �⊆ PNP
|| /poly.

In words, if there is a problem in EXP that cannot be com-
puted by poly-size nondeterministic circuits then there is
one which cannot be computed by poly-size circuits that
make non-adaptive NP oracle queries. This in particu-
lar shows that the various assumptions used over the last
few years by several authors to derandomize Arthur-Merlin
games (i.e., show AM = NP) are in fact all equivalent. In
addition to simplifying the framework of AM derandomiza-
tion, we show that this “unified assumption” suffices to de-
randomize several other probabilistic procedures.

For these results we define two new primitives that we
regard as the natural pseudorandom objects associated
with approximate counting and sampling of NP-witnesses.
We use the “boosting” theorem and hashing techniques to
construct these primitives using an assumption that is no
stronger than that used to derandomize AM. As a conse-
quence, under this assumption, there are deterministic poly-
nomial time algorithms that use non-adaptive NP-queries
and perform the following tasks:

• approximate counting of NP-witnesses: given a
Boolean circuit A, output r such that

(1 − ε)|A−1(1)| ≤ r ≤ |A−1(1)|.
∗Some of this work was done while at the Weizmann Institute and sup-

ported by the Koshland Scholarship.
†This research was supported by NSF grant CCF-0346991.

• pseudorandom sampling of NP-witnesses: given a
Boolean circuit A, produce a polynomial-size sample
space that is computationally indistinguishable from
the uniform distribution over A−1(1).

We also present applications. For example, we observe that
Cai’s proof that Sp

2 ⊆ ZPPNP and the learning algorithm
of Bshouty et al. can be seen as reductions to sampling
that are not probabilistic. As a consequence they can be
derandomized under the assumption stated above, which is
weaker than the assumption that was previously known to
suffice.

1. Introduction

One of the major areas in complexity is the study of the
power of randomness in various computational settings. In
certain contexts randomness affords additional power. But
for broad classes of problems it has been demonstrated over
the last decade that randomness can be simulated determin-
istically, under widely accepted complexity assumptions.

The central object used in these derandomization results
is a pseudorandom generator (PRG), which is an efficient
deterministic procedure that generates a discrepancy set –
a set of strings with the property that no test (from a pre-
specified class of tests) can distinguish a random string in
the discrepancy set from a uniformly random string. We
say that a PRG fools this class of tests. A probabilistic pro-
cedure is derandomized by replacing its random bits with
strings from the discrepancy set; the procedure cannot be-
have noticeably differently than it would with truly random
bits, as then it would constitute a distinguishing test. As
a consequence derandomizing stronger probabilistic algo-
rithms typically requires pseudorandom generators that pro-
duce discrepancy sets for stronger classes of tests.

An efficient pseudorandom generator for some class of
tests immediately implies an efficiently computable func-
tion which is hard for these tests. More specifically, an

efficient pseudorandom generator that fools small circuits
implies the existence of a language in a uniform complex-
ity class (e.g., E = DTIME(2O(n))) that lies outside a
non-uniform complexity class (e.g. P/poly). Thus con-
structing such pseudorandom generators amounts to prov-
ing circuit lower bounds for explicit functions, a task that
is currently beyond our reach. Consequently, this line of
research focuses on constructing pseudorandom generators
under a hardness assumption1. In this context the goal is to
achieve derandomization results under the weakest possible
hardness assumptions.

One of the main efforts in derandomization over the last
decade has focused on the class BPP which can be deran-
domized given access to pseudorandom generators that fool
small circuits. Here the appropriate hardness assumption
is that there exists a language in E that requires exponen-
tial size circuits (i.e., the language cannot be computed by
size 2εn circuits, for some ε > 0).2 A sequence of results
[26, 4, 18, 21] showed that under this hardness assump-
tion BPP = P . A further sequence of papers achieved
a quantitatively optimal hardness vs. randomness tradeoff
[19, 20, 28, 31].

An analogous line of work [2, 24, 25, 28] derandom-
ized Arthur-Merlin games [3, 16]. (Recall that the class
AM contains important and natural problems like graph
non-isomorphism that are not known to be in NP). These
works achieved AM = NP under progressively qualita-
tively weaker hardness assumptions. The first results re-
quired average-case hardness for circuits that make non-
adaptive queries to an NP oracle, while the latest results
require only hardness for SV-nondeterministic circuits3 In
this paper we show that the various different assumptions
used to derandomize AM are in fact equivalent.

A prior line of research [29, 22, 6] addresses procedures
which approximately count and sample NP-witnesses.
More precisely, given a Boolean circuit A the first task is
to approximately count the number of accepting inputs of
A, and the second is to sample a random accepting input.
Note that both problems are NP-hard and thus any such pro-
cedure must use nondeterminism unless NP = P . The
current known procedures for these tasks also use random-

1This “hardness vs. randomness paradigm” was initiated by [9, 33].
It should be noted that the notion of pseudorandom generators in these
papers is different than the one we use here. In particular, in this paper we
follow a paradigm initiated by [26] which allow pseudorandom generators
which given a size bound s, run in time polynomial in s and output a
discrepancy set for size s circuits. The reader is referred to [15] for a
survey on pseudorandomness and its applications and to [23] for a recent
survey which focuses on derandomization.

2One of the confusing aspects of all the results in this area is that the
assumptions involve “exponential time” classes. In actual applications
these assumptions are “scaled down” to say that there exists a function
on O(log n) bits which is computable in polynomial time and cannot be
computed by size nc circuits (for some constant c).

3SV-nondeterministic circuits are the nonuniform analog of the class
NP ∩ coNP (see definition 2.2).

ization: they are probabilistic algorithms that use an NP-
oracle. In this paper we show how to derandomize these
procedures and show that under a hardness assumption that
is no stronger than that used to derandomize AM, both of
these tasks can be performed by polynomial time determin-
istic algorithms that make non-adaptive NP-queries.

In order to achieve these results we make a technical con-
tribution and a conceptual contribution. Our main technical
result is a “downward collapse theorem” that implies (as a
special case):4

E ⊆ PNP
|| /poly ⇒ E ⊆ NP/poly.

This downward collapse shows that all of the various fla-
vors of nondeterministic hardness assumptions considered
in the literature are equivalent. This unifies and simplifies
a number of past results. This result is also helpful when
derandomizing other probabilistic procedures that involve
randomness and nondeterminism. It allows us to start from
a weak hardness assumption, boost it to a stronger hard-
ness assumption, and then use pseudorandom generators for
stronger classes of tests, namely circuits which make non-
adaptive NP-queries.

Our conceptual contribution lies in defining what we
regard as the natural “derandomization objects” associ-
ated with approximate counting and sampling. These are
relative-error approximators (for approximate counting)
and conditional discrepancy sets (for sampling). The first is
a strengthening of additive-error approximators (which de-
randomize BPP), and the second is a generalization of dis-
crepancy sets (which “sample” from the uniform distribu-
tion). We show how to obtain relative-error approximators
and conditional discrepancy sets in polynomial time with
non-adaptive NP oracle access, under a hardness assump-
tion no stronger than that used for derandomizing AM. Note
that this suggests that the “true complexity” of these prob-
lems is FPNP

|| . Loosely speaking, our technique uses the
strong pseudorandom generators obtained by boosting the
initial hardness assumption to derandomize the probabilistic
procedures for approximate counting and sampling. Some
additional work is needed to obtain procedures that make
nonadaptive queries to an NP-oracle.

We also give several applications of relative error ap-
proximators and conditional discrepancy sets. We obtain
the following collapses under a hardness assumption no
stronger than that used for derandomizing AM: SP

2 = PNP

and BPPpath = PNP
|| . The first collapse comes from view-

ing Cai’s result [11] (that places SP
2 in ZPPNP) as a re-

duction of SP
2 to sampling that uses an NP oracle but is

not probabilistic. This allows a derandomization via condi-
tional discrepancy sets. Similarly, we view a fundamental

4The notation AB
|| says that A uses non-adaptive queries to oracle B.

result by Bshouty et al. [10] (concerning the learning of cir-
cuits using equivalence queries) as a reduction to sampling,
and derandomize it in the same way.

1.1. Outline

In Section 2 we present definitions of the various types
of nondeterministic circuits and hardness assumptions. In
Section 3 we describe our main results and relation to prior
work. In Section 4 we describe the major ideas and tech-
niques used in the proofs. Section 5 contains the full proof
of the downward collapse theorem; further proofs are de-
ferred to the full version due to space limitations. Finally in
Section 6 we conclude with some open problems.

2. Nondeterministic circuits and hardness

We assume that the reader is familiar with (determinis-
tic) Boolean circuits. We use the convention that the size
of a circuit is the total number of wires and gates. Nonde-
terministic circuits come in several flavors, which we define
below. We remark that a main contribution of this paper
lies in showing that the several hardness assumptions de-
fined below are all equivalent – unfortunately, in order to
show that, we need to be able to discuss all of the various
assumptions below.

Definition 2.1 (nondeterministic and co-nondeter-
ministic circuits). A nondeterministic (resp. co-
nondeterministic) circuit is a Boolean circuit C with
a set of n inputs x, and a second set of inputs y. The
function computed by C, denoted fC : {0, 1}n → {0, 1}
is defined by fC(x) = 1 iff ∃y C(x, y) = 1 (resp.
∀y C(x, y) = 0).

The uniform analogue of poly-size nondeterministic cir-
cuit is the class NP . The uniform analogue of poly-size co-
nondeterministic circuits is coNP . Poly-size single-valued
nondeterministic circuits have NP∩coNP as their uniform
analogue.

Definition 2.2 (single-valued nondeterministic circuits).
A single-valued nondeterministic (or SV-nondeterministic)
circuit is a Boolean circuit C with a set of n inputs x, a
second set of inputs y, and two outputs value and flag. Cir-
cuit C computes the function f : {0, 1}n → {0, 1} if the
following hold:

• for every x, y, if C(x, y) has 1 at its flag gate then
C(x, y) has f(x) at its value gate, and

• for every x, there exists some y for which C(x, y) has
1 at its flag gate.

Note that a circuit C may meet the syntactic demands
of this definition, and yet not compute any function. When
we refer to a SV-nondeterministic circuit, we always mean
a circuit C that in fact computes a function according to
this definition, and we refer to that unique function as the
function computed by C.

Definition 2.3 (Adaptive and non-adaptive SAT-oracle
circuits). A SAT-oracle circuit is a Boolean circuit C that is
also permitted to use SAT-oracle gates. A SAT-oracle gate
is a gate with many inputs and a single output that is 1 iff
the input is in SAT.

An nonadaptive SAT-oracle circuit is a pair of Boolean
circuits Cpre and Cpost. On input x, Cpre outputs a num-
ber of queries q1, q2, . . . , qm. Circuit Cpost receives x to-
gether with m bits a1, a2, . . . , am, where ai = 1 iff qi is in
SAT, and outputs a single answer bit.

We could also have defined nonadaptive SAT-oracle cir-
cuits to be SAT-oracle circuits in which no path from the
output gate to an input gate encounters more than one SAT-
oracle gate; the above definition makes explicit the pre- and
post- processing phase. For nonadaptive SAT-oracle circuits
so defined, their size is the sum of the sizes of Cpre and
Cpost.

We will frequently speak of a language L that is “hard
for” a class of circuits. Of course this hardness can be quan-
tified by the size of the circuit. For clarity, we have chosen
only to present the “high-end” results that follow when this
hardness is exponential, even though more general results
are true using our methods. Consequently, we only need
the following definitions:

Definition 2.4 (worst-case hardness for exponential-size
circuits). A language L is worst-case hard for exponential-
size (deterministic, nondeterministic, co-nondeterministic,
SV-nondeterministic, adaptive or nonadaptive SAT-oracle -
) circuits if there exists a constant ε > 0 for which every
circuit of the prescribed type and size at most 2εn, fails to
compute L restricted to inputs of length n, for all sufficiently
large n.

Definition 2.5 (average-case hardness for exponential–
size circuits). A language L is α-hard for exponential-
size (deterministic, nondeterministic, co-nondeterministic,
SV-nondeterministic, adaptive or nonadaptive SAT-oracle -
) circuits if there exists a constant ε > 0 for which every cir-
cuit of the prescribed type and size at most 2εn, fails to com-
pute L restricted to inputs of length n on at least (1−α)2n

such inputs, for all sufficiently large n.

Note that the definition of (1−2−n)-hard coincides with
the definition of worst-case hard.

Definition 2.6 (worst-case and average-case hardness of
complexity classes). A complexity class C is worst-case

worst case

this
paper

derandomizationderand. objectaverage case

[24]

[28, 1]

∃L worst-case
hard for SV-
non-det circts

∃L average-
case hard for
NP || circuits

∃L average-
case hard for
non-det circts

[24]

[2]

[25]

[28]

∃L worst-case
hard for non-
det circuits

∃L worst-case
hard for NP ||
circuits

∃ PRG for
NP || circuits

∃ PRG for
(co-) non-det
circuits

∃ HSG for
co-non-det
circuits

AM
=
NP

Figure 1. Assumptions implying AM = NP . In all cases L is a language in NE ∩ coNE. The
phrase “L worst-case (resp., average-case) hard for” means “L cannot be computed exactly by
(resp., approximated by) size 2εn for some ε > 0.” Arrows indicate implications; unlabelled arrows
correspond to implications that follow from standard arguments.

hard (resp. α-hard) for exponential-size circuits of a given
type if there exists a language L ∈ C that is worst-case hard
(resp. α-hard) for exponential-size circuits of that type.

We also sometimes say “C requires exponential-size cir-
cuits” of a given type to mean C is worst-case hard for
exponential-size circuits of that type.

3. Main results

Several of our results apply to any complexity class for
which one can compute the low-degree extension within
that class. To make these results easier to state we intro-
duce the following definition:

Definition 3.1. We say that a complexity class C allows
low-degree extension if EC≤O(n) ⊆ C, where the notation
C≤O(n) means that the E oracle machine makes only linear-
length queries.

Examples of complexity classes C that support low-
degree extension are: E, NE ∩ coNE, ENP , ENP

|| .

3.1. Unifying hardness assumptions

Several authors [2, 24] have observed that the PRG con-
structions intended to derandomize BPP can be adapted
to construct discrepancy sets that fool efficient non-
deterministic tests under stronger hardness assumptions.
Just as PRGs that fool efficient deterministic tests imply

BPP = P , PRGs that fool efficient non-deterministic tests
imply AM = NP .

Several hardness assumptions sufficient to achieve
AM = NP have been considered in the literature. All
of these hardness assumptions (and the others we will con-
sider in this paper) have the following form: there exists a
language L in some “high” uniform class (examples are E,
NE∩coNE, ENP

|| and ENP) that requires exponential size

circuits from some non-uniform circuit class5. Three non-
uniform circuit classes have been discussed in the literature
in relation to AM . These are

• SV-nondeterministic circuits, used by Milersen and
Vinodchandran [25] and later Shaltiel and Umans [28],

• non-deterministic (and co-nondeterministic) circuits,
used by Arvind and Kobler [2], and

• Nonadaptive SAT-oracle circuits, used by Klivans and
van Melkebeek [24]6,

5We stress that it is the choice of the nonuniform circuit class that typ-
ically plays an important role in the argument. Loosely speaking, this
choice determines the class of tests to be fooled by the generator. The
choice of the uniform class determines the efficiency of the generator.
For example, choosing this class to be E gives a generator which runs
in P , whereas NE ∩ coNE (or ENP) give a generator which runs in
NP ∩ coNP (or P NP). We encourage the reader to ignore the precise
choice of the uniform class at a first reading and focus on the choice of the
nonuniform class.

6Actually, the paper in question refers to SAT oracle circuits, but their
argument works just as well for nonadaptive SAT-oracle circuits, giving a
stronger result.

listed in order from weaker to stronger. Perhaps the best
way to understand these circuit classes is to think of them
as nonuniform analogs of NP ∩ coNP , NP (and coNP),
and PNP

|| , respectively. Figure 1 summarizes the various
hardness assumptions and pseudorandom objects implying
AM = NP and known relationships between them.

Notice that with the exception of the AM = NP box,
prior to this work there were two strongly connected com-
ponents, consisting of the top row and the bottom two rows.
In this paper we show that all of the hardness assumptions
considered in the literature are equivalent. In addition to
clarifying the situation, this result somewhat simplifies the
task of building a PRG sufficient to derandomize AM . One
can replace previous constructions [25, 28] that are special-
ized for derandomizing AM under an SV-nondeterministic
hardness assumption by any relativizing construction of or-
dinary pseudorandom generators (designed to derandomize
BPP).

3.1.1 A downward collapse theorem

The equivalence of the various hardness assumptions is im-
plied by the following downward collapse theorem, which
may be of independent interest:

Theorem 3.2 (downward collapse). Let C be any complex-
ity class that allows low-degree extension. If every language
in C has nonadaptive SAT-oracle circuits of size s(n) then
every language in C has SV-nondeterministic circuits of size
s(n)O(1).

A special case of Theorem 3.2 is:

E ⊆ PNP
|| /poly ⇒ E ⊆ NP/poly ∩ coNP/poly.

We remark that it is widely believed that PNP
|| is stronger

than NP ∩ coNP and that nonadaptive SAT-oracle circuits
are stronger than SV-nondeterministic circuits. Neverthe-
less, a collapse of E to the stronger class implies a further
collapse to the weaker class.

The following Corollary is the contrapositive version of
Theorem 3.2 which states that a “weak” hardness assump-
tion implies a stronger one:

Corollary 3.3. For every class C that allows low-degree
extension, if C is worst-case hard for exponential-size SV-
nondeterministic circuits then C is worst-case hard for
exponential-size nonadaptive SAT-oracle circuits.

Corollary 3.3 will allow us to derandomize many prob-
abilistic algorithms and classes using hardness for SV-
nondeterministic circuits by first “boosting” this assumption
to hardness for nonadaptive SAT-oracle circuits, and then
working with the pseudorandom generators obtained from
the latter assumption.

3.2. Derandomization objects for approximate
counting and sampling

In this section we define two generic computational ob-
jects – relative-error approximators, and conditional dis-
crepancy sets. These objects are natural and make no refer-
ence to nondeterminism. They are intended to capture ap-
proximate counting and sampling, and they generalize and
strengthen two existing and widely used objects: additive-
error approximators and (ordinary) discrepancy sets.

3.2.1 Relative-error approximators

Ordinary pseudo-random generators allow one to obtain an
additive approximation of the acceptance probability of cir-
cuits:

Definition 3.4. An (additive-error) approximator is a pro-
cedure that takes as input a Boolean circuit A, and ε > 0,
and outputs a real number ρ for which∣∣∣Pr

x
[A(x) = 1] − ρ

∣∣∣ ≤ ε.

Indeed additive approximation is in some sense the rai-
son d’etre of ordinary PRGs, because additive approxima-
tion of the acceptance probability of circuits allows one to
derandomize BPP. Relative error approximation allows ap-
proximate counting, and is much more difficult (it is NP -
hard). We will be concerned with relative-error approxima-
tions of the acceptance probability of circuits:

Definition 3.5. A relative-error approximator is a procedure
that takes as input a Boolean circuit A, and ε > 0, and
outputs a real number ρ for which

(1 − ε) Pr
x

[A(x) = 1] ≤ ρ ≤ Pr
x

[A(x) = 1].

We give a construction of deterministic relative-error
approximators under a hardness assumption for SV-
nondeterministic circuits.

Theorem 3.6 (construction of relative-error ap-
proximators). If ENP

|| requires exponential size SV-
nondeterministic circuits, then there is a deterministic
relative-error approximator that runs in time polynomial in
the length of its input and 1/ε, with non-adaptive access to
an NP oracle.

As an immediate corollary, we obtain

Corollary 3.7. If ENP
|| requires exponential size SV-

nondeterministic circuits, then for every #P function f :
{0, 1}n → N, and every ε > 0, there is a deterministic pro-
cedure P running in poly(n, ε−1) time with non-adaptive
access to an NP -oracle for which (for all x):

(1 − ε)f(x) ≤ P (x) ≤ f(x);

in other words, every problem in #P can be approximated
in FPNP

|| .

Note that it was shown in [29, 22, 6] that using random-
ness and an NP-oracle, it is possible to uniformly sample
NP-witnesses. This implies that every problem in #P has
a fully polynomial-time randomized approximation scheme
(FPRAS) with access to an NP -oracle. However, no de-
terministic fully polynomial-time approximation schemes
(FPAS’s) with access to an NP -oracle are known for any
#P -complete problem; the above corollary gives FPAS’s
that make non-adaptive NP oracle queries for all problems
in #P , albeit under a complexity assumption.

3.2.2 Conditional discrepancy sets

Ordinary pseudo-random generators are sometimes called
“discrepancy set generators,” since they produce the follow-
ing object:

Definition 3.8. An (n, s, ε)-discrepancy set is a subset T ⊆
{0, 1}n with the property that for all Boolean circuits C of
size at most s:∣∣∣∣Pr

x
[C(x) = 1] − Pr

t∈T
[C(t) = 1]

∣∣∣∣ ≤ ε.

A discrepancy set is a “good sample” of strings x ∈
{0, 1}n, with respect to any property P that is decidable
by small Boolean circuits. Of course one particularly use-
ful such property is the property that a BPP machine with a
fixed input accepts when given string x as its random coins.

Frequently one wishes to obtain a “good sample” of
strings x ∈ S for some subset S ⊆ {0, 1}n. Again, the
sample should be good with respect to any property P that
is recognizable by small Boolean circuits. For example S
may be the set of 3-colorings of a given graph; a property
of interest might be the property of having two specified
nodes colored with the same color. A large body of liter-
ature is devoted to sampling various structures (e.g., color-
ings, matchings, contingency tables, etc...), often employ-
ing Markov Chain Monte Carlo methods.

We define conditional discrepancy sets as the derandom-
ization object associated with such sampling in its full gen-
erality. We will allow the set S to be any set recognizable by
a small Boolean circuit; that is, S = A−1(1) for some small
circuit A. Conditional discrepancy sets capture “pseudoran-
domly sampling an accepting input of A” and can be seen
to be a natural generalization of ordinary discrepancy sets.

Definition 3.9. Let S ⊆ {0, 1}n be some subset. An S-
conditional (n, s, ε)-discrepancy set is a subset T ⊆ {0, 1}n

with the property that for all Boolean circuits C of size at
most s:∣∣∣∣Pr

x
[C(x) = 1|x ∈ S] − Pr

t∈T
[C(t) = 1|t ∈ S]

∣∣∣∣ ≤ ε.

Our main result here is a procedure to efficiently generate
conditional discrepancy sets under a hardness assumption
(which is no stronger than the hardness assumption used to
derandomize AM):

Theorem 3.10 (construction of conditional discrepancy
sets). If ENP

|| (resp. ENP) requires exponential size SV-
nondeterministic circuits, then there is a deterministic pro-
cedure that takes as input a Boolean circuit A that accepts
a subset S ⊆ {0, 1}n, an integer s, and ε > 0, and outputs
an S-conditional (n, s, ε)-discrepancy set T ⊆ S. The pro-
cedure runs in poly(|A|, n, s, 1/ε) time with non-adaptive
(resp. adaptive) access to an NP oracle.

3.3. Applications

3.3.1 Applications of the downward collapse theorem

We use Theorem 3.2 to prove our two other main theo-
rems, regarding the deterministic construction of relative-
error approximators and conditional discrepancy sets. An
additional application is given in the next theorem.

Theorem 3.11. If ENP
|| requires exponential size SV-

nondeterministic circuits, then BPPNP
|| = PNP

|| .

Klivans and van Melkebeek [24] formalized the notion
of a relativizing PRG construction, and observed that such
constructions can be used to fool circuit classes that are
stronger than deterministic circuits, if one is willing to
make a similarly stronger hardness assumption. For ex-
ample, this observation allows the construction of PRGs
that fool nonadaptive SAT-oracle circuits, assuming there
exist languages that are hard for nonadaptive SAT-oracle
circuits. Our Corollary 3.3 states that hardness for SV-
nondeterministic circuits implies hardness for nonadap-
tive SAT-oracle circuits. As a consequence, existing rel-
ativizing PRG constructions (e.g. [21, 30]) may be used
directly to fool nonadaptive SAT-oracle circuits, assum-
ing only hardness for SV-nondeterministic circuits. As
stated in the above theorem, this in turn derandomizes the
class BPPNP

|| using a weaker assumption than previously
known.

We next present an additional application of Corollary
3.3 that is used in the proof of Theorem 3.10. The following
remarkable observation is found in [24] (building on earlier
work by [8]): if ENP

|| requires exponential size nonadaptive
SAT-oracle circuits, then there is a polynomial-time proce-
dure to produce a satisfying assignment of a given circuit
C that uses non-adaptive access to an NP-oracle. Note that
the standard (unconditional) method uses adaptive access.
The non-adaptive procedure comes from noting that there
is a polynomial time algorithm that makes non-adaptive NP
queries to test whether the outcome of applying the Valiant-
Vazirani reduction to a satisfiable circuit C (for a specific

choice of random bits) succeeds in producing a circuit that
has a unique satisfying assignment. Using a PRG for non-
adaptive SAT-oracle circuits, it is then possible to determin-
istically produce a list of candidate circuits from C, one of
which is guaranteed to have a unique satisfying assignment.
For this circuit C ′, we can find the satisfying assignment
by making the following queries in parallel: “Does C ′ have
a satisfying assignment that assigns xi true?” and “Does
C ′ have a satisfying assignment that assigns xi false?” for
each i. The overall procedure requires only non-adaptive
NP-oracle access. Corollary 3.3 gives us the same conse-
quence from a weaker hardness assumption:

Theorem 3.12. If ENP
|| requires exponential size SV-

nondeterministic circuits, then there is a procedure that,
given a circuit C, outputs a satisfying assignment for C if
one exists, and runs in polynomial time with non-adaptive
NP-oracle access.

Finally, using Corollary 3.3 together with the “hardness
amplification” results of [30] gives a hardness amplification
result for nondeterministic circuits: it states that worst-case
hardness implies average-case hardness for nondeterminis-
tic circuits. This problem is extensively studied for deter-
ministic circuits [4, 18, 21, 30]; a hardness amplification
for nondeterministic circuits was first given in [28]. The
present route (using Corollary 3.3 and [30]) gives a simpler
and more modular proof of:

Theorem 3.13 ([28]). Let C be a complexity class that al-
lows low-degree extension. For every ε > 0, if C is hard for
size s nondeterministic circuits then C is (1/2 + ε)-hard for
size s′ = (sε/n)Ω(1) nondeterministic circuits.

3.3.2 An application of relative error approximators

In addition to giving a (conditional) derandomization of ap-
proximate counting (Corollary 3.7, we obtain the following
further application of Theorem 3.6:

Theorem 3.14. If ENP
|| requires exponential size SV-

nondeterministic circuits, then BPPpath = PNP
|| .

The class BPPpath was defined by Han, Hemaspaan-
dra and Theirauf [17]. It is the class of languages L
for which there exists a non-deterministic polynomial-time
Turing Machine M for which

x ∈ L ⇒ ≥ 2/3 of M ’s computation paths accept

x �∈ L ⇒ ≥ 2/3 of M ’s computation paths reject.

Notice that the computation paths need not all make the
same number of non-deterministic choices; if they are re-
quired to, we just get BPP . In contrast to BPP , BPPpath

is quite powerful: it is known to contain PNP
|| [17]. The

above theorem suggests it is probably equal to PNP
|| .

Proof of Theorem 3.14. Let L be a language in BPPpath

with associated non-deterministic Turing Machine M . Let
p(n) be an upper bound on the running time of M on an
input of length n.

Fix an input x. Let Dx be a circuit outputting 1 iff the
following procedure accepts: given y ∈ {0, 1}p(|x|), simu-
late M using successive bits of y as M ’s non-deterministic
choices. When M halts, if the remainder of y is all-zeros,
then accept, otherwise reject.

Let Cx be a circuit outputting 1 iff the following pro-
cedure accepts: given y ∈ {0, 1}p(|x|), simulate M using
successive bits of y as M ’s non-deterministic choices and
accept if and only if M accepts.

Observe that the probability over computation paths of
M that M accepts input x is exactly:

α = Pr
y

[Cx(y) = 1|Dx(y) = 1],

since each 1 of Dx corresponds to a unique computation
path.

We use the relative-error approximator of Theorem 3.6
twice (in parallel), once with input Cx, and once with input
Dx ∧ Cx, and ε = 1/10. Let ρ1 and ρ2 be the two approxi-
mations. Notice that

(1 − ε)α ≤ (ρ2/ρ1) ≤ (1 − ε)−1α.

We accept iff ρ2/ρ1 > 1/2, which is guaranteed to happen
iff Pry[Cx(y) = 1|Dx(y) = 1] ≥ 2/3. The entire proce-
dure runs in time poly(|x|) with non-adaptive NP oracle
access.

3.3.3 Applications of conditional discrepancy sets

The class Sp
2 was defined by [12] and [27]. It is the class of

languages L for which there is a polynomial-time predicate
R for which:

x ∈ L ⇒ ∃y ∀z R(x, y, z) = 1 (1)

x �∈ L ⇒ ∃z ∀y R(x, y, z) = 0. (2)

Cai [11] recently showed that the class Sp
2 (which con-

tains PNP and MA) is contained in ZPPNP . One con-
sequence of this result is that under a hardness assump-
tion sufficient to derandomize ZPPNP , the class Sp

2 col-
lapses to PNP . This is remarkable because Sp

2 is defined
by alternating quantifiers and has more of the flavor of the
Polynomial-Time Hierarchy than any randomized complex-
ity class; yet derandomization techniques yield a surprising
collapse.

We view Cai’s result as a reduction of Sp
2 to sampling,

and thus obtain the following collapse as an application of
Theorem 3.10. Note that this result does not follow directly
from SP

2 ⊆ ZPPNP using straightforward derandomiza-
tion techniques, as any derandomization via derandomizing

ZPPNP requires a stronger hardness assumption (given
current technology) to cope with adaptive NP -queries.

Theorem 3.15. If ENP requires exponential size SV-
nondeterministic circuits, then Sp

2 = PNP .

Proof. Let L be a language in Sp
2 , and let R be the asso-

ciated polynomial-time predicate for which Eqs. (1) and
(2) hold. By padding if necessary we may assume that
|x| = |y| = |z| = n. Let s be the running time of R.

The procedure to decide if x ∈ L operates in rounds.
Initially, we set i = 0, and S0 = {0, 1}n, and observe that
S0 is clearly recognized by a trivial circuit C0. We now
begin round 0.

In round i we do the following:

1. In PNP , generate the Si-conditional (n, s3, 1/2)-
discrepancy set Ti ⊆ Si (using Theorem 3.10).

2. If ∀z
∨

t∈Ti
R(x, t, z) = 1 then accept.

3. Otherwise, find zi for which
∨

t∈Ti
R(x, t, zi) = 0.

4. Define Si+1 = {y : y ∈ Si ∧ R(x, y, zi) = 1}, and
observe that Si+1 is recognized by a circuit Ci+1 of
size O(s2 + |Ci|).

5. If Si+1 = ∅, then reject; otherwise, begin round i+1.

Notice that step 2 requires a single NP -oracle query, as
does step 5, and that step 3 involves finding an NP -witness
in the usual way with multiple NP -oracle queries.

The main claim is that the number of rounds before this
procedure either accepts or rejects is at most n + 1. Notice
that at step 3, we must have that

Pr
y

[R(x, y, zi) = 1|y ∈ Si] ≤ 1/2,

since Prt∈Ti
[R(x, t, zi) = 1|t ∈ Si] = 0 and the cir-

cuit computing R with x and zi hard-wired has size at
most O(s2) < s3, and Ti is an Si-conditional (n, s3, 1/2)-
discrepancy set. Thus |Si+1| ≤ |Si|/2 for all i. Since we
start with |S0| = 2n, we have |Sn+1| ≤ 1/2 which implies
|Sn+1| = 0, so we halt after at most n + 1 rounds.

For correctness, observe that if we accept, we have found
that the complement of Eq. (2) holds; if we reject, then
∀y ∃zi R(x, y, zi) = 0, and thus the complement of Eq. (1)
holds.

In a similar manner, the result by Bshouty et al. [10]
on learning of circuits using equivalence queries may be re-
garded as a reduction to sampling. We thus obtain, using
Theorem 3.10:

Theorem 3.16. If ENP requires exponential size SV-
nondeterministic circuits, then there is a deterministic pro-
cedure with access to an NP -oracle that learns an un-
known Boolean circuit C of size s on n inputs in time
poly(s, n) using equivalence queries.

Proof. We use the notation [y] to indicate the function com-
puted by the Boolean circuit described by string y. De-
fine the function R : {0, 1}s × {0, 1}n → {0, 1} by
R(y, z) = [y](z).

The learning procedure is very similar to the algorithm
in the proof of Theorem 3.15. The procedure operates in
rounds. Initially, we set i = 0, and S0 = {0, 1}s, and
observe that S0 is clearly recognized by a trivial circuit C0.
We now begin round 0.

In round i we do the following:

1. In PNP , generate the Si-conditional (s, s3, 1/4)-
discrepancy set Ti ⊆ Si (using Theorem 3.10).

2. Make the equivalence query: “majt∈Ti
R(t, z) ≡

C(z)?” If the answer is YES, then we are done.

3. If the answer is NO, then we are given a counterexam-
ple zi for which majt∈Ti

R(t, zi) �= C(zi).

4. Define Si+1 = {y : y ∈ Si ∧ R(y, zi) = C(zi)}, and
observe that Si+1 is recognized by a circuit Ci+1 of
size O(s2 + |Ci|).

5. Begin round i + 1.

As in the proof of Theorem 3.15 then main claim is that
the number of rounds before completion is at most O(s). At
step 3, we claim that

Pr
y

[R(y, zi) = C(zi)|y ∈ Si] ≤ 3/4.

This is true because we know Prt∈Ti
[R(t, zi) = C(zi)|t ∈

Si] ≤ 1/2, and the circuit computing R with zi hard-wired
has size at most O(s2) < s3, and Ti is an Si-conditional
(s, s3, 1/4)-discrepancy set, which implies Pry[R(y, zi) =
C(zi)|y ∈ Si] ≤ 1/2 + ε = 3/4, as claimed.

Thus |Si+1| ≤ (3/4)|Si| for all i. We start with |S0| =
2s, and for all i, Si is non-empty since it contains y for
which [y] = C, so we must halt after at most O(s) rounds
with a positively answered equivalence query.

We remark that Theorem 3.15 and Theorem 3.16 are just
two examples where a ZPPNP algorithm for sampling is
used as a critical subroutine (see, e.g., the discussion in [6]
regarding applications in interactive proofs). Often this is
the only randomness used in these procedures, and so con-
ditional discrepancy sets suffice for derandomization in a
variety of settings.

4. Overview of the techniques

In this section we present the main technical ideas in the
proofs of the main theorems in an informal manner; some
full proofs appear in later sections while some proofs are
omitted due to space limitations.

4.1. Proof of the downward collapse theorem

We show in Theorem 3.2 that for every sufficiently
strong complexity class C, if C is computable by small
nonadaptive SAT-oracle circuits then C is computable by
small SV-nondeterministic circuits. This certainly does
not mean that one can always transform small nonadaptive
SAT-oracle circuits into small SV-nondeterministic circuits.
Note that the uniform versions of these classes are PNP

||
and NP ∩ coNP and it is widely believed that PNP

|| �⊆
NP ∩ coNP . More precisely, there are small nonadaptive
SAT-oracle circuits for Satisfiability and we do not expect
Satisfiability to have small SV-nondeterministic circuits, as
this would mean that NP ⊆ coNP/poly and collapse the
polynomial hierarchy.

Indeed, this observation demonstrates the main prob-
lem we need to overcome. Whenever an nonadaptive SAT-
oracle circuit calls its NP-oracle, it gets a result no mat-
ter whether the query asked is answered positively or neg-
atively. An SV-nondeterministic circuit can attempt to sim-
ulate an nonadaptive SAT-oracle circuit by guessing which
queries are answered positively, together with witnesses for
those queries – in this way it can “verify” some queries that
are answered positively. But it can not be sure that it has
correctly guessed all of the positively answered queries,
precisely because it is incapable of verifying negative an-
swers (assuming NP �⊆ coNP/poly).

The main idea in the proof is that when the function to be
computed is a low degree multivariate polynomial, a small
SV-nondeterministic circuit can in fact verify negative an-
swers, in an indirect way. Every function in a sufficiently
strong class C has a multivariate polynomial “low-degree
extension” [5] that lies in the same class. Thus any scheme
that allows SV-nondeterministic circuits to simulate non-
adaptive SAT-oracle circuits on low-degree polynomials im-
plies the existence of small SV-nondeterministic circuits for
all functions in class C if the class has small nonadaptive
SAT-oracle circuits.

We now describe the idea that exploits the low-degree
extension7. We’re given a small nonadaptive SAT-oracle
circuit which computes some low degree multivariate poly-
nomial f : F d → F (for some field F of size q). For
simplicity, let’s assume that this circuit makes a single NP-
query. We want to construct a small SV-nondeterministic
circuit for f . For every input x in the domain of f , let A(x)
denote the answer to the NP-query asked on x. Let p denote
the fraction of x’s for which the query is answered posi-
tively. We hardwire p to our SV-nondeterministic circuit.
Now, on input x the new circuit passes a random low de-

7A similar idea was used in [28] to build PRGs for nondeterminis-
tic circuits. It may also be viewed as a non-trivial “scaling down” of
EXP NP

|| ⊆ NEXP/poly ∩ coNEXP/poly – a containment cred-
ited to Harry Buhrman on Lance Fortnow’s weblog.

gree curve through x (we denote the degree of this curve by
r). Except for x, the other q points on this curve are r-wise
independent and therefore with high probability the fraction
of points y on the curve for which A(y) = 1 is in the range
(p − δ, p + δ) for some small δ.8 The circuit now guesses
(p − δ)q points on the curve along with witnesses showing
that the queries corresponding to these points are answered
positively. The circuit assumes that these queries are an-
swered positively and the queries for the remaining points
on the curve are answered negatively. The critical observa-
tion is that this assumption can be incorrect on at most a 2δ
fraction of the points on the curve. The circuit now simu-
lates the nonadaptive SAT-oracle circuit (which makes no
further NP queries) on all q points on the curve, and the
final evaluations it receives differ from the correct evalua-
tions on at most 2δq points. Finally, because the function f
restricted to the curve is a low-degree polynomial, the cir-
cuit can run a decoding algorithm for Reed-Solomon codes
[32] to correct the errors and obtain the correct answers for
all points on the curve, and in particular the circuit obtains
f(x).

4.2. Building relative-error approximators

Our relative-error approximators build on a line of work
which gives probabilistic algorithms that use an NP-oracle
to approximately count NP-witnesses [29, 22, 6] (for more
information see the discussion in [6]). Such algorithms
are given a deterministic circuit A on n bits and wish
to produce a relative approximation of the size of the set
S = {x|A(x) = 1}. The algorithm presented in [6] works
by finding a hash function h : {0, 1}n → {0, 1}k with the
property that for every image y ∈ {0, 1}k the size of the
preimage Sy = {x ∈ S|h(x) = y} is roughly n2, which
implies that |S| is approximately n22k.

To find such a hash function, one chooses a random hash
function h : {0, 1}n → {0, 1}k from an n-wise indepen-
dent hash family, and use the NP oracle to check whether
there exists a y ∈ {0, 1}k whose preimage has size greater
than n2. This is done for k = 1, 2, 3, . . ., stopping with the
first h that is good in the sense that there does not exist such
a y whose preimage is “too large”. By the pigeonhole prin-
ciple, a good h does not exist for k such that n22k < |S|;
for slightly larger k a random h from the n-wise indepen-
dent hash family is good with high probability. Thus, the
algorithm stops with the “correct” value of k, with high
probability.

We would like to derandomize this procedure. Since it is

8By choosing the degree r large enough we can show that there ex-
ist fixed points v1, · · · , vr ∈ F d such that for every x the fraction of
points y such that A(y) = 1 on the degree r curve that passes through
x; v1, · · · , vr is in the range (p − δ, p + δ). In the final construction we
also hardwire the points v1, · · · , vr to the circuit.

not a decision problem we cannot use PRGs directly9. In-
stead we derandomize this procedure by using the particular
way it operates (a general method that has been suggested
by [24] for such circumstances). Rather than choosing the
hash functions randomly, we try all of the hash functions
that are described by outputs of a PRG for nondeterminis-
tic circuits. For the “correct” k, one of the hash functions
we try is good, because the generator fools the nondeter-
ministic circuit which, given h, checks whether it is good.
Having identified the “correct” k, we can now output an es-
timate of |S|. In the full argument, some additional care
must be taken to obtain less-coarse approximations, and to
ensure that the overall procedure runs in FPNP

|| , rather than

FPNP .

4.3. Constructing conditional discrepancy sets

An S-conditional discrepancy set for small circuits is a
set T ⊆ S such that no small (deterministic) circuit can dis-
tinguish a random element from T from a random element
in S. This generalizes “regular” discrepancy sets for small
circuits (for which the set S is simply {0, 1}n). Given a set
S, encoded by a circuit A such that S = {x|A(x) = 1}, our
goal is to output an S-conditional discrepancy set T .

As with relative-error approximation, our approach is
based on algorithms which uses an NP-oracle to sample (or
count) accepting inputs of A [29, 22, 6]. Fix a hash function
h : {0, 1}n → {0, 1}k which is good in the sense defined
above. To sample a random element from S, one can choose
a random image y, use the NP oracle to find all the preim-
ages of y (there are approximately n2 of them), and choose
a random one.

Our procedure for producing conditional discrepancy
sets is a derandomization of this algorithm. It relies on hard-
ness for nondeterministic circuits, which by our results buys
us a PRG for nonadaptive SAT-oracle circuits. We first find
a good hash function h as explained above. Then, we in-
clude in the conditional discrepancy set T the preimages in
S of only those y that are outputs of a PRG G for nonadap-
tive SAT-oracle circuits; here we make use of Theorem 3.12
to perform this step using only non-adaptive NP oracle ac-
cess.

The proof that T is in fact an S-conditional discrepancy
set is somewhat subtle. Given a (deterministic) circuit that
distinguishes a random element in T from a random ele-
ment in S, we need to construct a nonadaptive SAT-oracle
circuit D that is a distinguisher for the PRG G, thus leading

9For the case of decision problems every probabilistic algorithm can
be derandomized if one has a sufficiently strong pseudorandom genera-
tor. However, there are tasks (which are not decision problems) that can
be easily solved by a probabilistic algorithm and cannot be solved by a
deterministic algorithm. For example, a probabilistic algorithm can easily
produce a string with high Kolmogorov complexity whereas no determin-
istic algorithm can output such a string.

to a contradiction. Care is needed to ensure that the dis-
tinguisher D makes only non-adaptive NP oracle queries –
and this is especially crucial here because a distinguisher
that makes adaptive queries is not guaranteed to be fooled
by the PRG G that is based on only an SV-nondeterministic
hardness assumption.

5. Proof of Theorem 3.2

We begin with some definitions and preliminaries.

5.1. Preliminaries

Given a function f : X → Y and S ⊆ X we use f(S)
to denote the (multi-)set {f(x)|x ∈ S}.

5.1.1 Discrepancy sets and pseudorandom generators

In this paper we define pseudorandom generators in terms
of discrepancy sets.

Definition 5.1 (discrepancy set). Let D be a subset of all
functions from {0, 1}n to {0, 1}. A set T ⊆ {0, 1}n is an
(n, ε)-discrepancy set for D if for every D ∈ D,∣∣∣∣ Pr

x∈{0,1}n
[D(x) = 1] − Pr

t∈T
[D(t) = 1]

∣∣∣∣ ≤ ε.

Commonly D is the set of functions with size s deter-
ministic circuits; in this case we use the shorthand (n, s, ε)-
discrepancy set (as in SubSection 3.2.2). A pseudorandom
generator is a function whose output is a discrepancy set10.

Definition 5.2 (pseudorandom generator). Let C be a
complexity class. A pseudorandom generator (PRG) for
C is a procedure which on input 1n outputs a (n, 1/n)-
discrepancy set for the set D of all characteristic functions
of languages in C restricted to length n.

In this paper C will typically be the class of those lan-
guages with nondeterministic circuits of a given type, and
whose size is a fixed polynomial.

5.1.2 Low-degree polynomials

The low-degree extension of a function embeds the function
in a low-degree polynomial.

10A more standard formulation is that a pseudorandom generator
“stretches” a short seed into a long pseudorandom string, with the property
that the set of all pseudorandom strings is a discrepancy set. Our defini-
tion asks the pseudorandom generator to output all pseudorandom strings
at once. This difference is immaterial in in this paper as we will be con-
centrating on discrepancy sets with polynomial size, and thus the entire set
can be output in polynomial time if each individual string can be generated
in polynomial time.

Definition 5.3 (low-degree extension). Let f : {0, 1}n →
{0, 1} be a function, Fq the field with q elements, and h
and d integers for which hd ≥ 2n. Let H be a subset of
Fq of size h, and let I be an efficiently computable injective
mapping from {0, 1}n to Hd.

The low-degree extension of f with respect to q, h, d is
the (unique) d-variate polynomial f̂ : F

d
q → F with degree

h − 1 in each variable, for which f̂(I(x)) = f(x) for all
x ∈ {0, 1}n and f̂(v) = 0 for v ∈ (Hd \ Im(I)).

It is often helpful to think of field elements as binary
strings of length log q. From this viewpoint, f̂ is a func-
tion from d log q bits to log q bits. We will often consider a
version of the low degree extension which outputs a single
bit. This boolean version of the low-degree extension is de-
noted f̂bool : {0, 1}d log q+log log q → {0, 1} and is defined
by f̂bool(x, i) = f̂(x)i.

The following properties of low-degree extensions are
trivial and standard:

Proposition 5.4 (properties of the low-degree extension).
For f̂ and f̂bool as defined above, the following hold:

• f̂ has total degree hd, and

• f̂bool is computable in time poly(2n, log q, d) given or-
acle access to f .

Complexity classes that allow low-degree extension (see
Definition 3.1) contain the (boolean) low-degree extensions
of every function in that class; Theorem 3.2 applies to all
such classes.

Definition 5.5 (parametric curves). Let Fq be the field
with q elements, and let f1, f2, . . . fq be an enumeration of
the elements of Fq. Given v1, v2, . . . , vr ∈ F

d
q , for r ≤ q,

we define the curve passing through v1, v2, · · · , vr to be the
unique degree r − 1 polynomial function c : Fq → F

d
q for

which c(fi) = vi for all i. A curve c is one to one if i �= j
implies c(fi) �= c(fj).

The function f̂ ◦ c is the restriction of f̂ to the curve c. It
is a low-degree univariate polynomial; in coding terms, it is
a Reed-Solomon codeword.

Theorem 5.6 (decoding of Reed-Solomon codes [32]).
Let Fq be the field with q elements. Given t pairs (xi, yi) of
elements of Fq , there is a unique polynomial g : Fq → Fq of
degree at most u for which p(xi) = yi for at least a pairs,
provided a > (t+u)/2. Furthermore, there is a polynomial
time algorithm that finds g.

5.2. Random curves that pass through a fixed point

In this subsection we prepare some technical machinery
needed for the proof of Theorem 3.2. We will repeatedly use

the following tail-inequality for r-wise independent random
variables:

Lemma 5.7 ([7]). Let r > 4 be an even integer. Suppose
X1,X2, . . . , Xq are r-wise independent random variables
taking values in [0, 1]. Let X =

∑
Xi, and A > 0. Then:

Pr[|X − E[X]| ≥ A] ≤ ·
(

r · E[X] + r2

A2

)r/2

.

We prove a technical lemma regarding the sampling
properties of low-degree parametric curves. The points on a
random degree r parametric curve are r-wise independent;
a well-known consequence of this fact is that the points on
such a curve are a good “oblivious sampler” (see the survey
[14]). This means that for any function h : F d → [0, 1] the
average of h(x) over the points on a random curve is with
high probability close to the average over the whole space.
We show below that this holds even if an adversary gets to
choose the first point on the curve. Because the remaining
points on the curve are still r-wise independent it remains a
good sampler.

We need the following notation:

Definition 5.8. Let W ⊆ Z be finite sets and let h : Z →
[0, 1] be an arbitrary function. The average of h over W is
defined by:

µW (h) =
1

|W |
∑
i∈W

h(i)

We will use c(x,v1,v2,...,vr) to denote the curve passing
through x, v1, v2, . . . vr (see Definition 5.5). We require that
c(x,v1,v2,...,vr)(0) = x; i.e., the enumeration of the field ele-
ments in Definition 5.5) starts with 0. Also, below Fq is the
field of size q, and F

∗
q = Fq \ {0}.

Lemma 5.9. Let r be an integer for which 2 ≤ r < q. For
every point x ∈ F

d
q , function h : F

d
q → [0, 1], and δ > 0,

the following hold:

1. Prv1,...,vr∈Fd
q

[∣∣∣µc(x,v1,...,vr)(F∗
q)(h) − µFd

q
(h)
∣∣∣ ≥ δ

]
≤

8 · (2r
tδ2

)r/2
, and

2. Prv1,...,vr∈Fd
q

[
c(x,v1,...,vr) isn’t one to one

] ≤ 1
qd−2 .

Proof. Fix x and h, and let v1, . . . , vr be chosen uniformly
and independently from F

d
q . Define random variables Ya by

Ya = c(x,v1,...,vr)(a). It is standard that for every a ∈ F ∗
q ,

Ya is uniformly distributed over F
d
q , and that the random

variables {Ya}a∈F∗
q

are r-wise independent. Now we define
the random variables Ra = h(Ya). It follows that for every
a ∈ F ∗

q , E[Ri] = µFd
q
(h), and that {Ra}a∈F∗

q
are r-wise

independent. Let R =
∑

a∈F∗
q

Ra. We apply Lemma 5.7

with A = |F ∗
q |δ = (q − 1)δ to conclude:

Pr
v1,··· ,vr∈Fd

q

[∣∣∣µc(x,v1,...,vr)(F∗
q)(h) − µFd

q
(h)
∣∣∣ ≥ δ

]
=

Pr[|R − E[R]| ≥ A] ≤ 8
(

2r

(q − 1)δ2

)r/2

.

This proves (1). For (2), we observe that for every a �=
a′ ∈ Fq,

Pr
v1,...,vr∈Fd

q

[c(x,v1,...,vr)(f) = c(x,v1,...,vr)(f ′)] =
1
qd

,

and taking a union bound over all (at most q2) such pairs
yields the desired result.

We will be interested in curves that are good samplers for
k functions simultaneously. The following is a corollary of
the above lemma; it is an easy application of a union bound:

Corollary 5.10. Let r be an integer for which 2 ≤ r < q.
Let h1, h2, . . . , hk be functions from F

d
q to [0, 1]. For every

point x ∈ F
d
q and δ > 0, the probability over a random

choice of points v1, . . . , vr ∈ F
d
q that c(x,v1,...,vr) is one-to-

one and ∣∣∣µc(x,v1,...,vr)(F∗
q)(hi) − µFd

q
(hi)

∣∣∣ < δ

for all 1 ≤ i ≤ k, is at least

1 −
(

8k

(
2r

(q − 1)δ2

)r/2

+
1

qd−2

)
.

5.3. Proof of the downward collapse theorem

In this subsection we prove Theorem 3.2. We refer the
reader to the informal description of the technique in the
introduction (Section 4.1).

Let L be an arbitrary language in C, and let f :
{0, 1}n → {0, 1} be the restriction of (the characteristic
function of) L to inputs of length n. Throughout the proof
we assume that n is sufficiently large, n ≤ s(n) ≤ 2n, and
that s(O(n)) ≤ s(n)O(1).

Let f̂ be the low-degree extension of f with respect to
parameters q, h, d chosen as follows (they are expressed in
terms of a fourth parameter r):

• r = 2(n + log(32s(n)5))

• h = (4r)2(9s(n))4

• d = �n/ log h� + 3

• q smallest prime power larger than 9hdr.

Note that C allows low-degree extension, and so by Proposi-
tion 5.4, the function family consisting of (boolean versions
of) the low-degree extensions of L for each input length,
with parameters as defined above, lies in C.

Thus, by the hypothesis of the theorem, f̂bool has an
nonadaptive SAT-oracle circuit of size s(n′), where n′ =
log(qd) + log(q) = O(n) is the input length of f̂bool. We
will construct a probabilistic SV-nondeterministic circuit
C ′ computing f̂bool of size s′ = s(n′)c, for a constant c
(it will be clear in the exposition below what is meant by a
“probabilistic SV-nondeterministic circuit”). We will then
transform C ′ into an SV-nondeterministic circuit C ′′ com-
puting f by fixing a “good” random string, and using the
function I that accompanies the low-degree extension (re-
call Definition 5.3). The resulting circuit C ′′ will have size
s(n′)c + poly(n). Since s(n′)c = s(O(n))c = s(n)O(1),
we will conclude that L has circuits of size s(n)O(1). As L
was arbitrary, this will prove the theorem.

Let Cpre, Cpost be the Boolean circuits that describe the
nonadaptive SAT-oracle circuit of size s(n′) that computes
f̂bool (recall Definition 2.3). With log q parallel copies of
Cpre and Cpost, we can construct an nonadaptive SAT-
oracle circuit with log q outputs that computes f̂ . Let
Q1(x), . . . , Qk(x) and A1(x), . . . , Ak(x) be the queries
and answers associated with this circuit, respectively, on
input x ∈ F

d
q . Without loss of generality we assume that

exactly k queries are made on every input x. We define
pi = µFd

q
(Ai).

We focus first on constructing C ′, the probabilistic SV-
nondeterministic circuit. Circuit C ′ makes use of Cpre and
Cpost, as well as p1, p2, . . . , pk as non-uniform advice. We
set δ = 1/(9k). On input (x, b), circuit C ′ wants to com-
pute f̂bool(x, b); it performs the following steps:

• Pick v1, v2, . . . , vr ∈ F
d
q uniformly at random, and

set xa = c(x,v1,v2,...,vr)(a), so the xa are the q points
along a random curve passing through x, v1, v2, . . . vr.
Simulate Cpre to compute queries Qi(xa) for 1 ≤ i ≤
k and a ∈ F

∗
q .

• Set ni = �(pi − δ)(q − 1)�. For 1 ≤ i ≤ k, guess zi ∈
{0, 1}F

∗
q with exactly ni ones, and strings {wi,a}a∈F∗

q
.

• For 1 ≤ i ≤ k and a ∈ F
∗
q , check that (zi)a = 1

implies wi,a is a witness that query Qi(xa) is answered
positively; otherwise, set the flag output to 0 and halt.

• Compute ya = Cpost(xa, (z1)a, (z2)a, . . . , (zk)a) for
a ∈ F ∗

q .

• Run the algorithm of Theorem 5.6 on the q − 1 pairs
(fa, ya) with u = hdr to obtain a polynomial g : Fq →
Fq of degree u. Set the value output to the b-th bit of
g(0), and set the flag output to 1.

The following claim will allow us to fix the coin-flips of
circuit C ′, described above, to get an SV-nondeterministic
circuit computing f .

Claim 5.10.1. For every x ∈ F
d
q and b ∈ [log q], with prob-

ability at least 1 − 2−n

2 log q over the choice of v1, . . . , vr, the
following two conditions hold:

1. For all guesses zi, wi,a for which the flag output is set
to one, the value output is f̂bool(x, b).

2. There exist guesses zi, wi,a such that the flag output is
set to one.

Proof. Fix an x ∈ F
d
q . We apply Corollary 5.10 to con-

clude that the probability over a random choice of points
v1, . . . , vr ∈ F

d
q that

c(x,v1,...,vr) is one-to-one and ∀1 ≤ i ≤ k∣∣∣µc(x,v1,...,vr)(F∗
q)(Ai) − µFd

q
(Ai)

∣∣∣ < δ (3)

is at least

1 −
(

8k

(
2r

(q − 1)δ2

)r/2

+
1

qd−2

)
.

By our choice of parameters:(
8k

(
2r

(q − 1)δ2

)r/2

+
1

qd−2

)

≤ 8s(n) log q

(
1
2

)r/2

+
1

qd−2

≤ 2−n

4 log q
+

2−n

4 log q
≤ 2−n

2 log q
.

The first inequality it true because k ≤ s(n) log q, δ−2 =
(9k)2 ≤ (9s(n) log q)2 and

(q − 1)/ log2 q ≥ √
q ≥

√
h ≥ (4r)(9s(n))2

(for sufficiently large q). The second inequality follows
from our choice of r and d, and the fact that log q = O(n) ≤
s(n)2 (for sufficiently large q).

We will show that whenever (3) holds, the two items in
the claim hold. We begin with the second item. Since (3)
holds, for each i we know that there are at least ni distinct
indices for which Ai(xa) = 1; we choose zi to be a string
with ones in exactly ni of these indices. For each index a
for which (zi)a = 1, there is a witness wi,a showing that
query Qi(xa) is answered positively (since Ai(xa) = 1).
Thus there exists a choice of of the zi, wi,a for which the
flag output is set to one.

Now, we turn to the first item. Once the verification in
the third bullet above is complete, we know that for all i,

and all a ∈ F ∗
q , (zi)a = 1 implies Ai(xa) = 1, and that

there are at least ni such a for which (zi)a = 1. We also
know, by (3), that the number of a for which Ai(xa) = 1 is
at most �(pi + δ)(q − 1)�. Thus we can bound the number
of “errors attributable to query i” as follows:

|{a : a ∈ F
∗
q , Ai(xa) �= (zi)a

} |
≤ �(pi + δ)(q − 1)� − �(pi − δ)(q − 1)� ≤ 2δq,

and the number of “errors” overall as follows:

|{a : a ∈ F
∗
q for which ∃i Ai(xa) �= (zi)a

} | ≤ 2δqk.

For every a that is not an “error,” ya = f̂(xa). We conclude
that for at least (q−1)−2δqk = (1−2δk)q−1 of the pairs
(a, ya), we have ya = p(a), where p(w) is the degree hdr

“restriction to the curve” p(w) = f̂ ◦ c(x1,v1,v2,...,vr)(w).
If the number of pairs that agree with p(w) is greater than

(q− 1+hdr)/2, then the algorithm of Theorem 5.6 returns
p(w), and our circuit outputs the b-th bit of p(0) = f̂(x) as
desired. Thus to conclude the proof we verify that

(1 − 2δk)q − 1 =
7/9
q

− 1 >
q − 1 + hdr

2
,

which holds by our choice of q.

Now, recall that the low-degree extension is accompa-
nied by a polynomial-time computable function I from
{0, 1}n into F

d
q . Consider the set of inputs to C ′ given by

S = {(x, b) : x ∈ I({0, 1}n), b ∈ [log q]}

and note that |S| = (log q)2n. Thus there must be a fixing
of the coin-flips of C ′ so that the two statements in the above
claim hold for all inputs in S.

Our SV-nondeterministic circuit C ′′ computing f is built
as follows:

• on input y ∈ {0, 1}n, compute x = I(y)

• use circuit C ′ with the “good” random coin-flips hard-
wired to compute f̂bool(x, b) for every b ∈ [log q].

• these log q bits give us f̂(x) = f̂(I(y)) = f(y). Out-
put f(y).

Because non-adaptive queries to an SV-nondeterministic
circuit may be simulated by an SV-nondeterministic circuit,
the resulting circuit C ′′ is an SV-nondeterministic circuit.
Finally, we can verify that its size is poly(n) + s(n′)c for
some constant c. This concludes the proof of Theorem 3.2.

6. Conclusions and open problems

All known “hardness versus randomness tradeoffs” work
by using a hard function to construct a PRG that derandom-
izes the given probabilistic procedure. The proofs show
that if the derandomization fails, this probabilistic proce-
dure can be used as a subroutine to efficiently compute the
supposedly hard function, which is a contradiction. One
consequence of this type of argument is that to derandom-
ize some class of probabilistic procedures A, one requires
a function that is hard for procedures that are at least as
strong as A. This paper gives several results that break this
“barrier” by derandomizing “strong” classes using “weak”
lower bounds. The most striking result in this vein is per-
haps Theorem 3.15. Since it is known that PNP ⊆ SP

2 ,
SP

2 is strong enough to simulate adaptive NP-queries. It is
highly unlikely that SP

2 is computable by small nondeter-
ministic circuits, and yet we show that SP

2 = PNP using
“only” hardness for nondeterministic circuits.

One can ask how far this “weakening” of hardness as-
sumptions can go. For example we do not know whether
the existence of relative error approximators, or conditional
discrepancy set generators, imply the nondeterminstic hard-
ness assumption that we have used to construct them in this
paper. The standard argument that shows that “pseudoran-
domness entails hardness” only gives hardness for deter-
ministic circuits. Is it possible to construct these objects
using a weaker hardness assumption? Constructing them
from hardness for deterministic circuits would have some
interesting consequences, like placing approximate count-
ing in ZPPNP unconditionally.

Our downward collapse theorem states that for every suf-
ficiently strong class C if C has small nonadaptive SAT-
oracle circuits then C has small SV-nondeterministic cir-
cuits. A very natural open problem is try to extend the
downward collapse theorem to handle adaptive NP queries.
That is, show that if E is computable by small adaptive SAT-
oracle circuits then E is computable by small nonadaptive
SAT-oracle circuits.

Another interesting open problem is to give a uniform
version of the downward collapse theorem, or more pre-
cisely, to prove that EXP ⊆ PNP

|| ⇒ EXP = AM .
We remark that the argument of this paper can be slightly
modified to give EXP ⊆ PNP

|| ⇒ EXP ⊆ AM/ log.11

Acknowledgements

We thank Lance Fortnow, Oded Goldreich, Russell Im-
pagliazzo, Rahul Santhanam and Salil Vadhan for helpful
comments.

11To see this, observe that with some minor modifications to the param-
eters used in the proof of Theorem 3.2, it is sufficient to supply

�
i pi as

nonuniform advice, rather than p1, p2, . . . , pk . Fortnow and Klivans have
recently improved this collapse to NP/ log [13].

References

[1] E. Allender, M. Koucky, D. Ronneburger, and S. Roy. De-
randomization and distinguishing complexity. In Proc. 18th
Annual IEEE Conference on Computational Complexity,
pages 209–220, 2003.

[2] V. Arvind and J. Kobler. On pseudorandomness and
resource-bounded measure. TCS: Theoretical Computer Sci-
ence, 255, 2001.

[3] L. Babai. Trading group theory for randomness. In Proceed-
ings of the Seventeenth Annual ACM Symposium on Theory
of Computing, 1985.

[4] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP
has subexponential time simulations unless EXPTIME has
publishable proofs. Computational Complexity, 3(4):307–
318, 1993.

[5] D. Beaver and J. Feigenbaum. Hiding instances in multior-
acle queries. In 7th Annual Symposium on Theoretical As-
pects of Computer Science, volume 415 of lncs, pages 37–
48, Rouen, France, 22–24 Feb. 1990. Springer.

[6] M. Bellare, O. Goldreich, and E. Petrank. Uniform genera-
tion of NP-witnesses using an NP-oracle. INFCTRL: Infor-
mation and Computation (formerly Information and Con-
trol), 163, 2000.

[7] M. Bellare and J. Rompel. Randomness-efficient oblivi-
ous sampling. In S. Goldwasser, editor, Proceedings: 35th
Annual Symposium on Foundations of Computer Science,
November 20–22, 1994, Santa Fe, New Mexico, pages 276–
287, 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, 1994. IEEE Computer Society Press.

[8] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On
the theory of average case complexity. In Proceedings of
the 22nd Annual ACM Symposium on Theory of Computing,
pages 379–386, 1990.

[9] M. Blum and S. Micali. How to generate cryptographically
strong sequences of pseudo-random bits. SIAM Journal on
Computing, 13(4):850–864, Nov. 1984.

[10] N. H. Bshouty, R. Cleve, R. Gavalda, S. Kannan, and C. Ta-
mon. Oracles and queries that are sufficient for exact learn-
ing. Journal of Computer and System Sciences, 52(3):421–
433, 1996.

[11] J. Cai. SP
2 ⊆ ZPP NP . In Proceedings of the 42nd Annual

Symposium on Foundations of Computer Science (FOCS-
01), pages 620–629, 2001.

[12] R. Canetti. On BPP and the polynomial-time hierarchy. In-
formation Processing Letters, 57:237–241, 1996.

[13] L. Fortnow and A. Klivans. NP with small advice. These
proceedings, 2005.

[14] O. Goldreich. A sample of samplers – A computational per-
spective on sampling (survey). In ECCCTR: Electronic Col-
loquium on Computational Complexity, technical reports,
1997.

[15] O. Goldreich. Modern Cryptography, Probabilistic Proofs
and Pseudorandomness. Springer-Verlag, Algorithms and
Combinatorics, 1998.

[16] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal of
Computing, 18(1):186–208, 1989.

[17] Y. Han, L. Hemaspaandra, and T. Thierauf. Threshold
computation and cryptographic security. SIAM J. Comput.,
26(1):59–78, 1997.

[18] R. Impagliazzo. Hard-core distributions for somewhat hard
problems. In 36th Annual Symposium on Foundations of
Computer Science, pages 538–545, Milwaukee, Wisconsin,
23–25 Oct. 1995. IEEE.

[19] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-
optimal conversion of hardness into pseudo-randomness. In
IEEE, editor, 40th Annual Symposium on Foundations of
Computer Science: October 17–19, 1999, New York City,
New York,, pages 181–190, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 1999. IEEE Computer So-
ciety Press.

[20] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors
and pseudo-random generators with optimal seed length.
In ACM, editor, Proceedings of the thirty second annual
ACM Symposium on Theory of Computing: Portland, Ore-
gon, May 21–23, [2000], pages 1–10, New York, NY, USA,
2000. ACM Press.

[21] R. Impagliazzo and A. Wigderson. P = BPP if E requires
exponential circuits: Derandomizing the XOR lemma. In
Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, pages 220–229, El Paso, Texas,
4–6 May 1997.

[22] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random
generation of combinatorial structures from a uniform dis-
tribution. Theoretical Computer Science, 43(2-3):169–188,
1986.

[23] V. Kabanets. Derandomization: A brief overview. In ECC-
CTR: Electronic Colloquium on Computational Complexity,
technical reports, 2002.

[24] A. R. Klivans and D. van Melkebeek. Graph nonisomor-
phism has subexponential size proofs unless the polynomial-
time hierarchy collapses. SIAM Journal on Computing,
31(5):1501–1526, Oct. 2002.

[25] P. B. Miltersen and N. V. Vinodchandran. Derandomizing
Arthur-Merlin games using hitting sets. In 40th Annual Sym-
posium on Foundations of Computer Science (FOCS ’99),
pages 71–80, 1999.

[26] N. Nisan and A. Wigderson. Hardness vs randomness. Jour-
nal of Computer and System Sciences, 49(2):149–167, Oct.
1994.

[27] A. Russell and R. Sundaram. Symmetric alternation cap-
tures BPP. Computational Complexity, 7(2):152–162, 1998.

[28] R. Shaltiel and C. Umans. Simple extractors for all min-
entropies and a new pseudo-random generator. In IEEE,
editor, 42nd IEEE Symposium on Foundations of Computer
Science: proceedings: October 14–17, 2001, Las Vegas,
Nevada, USA, pages 648–657, 1109 Spring Street, Suite
300, Silver Spring, MD 20910, USA, 2001. IEEE Computer
Society Press.

[29] L. Stockmeyer. The complexity of approximate counting. In
ACM, editor, Proceedings of the fifteenth annual ACM Sym-
posium on Theory of Computing, Boston, Massachusetts,
April 25–27, 1983, pages 118–126, New York, NY, USA,
1983. ACM Press.

[30] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom gen-
erators without the XOR lemma. Journal of Computer and
System Sciences, 62:236–266, 2001.

[31] C. Umans. Pseudo-random generators for all hardnesses.
Journal of Computer and System Sciences, 67:419–440,
2003.

[32] L. Welch and E. Berlekamp. Error correction for algebraic
block codes. U.S. Patent No. 4,633,470, issued December
30, 1986.

[33] A. C. Yao. Theory and applications of trapdoor functions
(extended abstract). In 23th Annual Symposium on Founda-
tions of Computer Science (FOCS ’82), pages 80–91, Los
Alamitos, Ca., USA, Nov. 1982. IEEE Computer Society
Press.

