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Abstract

A “randomness extractor” is an algorithm that given a sample from a distribution with sufficiently
high min-entropy and a short random seed produces an output that is statistically indistinguishable from
uniform. (Min-entropy is a measure of the amount of randomness in a distribution). We present a simple,
self-contained extractor construction that produces good extractors for all min-entropies. Our construc-
tion is algebraic and builds on a new polynomial-based approach introduced by Ta-Shma, Zuckerman,
and Safra [TSZS01]. Using our improvements, we obtain, for example, an extractor with output length
m = k/(log n)O(1/α) and seed length(1 + α) log n for an arbitrary0 < α ≤ 1, wheren is the input
length, andk is the min-entropy of the input distribution.

A “pseudorandom generator” is an algorithm that given a short random seed produces a long output
that is computationally indistinguishable from uniform. Our technique also gives a new way to con-
struct pseudorandom generators from functions that require large circuits. Our pseudorandom generator
construction isnot based on the Nisan-Wigderson generator [NW94], and turns worst-case hardnessdi-
rectly into pseudorandomness. The parameters of our generator match those in [IW97, STV01] and in
particular are strong enough to obtain a new proof thatP = BPP if E requires exponential size circuits.

Our construction also gives the following improvements over previous work:

• We construct an optimal “hitting set generator” that stretchesO(log n) random bits intosΩ(1)

pseudorandom bits when given a function onlog n bits that requires circuits of sizes. This yields
a quantitatively optimal hardness versus randomness tradeoff for bothRP andBPP and solves
an open problem raised in [ISW99].

• We give the first construction of pseudorandom generators that foolnondeterministiccircuits when
given a function that requires large nondeterministic circuits. This technique also give a quanti-
tatively optimal hardness versus randomness tradeoff forAM and the first hardness amplification
result for nondeterministic circuits.
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1 Introduction

A central question in Complexity Theory concerns the power of probabilistic algorithms. Such algorithms
are allowed to use a string of independent coin tosses in their computation. Two different approaches for
obtaining such a string have resulted in two fundamental objects.

Randomness Extractors (defined by [NZ96]) are deterministic machines that extract “pure randomness”
from physical sources of “crude randomness”. More formally, an extractor takes two inputs: Ann bit long
string that is sampled from an arbitrary distribution with min-entropy at leastk,1 and a “seed” oft ¿ n truly
random bits. The extractor should outputm À t bits that arestatistically closeto truly random bits. Given
an extractorE, one can run any probabilistic algorithm using only the crude source of randomness. This is
done by taking a samplex from the source, and running the algorithm usingE(x, y) as random coins for
all 2t possible seedsy. The final output is the majority vote of the2t outputs. It is easy to verify that this
algorithm outputs the correct answer with high probability and runs in polynomial time ift = O(log n).

Extractors have been used in a remarkable variety of settings beyond their intended application. These
include complexity theory [Sip88, NZ96, GZ97], algorithms [WZ99], hardness of approximation [Zuc96,
Uma99], distributed protocols [Zuc97, RZ98], and coding theory [TSZ04]. A long line of research [NZ96,
SZ99, Zuc97, TS96, NTS99, Tre02, RRV02, RRV99, ISW03, RSW00, TSUZ01, LRVW03] has focused on
constructing extractors with gradual improvement in various parameters. Typically, one wants to minimize
the seed lengtht and maximize the output lengthm and achieve this for any relation between the length of
the sourcen and the min-entropy thresholdk. A probabilistic argument shows the existence of an “optimal
extractor” that matches the lower bounds given in [NZ96, RTS00] and achieves seed lengtht = log(n −
k) + O(1) and output lengthm = k + t−O(1). However, all the applications above require extractors that
areexplicit in the sense that they run in polynomial time. For more information on extractors the reader is
referred to survey papers [NTS99, Sha02]

Pseudorandom Generators (defined by [BM84, Yao82]) are deterministic machines that stretch a short
t bit long “seed” of truly random bits into a long “pseudorandom” string of lengthm. It is required that
no small circuit can distinguish between the distribution of pseudorandom strings and that of truly ran-
dom strings. The existence of pseudorandom generators implies the existence of functions that cannot
be computed by small circuits; thus, in the absence of strong circuit lower bounds, we cannot get un-
conditional constructions of pseudorandom generators. The “hardness versus randomness paradigm” (ini-
tiated by [BM84, Yao82]) suggests basing constructions of pseudorandom generators on the assumption
that certain hard functions exist. A weaker notion of PRGs was suggested in [NW94],2 This notion per-
mits PRG constructions using the assumption that there exists a function familyg : {0, 1}log n → {0, 1}
that can be computed in time polynomial inn and is hard for small circuits of sizes = s(n) (wheres
lies betweenlog n andn).3 Given a pseudorandom generator one can determistically simulate any prob-

1A distribution has min-entropy at leastk if it the probability it assigns to every element is at most2−k.
2The notion of pseudorandom generator used in [BM84, Yao82] is stronger than the one used here. It is required that PRGs fool

circuits that arelarger than the running time of the PRG. Such PRGs imply the existence of one-way functions. Following [NW94]
we use a weaker notion of PRGs that only fools circuits that aresmallerthan the running time of the PRG. This is often called the
“Nisan-Wigderson” setting. A typical choice of parameters in this setting is a PRG that runs in time polynomial inn, stretches
O(log n) bits intonΩ(1) bits, and fools all circuits of sizenΩ(1) where this size is smaller than the running time of the PRG. As
pointed out in [NW94], such PRGs suffice to derandomize probabilistic algorithms.

3We remark that a different way to state this assumption is to measure the complexity of the functiong in terms of the length of
its input. In this language the assumption is that there exists a function family inE = DTIME(2O(n)) that cannot be computed by
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Additional randomnesst Output lengthm whichk Reference

O(log n) k1−δ k > logO(1/δ) n Corollary 4.6
(1 + δ) log n kΩ(δ) k > logO(1/δ) n Corollary 4.7
(1 + α) log n k/(logO(1/α) n) anyk Corollary 4.9

log n + O(1) k anyk optimal

Table 1: Examples of extractors constructed in this paper. Here,δ > 0 is any constant,0 < α ≤ 1 is an
arbitrary function. The results are stated for constant error.

abilistic algorithm by running the algorithm on all2t pseudorandom strings and outputting the majority
vote. This deterministic simulation runs in polynomial time whent = O(log n). A long line of research
[NW94, BFNW93, Imp95, IW97, STV01, ISW99, ISW03] has focused on constructing PRGs under such
an assumption. An important milestone was achieved in [IW97] (and later in [STV01]). They show that
if there exist sufficiently hard functions (functionsg over log n bits that are computable in timenO(1) yet
hard for circuits of sizes = nΩ(1)) then there is a PRG that stretchest = O(log n) bits intom = nΩ(1)

bits and every polynomial time probabilistic algorithm can be simulated by a polynomial time deterministic
algorithm; i.e.,BPP = P . For more information on pseudorandom generators the reader is referred to
survey papers [Gol98, Kab02].

Connections between extractors and PRGs The two areas were recently linked in [Tre02], which showed
that Nisan-Wigderson-style PRGs, properly interpreted, are also extractors. For this correspondence, one
should think of a PRG construction as receiving an additional input. In addition to the seed the PRG also
gets the “hard function”g : {0, 1}log n → {0, 1} encoded as ann bit long truth table. Trevisan [Tre02]
shows that every such construction with certain “black-box properties” yields an extractor.

1.1 Our results

The main contribution of this paper is developing a simple, self-contained, and versatile construction of
both extractors and PRGs that achieves good results for a wide range of parameters. We build on a recent
new technique introduced in [TSZS01] for building extractors from Reed-Muller codes. By extending this
technique and adding some new ideas we are able to construct extractors over a broader parameter range
(the extractors in [TSZS01] lose quite a bit of the source randomness and as a consequence only work for
sources with high min-entropy). In terms of parameters, our extractors are comparable to the best current
constructions, although somewhat inferior in their output length.

Our improvements also allow using Trevisan’s connection [Tre02] “the other way” and give a new
construction of pseudorandom generators. This construction is the first construction that is not based on the
Nisan-Wigderson generator [NW94] and gives an “optimal conversion of hardness into pseudorandomness”.
In addition, our construction also allows constructing PRGs against nondeterministic circuits from weaker
assumptions than previously known. Below, we outline our results in more detail:

circuits of sizes′(n) wheres′ is a function that satisfiess′(log n) = s. We prefer the first setting as it allows a “unified framework”
for both extractors and PRGs. However, we also state our results in the second setting to allow easy comparison to previous work.
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Extractor constructions: Our extractors are summarized in Table 1. For simplicity we will only discuss
the case when the error is constant. Precise statements of the results appear in Section 4.6. Our first ex-
tractor achieves a relatively large output length (m = k1−δ for any constantδ > 0), while retaining the
asymptotically optimal seed length oft = O(log n). This matches the parameters of previous constructions
by [Tre02] (which achieved these parameters fork = nΩ(1)) and [ISW03, TSUZ01]. Our second extractor
uses a shorter seed lengtht = (1 + α) log n where0 ≤ α(n) ≤ 1 is an arbitrary function, and the choice
of α affects the output lengthm = kΩ(α). A seed length approaching1 · log n was achieved in [TSZS01]
for k = nΩ(1) while our result works for arbitraryk. Our third extractor improves the dependence of the
output length onα and achieves output lengthm = k/(logO(1/α) n). Unlike the first two extractors it is not
self-contained – it relies on another extractor construction from [TSZS01, NZ96].

In a subsequent work, [LRVW03] have constructed an extractor with seed lengtht = O(log n) and
output lengthm = Ω(k) for arbitrary min-entropy thresholdk. This construction (as well as some previous
ones; see [Sha02] for more details) achieves better output length than our extractors. However, note that we
can achievet = (1 + α) log n for smallα > 0, whereas [LRVW03] can only achievet = c log n for some
unspecified constantc > 1.

Pseudorandom generators constructions: Prior to this paper, all known PRG constructions were based
on the original Nisan-Wigderson PRG [NW94] (with the exception of the Blum-Micali-Yao-style PRGs
[BM84, Yao82], which are based on a stronger type of hardness assumption). Coming up with an alternate
construction has long been an open problem. Our construction doesnot use the NW PRG, and is arguably
simpler than previous constructions. In particular, there is no explicit hardness-amplification component:
we transform worst-case hardness directly into pseudorandomness. The parameters of our PRG match
[IW97, STV01]; that is, given a functiong : {0, 1}log n → {0, 1} that cannot be computed by circuits of size
s we construct a PRG with seed lengtht = O(log2 n/ log s) and output lengthm = sΩ(1). Consequently,
(by settings = nΩ(1)) we obtain a new proof of the theorem of [IW97] thatBPP = P if there exists a
function family inE that requires exponential size circuits.

An optimal hitting set generator: A hitting set generator (HSG) is the one-sided variant of a PRG, and
the canonical construct for derandomizing RP (instead of BPP). We give the first construction of anoptimal
HSG; that is, a HSG with seed lengtht = O(log n) that outputsm = sΩ(1) bits when given a function
g : {0, 1}log n → {0, 1} that requires sizes circuits. Our construction is optimal in the sense made formal in
[ISW99, ISW03]; namely, any construction that does significantly better also produces a harder function than
the one initially supplied to it. Additionally, by [Tre02] any conversion of hardness into pseudorandomness
with a “black-box proof” yields extractors or dispersers. Thus, any such conversion that does significantly
better is ruled out by the unconditional lower bounds of [NZ96, RTS00] on extractors and dispersers. The
reader is referred to [ISW03] for the precise notions of optimality we are discussing here.

An optimal hardness versus randomness tradeoff for BPP: An optimal HSG immediately gives an
optimal hardness versus randomness tradeoff forRP . Using the result of [ACR98], (see also [ACRT99,
BF99, GVW00]) that HSGs suffice to derandomizeBPP , we use our HSG to obtain an optimal hard-
ness versus randomness tradeoff forBPP . Specifically, we get the following tradeoff: if there exists
a family of functions inE requiring circuits of sizes(n), then for any time constructible functiont(n)
BPTIME(t(n)) ⊆ DTIME(2O(s−1(t(n)O(1)))). The previous best result (due to [ISW99, ISW03]) obtained
the weaker conclusion that BPTIME(t(n)) ⊆ DTIME(2O(s−1(t(n)O(log log t(n))))). We remark that in a sub-
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sequent work, [Uma02] uses our technique to construct optimal PRGs (rather than HSGs) and this gives a
more direct proof of the optimal tradeoff for BPP.

PRGs that fool nondeterministic circuits and derandomization of AM: The classAM (introduced by

[BM88, GMR89]) is the nondeterministic version ofBPP . TheAM
?= NP problem is the nondeterminis-

tic analog of theBPP
?= P problem. It was observed in [AK97, GZ97] that PRGs that fool nondeterministic

circuits suffice to derandomize AM. It was observed in [KvM02] that existing constructions of PRGs against
deterministic circuits can be used against nondeterministic circuits if one assumes that the functiong is hard
against circuits of sizes that use aSAT -oracle. This assumption was relaxed in [MV99]; their construction
requires only hardness for nondeterministic circuits.4 However, their construction only gives an HSG and
not a PRG. (HSGs for co-nondeterministic circuits do suffice to derandomizeAM asAM coincides with
its one-sided error variant [FGM+89]).

We use specific properties of our proof technique to show that both our PRG and HSG, with identical
parameters, can be used to foolnondeterministic circuitswhen given a function that is hard fornondeter-
ministiccircuits. This gives an optimal hardness versus randomness tradeoff forAM and improves and ex-
tends previous works by [KvM02] (which relied on a seemingly stronger hardness assumption) and [MV99]
(which does not work for low hardness).

Our technique also gives a way to transform a function family inE that is hard on the worst case for
small nondeterministic circuits into a function family inE that is hard on average for small nondeterministic
circuits. Such transformations are often called “hardness amplification” results. Several such results were
proven in the case ofdeterministiccircuits [BFNW93, IW97, STV01]. This is the first such result for
nondeterministic circuits.5

While the constructions in [TSZS01] and the present work are simple, the proofs are more involved. The
common thread in the proof techniques of [STV01, TSZS01] and this work is the use of specific properties
of error-correcting codes, and ideas for decoding them. In the next section we describe the construction of
[TSZS01] and our improvements at a high level.

2 Overview of the Technique

We first outline the relevant prior work on extractors in Section 2.1, then our new ideas in Section 2.2, and
finally we describe the additional ideas needed to build PRGs and HSGs in Section 2.3.

2.1 Previous work

The reconstruction proof technique. Trevisan [Tre02] showed that a powerful proof technique that at
first seems natural only for PRGs can in fact be used for extractors. The proof technique works by contra-
diction. One assumes that the extractor’s output is not close to uniform for some high min-entropy source
X and therefore does not pass some prediction test. That is, there exists an indexi and a functionf (the

4Note that nondeterministic circuits are the nonuniform analog ofNP whereasSAT -oracle circuits are the nonuniform ana-
logue ofP NP . Furthermore,SAT -oracle circuits are stronger than nondeterministic circuits assuming the polynomial time hierar-
chy does not collapse. We also remark that the result of [MV99] (as well as ours) can be stated with respect to hardness for “single
valued nondeterministic circuits” (see Section 6).

5In a subsequent work [SU04] we extend the technique developed in this paper to show that if there are functions inE that require
large nondeterministic circuits then there are functions inE that require large circuits that make non-adaptiveSAT -queries. This
gives a more modular way to prove our results for nondeterministic circuits.
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predictor) that is able to predict thei’th output of the extractor given the firsti− 1 outputs. More formally,
if we denote them output symbols of the extractor byE(x, y)1, · · · , E(x, y)m then

Pr
x←X,y

[f(E(x, y)1, E(x, y)2, · · · , E(x, y)i−1) = E(x, y)i] (1)

is noticeably larger than randomly guessing thei’th symbol. (In this discussion, we consider a generalization
of extractors that we call “q-ary extractors,” which outputm symbols from an alphabet of sizeq rather than
m bits; such extractors can be converted to extractors that output bits [TSZS01] – cf., Section 4.5). Then one
gives a “reconstruction procedure” based on the predictorf . This procedure is able to reconstruct the string
x sampled from the weak random source usingf and a short “advice string”. More precisely, for many
x’s (namely those on which the predictor has noticeable advantage) there exists a short “advice string”z
such that the reconstruction procedure can reconstructx usingf when givenz. If the source has large
min-entropy, this is a contradiction because it implies that a large number of strings have short description
(whereas there are only a few short descriptions).

The extractor of [TSZS01] Ta-Shma, Zuckerman and Safra [TSZS01] proposed a new extractor construc-
tion based on polynomials that uses this proof technique in a new way. Their construction is very simple.
One thinks of the stringx sampled from the weak random source as a low-degree multivariate polynomial
px : F d → F over a finite fieldF of sizeq, and the seed is a random evaluation pointy ∈ F d. The extrac-
tor computesm “successive” pointsy1, · · · , ym ∈ F d starting withy1 = y (the meaning of “successive”
is purposely left a bit vague in this presentation and we will elaborate on it later) and outputsm symbols
E(x, y) = (px(y1), · · · , px(ym)).

Their proof describes a reconstruction procedure that attempts to reconstruct a source string (viewed as a
polynomialpx) using a predictorf and a short advice stringz which contains the value ofpx at a small fixed
set of points which we will call the “startup points”. The basic idea is to reconstructpx step by step, where
in each step the reconstruction procedure “learns” the evaluation ofpx at a new point. In the first step the
procedure usesi − 1 successive points from the startup points to predict the value ofpx at the “next” point
(usingf ). In the next step the predictor can be “advanced” by one step and usei− 2 successive points plus
the one just predicted to predict the value ofpx at the next point, and so on, until all ofpx is reconstructed.
There are however two complications.

First, the predictor is only correct with a small advantage over random guessing. To overcome this,
at each step the predictor is used to predict in parallel all points along a random lineL in F d. (Loosely
speaking, this can be done by taking more startup points; more details are below). Because points on a
random line are pairwise independent, with high probability the predictor is correct on the same fraction of
points inL as its total advantage over the whole space. The collection of values along the line can now be
error-corrected sincepx restricted toL is a low-degree univariate polynomial.

Second, the relative number of errors is so large that unique decoding is impossible, and one must use
“list-decoding” [Sud97] to obtain a small number of possible options, (that is univariate polynomials), one
of which is correct in the sense that it agrees withpx on the lineL. To pin down the correct one, the advice
string includes the evaluation ofpx at a random point onL, which with high probability agrees withonly
the correct polynomial in the list.

To summarize, the [TSZS01] reconstruction procedure gets an advice string that enables it to evaluate
px on i− 1 successive lines. and the process described above is used to reconstructpx by “learning” a new
line in each step.
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2.2 Improvements of this paper

The key to improving the quality of the [TSZS01] extractor is reducing the length of the advice string. As
the length of the advice string depends (amongst other things) on the degree ofpx which we will denote
by h, we want to reduce the degree. Recall thatpx : F d → F is supposed to encode ann bit long source
elementx and to encode this amount of information we needhd ≈ n. Therefore, when reducing the degree
h we must increase the dimensiond. It turns out that the straightforward way of increasing the dimension in
the construction of [TSZS01]increasesthe length of the advice string (so the best result is obtained when
px is a polynomial in only two variables, i.e.d = 2). Our improvements enable us to increase the dimension
d without this deleterious effect.

An algebraic approach. What does “successive” mean? In [TSZS01] (say in two dimensions over finite
field F ), the successor of(a1, a2) is (a1 +1, a2). The rationale is that starting from a random line and taking
successive steps, one covers the whole vector-spaceF 2. The advice string must include the values ofpx

on roughlym (the output length) lines, becausei in Equation (1) may be as large asm − 1. However, this
geometric approach succumbs to the “curse of dimensionality” as the dimension is increased: for dimension
d, the advice string must include the values ofpx on roughlym (d − 1)-dimensional subspaces, and its
length becomes huge (namely, it is greater thanmqd−1 > mhd−1, which approachesn ≈ hd, the length of
the source string).6

The main source of our improvement comes from taking an algebraic instead of a geometric approach.
The polynomials we wish to learn are defined over the vector-spaceF d. Our insight is to view this space
as an extension field ofF . The multiplicative group of this field is cyclic and has generatorg, and for us,
the successor of an element is obtained bymultiplicationby g. This indeed has the essential property that
by repeatedly taking successors, we cover the whole space. We also use critically that multiplication by
g corresponds to alinear transformin the vector-space, so that lines get mapped to lines. Replacing the
geometric approach by an algebraic approach avoids the geometric structure ofF d and now the dimension
does not come into play. Our advice string includes roughlym lines regardless of the dimension, and thus
is of length≈ mh. To make use of this improvement we also need the following new ideas.

Curves instead of lines. In [TSZS01], each prediction step fails with probability about1/q whereq is
the size of the fieldF , and a union bound is used to argue thatno prediction steps fails during the entire
reconstruction process.

Recall that we are increasing the dimensiond and decreasing the degreeh (which in turn forces us to
decrease the field sizeq in order to have a short seed length). This decreases the number of points on a line
and means that it takes many more prediction steps to traverse the whole space and therefore many more
events are in the union bound. Decreasing the field sizeq increases the failure probability of each individual
event. Together these effects overwhelm us.

We overcome this by predicting alongdegreer curvesinstead of lines. Since the collection of points
on such curves isr-wise independent, we can use higher moment tail inequalities to argue that the failure
probability of each prediction step isexponentially smallin r. Choosingr large enough permits us to use the
union bound even for our much larger collection of events. Using curves instead of lines is also necessary
for the improvement described next.

6Furthermore, we remark that when successive points are on a line, (as is the case in [TSZS01]), then them output evaluations
are evaluations of some univariate polynomialq with the same degree aspx. Thus, one has to setm smaller than the degree of the
polynomialpx, as otherwise the predictorf can easily predict the last point by interpolating the polynomialq when given all points
but the last one. Our improvement allow us to break this barrier and set the degree ofpx to be much smaller thanm.
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Interleaved reconstruction procedures. There’s an additional cost to using more prediction steps. Recall
that in [TSZS01], the advice string must include the value of the polynomial at a random point on the line,
for each prediction step. Having to include these will blow up the size of the advice string.

To overcome this problem we run two “interleaved” reconstruction procedures. Each uses its own ran-
dom curve and startup points but we arrange it so that the two curves intersect at a few random points. The
two reconstruction procedures work on their own. However, when one needs the value of the polynomial at
a random point on its curve, it can use the valuealready calculatedby the other reconstruction procedure in-
stead of relying on the advice string. Thus, no additional information is required in the advice string beyond
the startup points needed to get the two interleaved reconstruction procedures started.

To conclude, the improvements above allow us to decrease the degreeh from about
√

n to polylog n
and the advice string contains only the startup points and has length roughlymh. This gives extractors that
work for every min-entropy thresholdk and extract roughlyk/h = k/poly log n bits from the source.

We stress that almost all of what we have described in the preceding subsections relates to theproof that
our construction is indeed an extractor. The extractor construction itself remains very simple.

2.3 Constructing PRGs and HSGs

Since the reconstruction proof technique outlined above was originally applied to PRG constructions, it is
easy to adapt to that setting. To convert our extractor into a PRG, we fix the “source string”x to be the truth
table of a hard functiong, use the seedy as before to pick an evaluation point, and outputm successive
evaluations. If this isnot a PRG, then there is anefficientpredictorf , and we wish to usef to produce a
smallcircuit C that computes the functionx(j) = xj , contradicting the hardness ofx.

Two things contribute to the size ofC: the length of the advice string (which must be hardwired into
C), and the number of prediction steps (since each step invokesf and requires computation to perform the
list-decoding). Because the advice string must be small, the improvements we get over [TSZS01] in this
area are essential for the PRG construction.

However, the natural adaptation of our extractor into a PRG suffers from an inherent problem of the
method of [TSZS01]: It is highly sequential. Specifically, computingxj at a positionj that is “far away”
from the startup points (one that takes many successive prediction steps to get to) takes too many steps and
makesC too large to derive a contradiction.

The problem is that we can’t have a “successor function” defined overF d in such a way that very few
applications of the function can get toeverypoint from a fixed starting location. A helpful idea is to allow
severalsuch successor functions so that short sequences of applications of the different successor functions
can reach every point. To achieve this we will take the first successor function to be the one we used for the
extractor, the second successor function to beq applicationsof the first, the third to beq2 applications of the
first and so on, whereq is the field size. By first taking a few small strides, then a few larger strides, then a
few even larger strides, etc., we can reach every point in a small number of steps.

Each one of these successor functions corresponds to a construction very similar to our extractor con-
struction. We show thatat least oneof these constructions must be a PRG, since if none of them are, then
we have predictors for all of them and this would give us the predictors with differing strides needed to
contradict the hardness ofx.

By running all of these “candidate” PRGs with independent seeds, and XOR-ing their output, we obtain
the desired single PRG. Each one of the candidate PRGs uses a seed of lengthO(log n). Because we need
so few candidate generators the seed length of the XORed generator is still relatively short. More precisely,
the number of candidate generators islog n/ log s whenx (viewed as a functionx : {0, 1}log n → {0, 1})

8



requires circuits of sizes. (Note that this isconstantwhenx has exponential hardness.) Thus, the seed of
the XORed generator is of lengthO(log2 n/ log s) and matches the parameters of [STV01]. We can reduce
the seed length to the optimalO(log n) when constructing a hitting-set generator (HSG). This is done by
taking theunionof the candidate PRGs rather than their exclusive-or. More precisely, the seed of our HSG
has two parts:y andi, and when giveny andu it runs thei’th candidate on seedy. This corresponds to
choosing a random candidate PRG and running it on a random seed.

Generators for nondeterministic circuits. In the nondeterministic setting we construct PRGs and HSGs
for nondeterministic circuits based on functions that are hard for nondeterministic circuits. We use the same
proof technique as for “ordinary” PRGs; however, to derive a contradiction in the new setting, we must use
a nondeterministicpredictor circuitf to construct anondeterministiccircuit that computes the (supposedly
hard) functionx. The deterministic reconstruction procedure runs the nondeterministic predictorf as a
subroutine. The difficulty is that a deterministic procedure with a nondeterministic subroutine does not
necessarily yield a nondeterministic procedure. (For examplePNP is not likely to be contained inNP ). To
obtain a nondeterministic circuit the reconstruction procedure can only use the nondeterministic predictor
f in a one-sided way: It can efficiently verify that the predictor outputs “one” on a given input, but there’s
not necessarily an efficient way to verify that the output is “zero”. Klivans and van Melkebeek [KvM02]
bypassed this problem by imposing a stronger hardness assumption onx – hardness for circuits withSAT -
oracle gates. Under this assumption constructions based on [NW94] can be used to fool circuits withSAT -
oracle gates, as the proof of Nisan and Wigderson relativizes. Our “ordinary” PRG and HSG constructions
also relativize and therefore immediately translate to this framework. Miltersen and Vinodchandran [MV99]
gave an alternate construction using a hardness assumption forsingle-valued nondeterministic circuits(SV -
circuits), which are (presumably) weaker than both circuits with SAT-oracle gates and nondeterministic
circuits.7 However, their construction gives only HSGs (not PRGs), and works only for the “high end” of
possible hardness assumptions, meaning that it requires circuit lower bounds of at least2

√
log n for a function

g on log n bits.
Both our PRG and our HSG constructions can be adapted to fool nondeterministic (and co-nondeterministic)

circuits using hardness assumptions forSV -circuits. The main observation is that we always use our predic-
tors along random curves. When used this way the fraction of “ones” we expect to find in the output of the
predictor along a random curve is close to the fraction in the whole space, and the probability of deviation
is very small. The reconstruction receives the fraction of “ones” the predictor outputs over the whole space
as non-uniform advice. Then, at every step, weguessthis fraction of locations along our random curve,
and assume the predictor outputs “ones” at these locations and “zeros” elsewhere. We can efficiently verify
that the predictor indeed outputs “ones” at the specified locations, and then the only new errors we have
introduced are the small number of “ones” we have assumed to be “zeros.” However, the number of errors is
still small enough to allow the (list-)decoding phase to proceed unchanged. The same technique also gives
a hardness amplification result for nondeterministic circuits.

It should be noted that the presentation in this section is over-simplified and the reader is referred to
the technical sections for exact details. The actual PRG and HSG constructions also involve a non-standard
version of the “low degree extension” encoding that is suitable for our application.

7Loosely speaking, nondeterministic circuits are a nonuniform analog ofNP , andSV -circuits are a nonuniform analog of
NP ∩ coNP . A precise definition appears as Definition 6.2.
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2.4 Outline

The remainder of the paper is organized as follows. In Section 3 we state some previous results. Section 4
is devoted to extractors and contains the core of all of the other constructions that follow. Section 5 contains
the PRG and HSG constructions, and Section 6 extends these to the nondeterministic setting. In Section 7
we briefly describe a further application of our ideas to hardness amplification. An important ingredient in
our constructions are constructions of “traversing matrices” and in Section 8 we show how to construct such
matrices.

3 Preliminaries

We begin with some standard definitions. Whenever we useUn, we mean the random variable that is
uniform on{0, 1}n. Two distributions on the same domain areε-closeif the statistical distance between
them is at mostε; i.e., the probabilities they give to any event differ by at mostε. Give a fieldF , a function
C : F → F d is a degreer curve ifC(t) =

∑r−1
i=0 ait

i for somea0, · · · , ar−1 ∈ F d. By F [p] we denote the
set of all subsets ofF of sizep.

We need the following list-decoding bound due to [Sud97]:

Lemma 3.1 ([Sud97]).Let prs, agr, deg be integers. Givenprs distinct pairs(xi, yi) in field F with agr >√
2 · deg · prs, there are at most2prs/agr polynomialsg of degreedeg such thatg(xi) = yi for at leastagr

pairs. Furthermore, a list of all such polynomials can be computed in time poly(prs, log |F |).
We also need the following tail inequality fort-wise independent random variables:

Lemma 3.2 ([BR94]). Let t > 4 be an even integer. SupposeX1, X2, . . . , Xn are t-wise independent
random variables taking values in[0, 1]. LetX =

∑
Xi, µ = E[X] andA > 0. Then:

Pr[|X − µ| ≥ A] ≤ 8 ·
(

tµ + t2

A2

)t/2

4 Extractors

In this section we give our extractor constructions. In Section 4.1 we give definitions of extractors and an
generalization of extractors which we callq-ary extractors. In Section 4.2 we present our basic construction.
In Sections 4.3 and 4.4 we prove our main theorem: that our construction yields aq-ary extractor. In Section
4.5 we discuss two transformations that convertq-ary extractors into (regular) extractors. This allows us to
obtain regular extractors. In Section 4.6 we give a modified construction ofq-ary extractors that allows the
construction of extractors with small error.

4.1 Extractor preliminaries

A random variableX has min-entropy at leastk if Pr[X = x] ≤ 2−k for all x; formally:

Definition 4.1 (min-entropy). Themin-entropyof a random variableX over{0, 1}n, writtenH∞(X), is
defined asH∞(X) = minx∈{0,1}n log2

1
Pr[X=x] .

10



Definition 4.2 (extractor). A (k, ε) extractoris a functionE : {0, 1}n × {0, 1}t → {0, 1}m such that for
all random variablesX with H∞(X) ≥ k:

E(X, Ut) is ε-close toUm. (2)

An extractorE is explicit if E can be computed in time polynomial inn. By [Yao82], to show that (2)
above holds, it is sufficient to prove (3):

∀ 1 ≤ i ≤ m and all functionsf : {0, 1}i−1 → {0, 1} ,

Pr[f(E(X, Ut)1...i−1) = E(X,Ut)i] ≤ 1
2

+
ε

m
(3)

and indeed the proofs for many recent extractor constructions follow this route. Property (3) requires that
each successive bit of output be “unpredictable” based on the previous bits.

As our construction of extractors is algebraic, we will be working over the finite field withq elements.
It will therefore be useful to define a “q-ary” extractor. Such an extractor is required to satisfy an unpre-
dictability property analogous to (3); however, in the larger field we allow the prediction functionf to output
a small list of possible next elements, instead of just one.8

Definition 4.3 (q-ary extractor). Let F be the field withq elements. A(k, ρ) q-ary extractoris a function
E : {0, 1}n × {0, 1}t → Fm such that for all random variablesX with H∞(X) ≥ k:

∀ 1 ≤ i ≤ m and all functionsf : F i−1 → F [ρ−2],

Pr[E(X, Ut)i ∈ f(E(X, Ut)1...i−1)] ≤ ρ. (4)

In [RRV02, TSZS01] it was shown how to transformq-ary extractors into regular extractors. This
transformation does not significantly change the parameters of theq-ary extractor. The precise details of
this transformation are given in Section 4.5. This allows us to focus on building goodq-ary extractors.

4.2 The basic construction

Our construction is very simple. Following [TSZS01] our first step is to encode the stringx from the weak
random source with aq-ary Reed-Muller (d-variate polynomial) code. The coordinates of such a code are
in one-to-one correspondence with the vectors in the vector-spaceF d. Our q-ary extractor uses its truly
random bits to pick a random~v ∈ F d. It outputs the~v-th symbol of the encoded string andm−1 successive
symbols. The successor of~v is A~v, whereA is a speciald× d matrix, on which we elaborate below.

More formally, letF be the field withq elements, and fix the dimensiond. Let h be an integer such that
(

h + d− 1
d

)
≥ n

log q
. (5)

For x ∈ {0, 1}n, let x̂ denote thed-variate polynomial of total degree at mosth − 1 whose coefficients are
specified byx. Such a polynomial has

(
h+d−1

d

)
coefficients, so (5) implies that distinctx give rise to distinct

x̂. Next, we require a matrixA that “generates”F d \ {0}. That is, for every non-zero vector~v ∈ F d,
{
Ai~v

}
1≤i<qd = F d \ {0} . (6)

8Allowing predictors to output a list is not really necessary. We use this definition as it enables us to get a slightly shorter seed
length for our final extractor.
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It is easy to show that such a matrix exists and can be found efficiently. Loosely speaking, the matrixA
corresponds to multiplying by a generator of the multiplicative group ofGF (qd).

Lemma 4.4. LetF be a field withq elements and letd be an integer. There exists an invertibled× d matrix
A with entries inF such thatAqd−1 is the identity matrix and for every non-zero~v ∈ F d,

{
Ai~v

}
1≤i<qd =

F d \ {0}. Furthermore, such anA can be found in timeqO(d).

The proof of Lemma 4.4 appears in Section 8. We can now define ourq-ary extractorE : {0, 1}n ×
{0, 1}d log q → Fm. We interpret the second input of theq-ary extractor as a vector~v ∈ F d.

E(x,~v) = x̂(A1~v) ◦ x̂(A2~v) ◦ · · · ◦ x̂(Am~v). (7)

Our main theorem is the following:

Theorem 4.5 (extractor main). There exists a universal constantc such that for everyn, d, h and prime
powerq satisfying

(
h+d−1

d

) ≥ n
log q , E is a (k, ρ) q-ary extractor, provided that

1. k > cmhd log q + log
(

1
ρ

)
andq > c( (hd)2

ρ4 ), or

2. k > cmhd log2 q + log
(

1
ρ

)
andq > c

(
hd log q

ρ4

)
.

Moreover,E can be computed in time poly(qd).

Part (1) of the theorem is used when we are maximizing the output length; part (2) is used when we are
minimizing the seed length. The proof of Theorem 4.5 is given in the next two sections. In Section 4.5 we
explain how to convertE into a binary extractor and choose the parameters in order to prove the following
corollaries:

Corollary 4.6. For all n, constantsε, δ > 0, andk ≥ log4/δ n our construction gives an explicit(k, ε)-
extractor with seed lengtht = O(log n) and output lengthm = k1−δ.

Corollary 4.7. For all n, constantsε > 0 and1/8 > δ > 0, andk ≥ log4/δ n, our construction gives an
explicit (k, ε)-extractor with seed lengtht = (1 + O(δ)) log n and output lengthm = kδ.

Corollary 4.8. For all n, k, constantsε, δ > 0 our construction gives an explicit(k, ε)-extractor with seed
lengtht = O(log n) and output lengthm = k/(log n)2+δ.

Corollary 4.9. For all n, k, constantε > 0 and any0 < δ < 1 (not necessarily a constant) our construction
gives an explicit(k, ε)-extractor with seed lengtht = (1 + δ) log n and output lengthm = k/(log n)O(1/δ).

All the Corollaries above are stated for constantε > 0. We address the case of non-constantε in Section 4.6.

4.3 The reconstruction proof paradigm

To prove thatE is a q-ary extractor, we use ideas that originated in [Tre02] and are refined in [TSZS01],
which one might label the “reconstruction proof paradigm”. An important aspect of this paradigm is that to
show that a given functionE is an extractor it is sufficient to analyze the behavior ofE onfixedx’s.
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Definition 4.10 (good strings).Let E : {0, 1}n × {0, 1}t → Fm be some function. Let1 ≤ i∗ ≤ m be
some index andf : F i∗−1 → F [ρ−2] be some function. A stringx ∈ {0, 1}n is ρ-goodfor f with respect to
E if

Pr[E(x,Ut)i∗ ∈ f(E(x,Ut)1...i∗−1)] ≥ ρ/2.

A reconstruction procedure is a randomized procedure that when given oracle access to a predictorf is
able to reconstructx’s that are good forf .

Definition 4.11 (reconstruction procedure). Given a functionE : {0, 1}n × {0, 1}t → Fm, an (a, ρ)-
reconstructionfor E is a randomized procedureR such that for any1 ≤ i∗ ≤ m, functionf : F i∗−1 →
F [ρ−2] andx ∈ {0, 1}n such thatx is ρ-good forf with respect toE,

Pr[∃z ∈ {0, 1}a , Rf (z) = x] ≥ 1/2].

Note that we place no restrictions on the running time ofR and so the particular mode in which it
accessesf is not important. We chose the computational flavor of the definition above in order to compare
to the computational setup of constructing PRGs. The next Lemma shows that any functionE that has a
reconstruction procedure is aq-ary extractor.

Lemma 4.12. If E has an(a, ρ)-reconstruction thenE is a(k, ρ) q-ary extractor withk = a+log(1/ρ)+2.

Proof. LetX be some distribution over{0, 1}n with H∞(X) ≥ k. Let1 ≤ i∗ ≤ m and fix some “predictor”
f : F i∗−1 → F [ρ−2]. According to Definition 4.3 we need to show that

Pr[E(X, Ut)i∗ ∈ f(E(X, Ut)1...i∗−1)] ≤ ρ.

We define:
p = Pr

x←X
[x is ρ-good forf with respect toE].

Note that the success probability off is bounded byp + ρ/2, and thus it is sufficient to show thatp ≤ ρ/2.
We have that for everyx that isρ-good forf , with probability at least1/2 there exists a stringz ∈ {0, 1}a

such thatRf (z) = x. It follows that

Pr
x←X

[∃z ∈ {0, 1}a , Rf (z) = x] ≥ p/2.

Where the probability above is over the choice ofx and the coin tosses ofR. There exists a fixing of the
coin tosses ofR such that the inequality above holds when the probability is only over the choice ofx. After
this fixing, R has at most2a outputs. For every such outputw, the probability thatx = w is at most2−k.
Thus,

Pr
x←X

[∃z ∈ {0, 1}a , Rf (z) = x] ≤ 2a−k.

We conclude thatp ≤ 2a−k+1 and by our choice ofk, 2a−k+1 ≤ ρ/2.

Our main task is thus to construct a reconstruction procedureR with a short advice string. To obtain
R, we use essentially the framework of [TSZS01] in which the reconstruction runs the given predictorf in
many “prediction steps” and performs error correction after each such step. In the next section we describe
our reconstruction procedure.
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4.4 Proof of the main extractor theorem

In this section we prove Theorem 4.5. The following lemma describes the reconstruction procedure.

Lemma 4.13. Letn, q, d, h andρ be as in the statement of Theorem 4.5 (1) (resp. Theorem 4.5 (2)). There
is an(a, ρ)-reconstruction forE with a = O(mhd log q) (resp.a = O(mhd log2 q)).

Proof. Fix a functionf : F i∗−1 → F [ρ−2] and anx that isρ-good forf with respect toE. Our goal is to
reconstructx from a short advice string. The predictor functionf can “attempt to predict” the evaluation of
x̂ atu, when given the evaluation of̂x at the points

A−(i∗−1)u,A−(i∗−2)u, · · · , A−1u.

This is becauseE(x,A−i∗u)1···i∗−1 = (x̂(A−(i∗−1)u), · · · , x̂(A−1u)). Thus, if y = A−i∗u is one of
the seeds for whichf correctly predictsE(x, y)i∗ givenE(x, y)1···i∗−1 thenf computeŝx at u given the
previous evaluations.

Recall thatA is invertible, and thusu = Ai∗y is uniformly distributed wheny is uniformly distributed.
Consequently, this prediction succeeds on aρ/2-fraction of the pointsu. The crux of the proof is a random-
ized choice of low-degree curves with special intersection properties. These curves allow us to error-correct
the answer of the predictor gives on points on the curves. The overall argument uses a short advice stringz
that contains the evaluation ofx̂ onm successive curves. We then conduct a sequence of “prediction steps”
where in each one we learn the evaluation ofx̂ in at least one new point. In the end we learn the evaluation
of x̂ on all input points and can interpolate to recoverx. We now define the curves.

• Let c′ be some constant to be chosen later. Setr = c′d (resp.r = c′d log q)

• Pick 2r random points~y1, ~y2, . . . ~y2r from F d, and2r random and distinct valuest1, t2, . . . t2r from
F .

• Let p1 : F → F d be the degree2r − 1 polynomial such thatp1(ti) = ~yi, for i = 1, 2, . . . , 2r.

• Let p2 : F → F d be the degree2r − 1 polynomial such thatp2(ti) = A~yi for i = 1 . . . r and
p2(ti) = ~yi for i = r + 1 . . . 2r.

Given a functionp : F → F d and ad×d matrixA overF , we useAp to denote the functionp′ : F → F d

defined byp′(w) = Ap(w). It is important to observe that ifp is a degree2r− 1 curve thenp′ = Ap is also
a degree2r − 1 curve. For1 ≤ i ≤ 2qd we define a random variablePi (over the choice of thetj ’s and the
~yj ’s). Each such variable is a functionPi : F → F d. For oddi = 2j + 1 we defineP2j+1 = Ajp1 and for
eveni = 2j + 2 we defineP2j+2 = Ajp2. Note that each such variable is a degree2r − 1 curve. We also
view them as multi-sets{Pi(w)|w ∈ F} ⊆ F d and thus we writeu ∈ Pi to mean that there exists aw ∈ F

such thatPi(w) = u. SinceA “generates”F d \
{
~0
}

we have that∪1≤i≤2qdPi = F d \
{
~0
}

. Using the fact

thatA is a non-singular linear transform we have for alli:

• Pi : F → F d is a degree2r − 1 polynomial.

• The polynomial̂x ◦ Pi is a univariate polynomial of degree at most(2r − 1)(h− 1).

• The sequence of points{Pi(w)}w∈F is 2r-wise independent.
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• Pi−1 andPi intersect atr random distinct positions. More precisely, there exist distinct positions
S = (w1, · · · , wr) ∈ F such thatPi−1 andPi agree in all the positions inS. Furthermore, the
random variableS is uniformly distributed over all distinctr-tuples inF , andS is independent of
Pi. This is because seeing only one of the two curvesp1, p2 gives no information on the values of
t1, · · · , t2r used to construct them.

We will set up the reconstruction function by supplying it with an advice string that will allow it to
compute the evaluation of̂x on all the points in

{
P1, · · · , P2(i∗−1)

}
. This is done by giving as advice the

(2r − 1)(h − 1) + 1 ≤ 2hr coefficients ofx̂ ◦ Pi for 1 ≤ i ≤ 2(i∗ − 1). Thus, the length of the advice
string is at most4mhr log q ≤ a as stated. From these evaluations we can use the predictorf to attempt to
predict the evaluations of̂x at the pointsPi for i > 2(i∗ − 1). In general, fori > 2(i∗ − 1) we assume that
we already computed the evaluations ofx̂ at points:

Pi−2(i∗−1), · · · , Pi−1

we will now show how to use these evaluations to compute the evaluations ofx̂ atPi.
We first invokef once for attempting to predict every pointu ∈ Pi. That is we runf on the evaluations

of x̂ at
{
A−1u, · · · , A−(i∗−1)u

}
to obtain a list of at mostρ−2 “candidates” forx̂(u). (Note thatA−ju ∈

A−jPi = Pi−2j). We will show that with high probability these predicted values and the evaluations ofx̂ on
Pi−1 completely determine the values ofx̂ onPi. The first step is to show that with high probability, many
of the pointsu in Pi are predicted correctly.

Claim 4.14. With probability at least1− 1/8qd over the coin tosses ofR:

Pr
~u∈Pi

[x̂(~u) ∈ f(x̂(A−i∗+1~u), . . . , x̂(A−1~u))] ≥ ρ/4.

Proof. (of Claim 4.14) LetY` be the indicator random variable for the event that the set of predicted values
for `-th point inPi contains the evaluation of̂x at that point, and letY =

∑q
`=1 Y`. Sincex is ρ-good for

f , we have that for everỳ, E[Y`] > ρ/2. By linearity of expectationsµ = E[Y ] > (ρ/2)q. SincePi is a
2r-wise independent set of points, we can apply Lemma 3.2, and get that the probability thatY ≤ (ρ/4)q is
at most:

Pr[|Y − E[Y ]| ≥ E[Y ]/2] ≤
(

O(r)
ρq

)r

<
1

8qd
,

where the final inequality holds using the condition onq in Theorem 4.5 and choosing large enoughc′ when
settingr asc′d (for part 1) and asc′d log q (for part 2).

Therefore, with high probability, we haveagr = (ρ/4)q “good” evaluations that agree with the degree
deg ≤ 2rh univariate polynomial̂x|Pi

, out of a total ofprs = ρ−2q pairs. To apply Lemma 3.1 we need to

verify thatagr >
√

2 · deg · prs or equivalently thatq > c′′rh
ρ4 for some constantc′′. By our choice ofq and

r we can meet this requirement by choosing a large enough constantc′. Using Lemma 3.1 we conclude that
at most8ρ−3 degree2rh polynomials agree with our evaluations on this number of points. We point out that
these polynomials depend only onPi. This is because the set of pairs supplied to Lemma 3.1 depend only
onPi (as well asf andx̂, which are both fixed).

Now, Pi−1 intersectsPi at r random distinct positionsS, and the choice ofS is independent ofPi.
Note that we already know the evaluation ofx̂ at the points inPi−1. Two different degree2rh polynomials
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can agree on at most2rh/q fraction of their points, so the probability that an “incorrect” polynomial from
among our candidates agrees withx̂ ◦ Pi on all r random points is at most:

(8ρ−3)
(

2rh

q

)r

<
1

8qd

where the inequality holds by our choice ofr andq for large enoughc′.
So, with probability at least1 − 1

4qd over the random coins ofR, we learn the evaluations of̂x on the
points inPi successfully.

After 2qd such prediction steps, we have learnedx̂ on F d \
{
~0
}

. By the union bound, the probability

that all steps of this reconstruction are successful is at least1/2. These evaluations uniquely determinex̂,
and the reconstruction functionR then outputsx (which can be easily computed from̂x).

Theorem 4.5 now follows using Lemma 4.12.

4.5 From q-ary extractors to regular extractors

We are now left with the task of converting aq-ary extractor into a regular one (Definition 4.2). The standard
way to achieve this is to use “list-decodable” error correcting codes. The transformation described in Lemma
4.16 below is essentially the information-theoretic analog of the hard-core bit constructions of Goldreich-
Levin [GL89]. In the following definition∆ is the Hamming distance function.

Definition 4.15. A binary codeC : {0, 1}k̄ → {0, 1}n̄ is (ρ, `)-list-decodable, if for all r ∈ {0, 1}n̄, the
setSr = {x : ∆(C(x), r) ≤ (1/2− ρ)n̄} has size at most̀. The code isefficiently encodableif C is
computable in time poly(n̄), andefficiently list-decodableif Sr can be computed fromr in time poly(n̄, `).

By the Johnson bound (see, e.g., [GS01]), any binary code with relative distance at least1/2 − ρ2 is
(ρ, ρ−2)-list-decodable.

Lemma 4.16 ([TSZS01]). Let F be the field withq elements and letC : {0, 1}k̄=log q → {0, 1}n̄ be
a (ρ, ρ−2)-list-decodable code. IfE : {0, 1}n × {0, 1}t → Fm is a (k, ρ) q-ary extractor, thenE′ :
{0, 1}n × {0, 1}t+log n̄ → {0, 1}m defined by:

E′(x; (y, j)) = C(E(x; y)1)j ◦ · · · ◦ C(E(x; y)m)j

is a (k, 2ρm)-extractor.

Proof. SupposeE′ is not an extractor. Then there exists some distributionX with min-entropy at leastk
and a functionf violating property (3) withε = 2ρm. More precisely, there exists ani such that

Pr[f(E′(X, Ut)1...i−1) = E′(X, Ut)i] ≥ 1
2

+ 2ρ

It follows from an averaging argument that for aρ-fraction of pairs(x, y)

Pr
j

[f(E′(x; (y, j))1,··· ,i−1 = E′(x; (y, j))i] ≥ 1/2 + ρ

We now design aq-ary predictorf ′ for E. Giveni− 1 q-ary inputsw1, · · · , wi−1, we compute

rj = f(C(w1)j , · · · , C(wi−1)j)
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for 1 ≤ j ≤ n̄. Predictorf ′ outputs a list of sizeρ−2 of those codewords that differ fromr in at most
(1/2 − ρ)n̄ positions. For aρ fraction of pairs(x, y) at least a1/2 + ρ fraction of therjs are predicted
correctly, and hence this list containsE(x, y)i. The existence of predictorf ′ contradictsE being a(k, ρ)
q-ary extractor.

There are explicit constructions of codes with the required minimum distance and short blocklength
n̄ = ( log q

ρ )O(1) (see, e.g., [GS00]). Thus, this transformation has minimal effect on the seed length. Even
relatively simple codes, like a Reed-Solomon code concatenated with a Hadamard code yield the desired
parameters. If we are not optimizing constants in the seed length, we can even afford to use perhaps the
simplest binary code, the Hadamard code9, which has relative distance 1/2.

We now combine Lemma 4.16 with Theorem 4.5 to obtain the first two corollaries stated in Section 4.2.
We now restate and prove these corollaries.

Corollary 4.6 (restated). For all n, constantsε, δ > 0, andk ≥ log4/δ n our construction gives an explicit
(k, ε)-extractor with seed lengtht = O(log n) and output lengthm = k1−δ.

Proof. We choose:

• h = kδ/2

• d = log n/(log(h− 1)− log log n)

• ρ = ε/2m

• q = Θ(ρ−4(hd)2)

We verify that the conditions of Theorem 4.5 (1) are met:

(
h + d− 1

d

)
>

(
h− 1

d

)d

≥
(

h− 1
log n

)d

≥ n

By the lower bound onk,

O(mhd log q) + log(1/ρ) = O(k1−δkδ/2 log n) < k

The lower bound onk also gives thath ≥ log2 n > d and thus the extractor runs in timeqO(d) =
(hdm)O(d) = hO(d/δ) = nO(1/δ).10 Using the Hadamard code for the conversion fromq-ary extractors,
the seed lengtht = d log q + log q = O(log n) is as stated in the corollary.

One of the advantages of the extractors constructed in [TSZS01] are that they optimize the leading
constant in the seed length. By picking parameters appropriately, we can also approach seed length1 · log n.

Corollary 4.7 (restated). For all n, constantsε > 0 and1/8 > δ > 0, andk ≥ log4/δ n, our construction
gives an explicit(k, ε)-extractor with seed lengtht = (1 + O(δ)) log n and output lengthm = kδ.

Proof. We choose the following parameters:

9The Hadamard encoding of alog q-bit stringx is C(x) = {Pxiyi mod 2}y∈{0,1}log q .
10We remark that in Corollary 4.21 we get an extractor with the same parameters with running timenO(1) where the constant in

the running time does not depend onδ.

17



• h =
√

k

• d = log n/(log(h− 1)− log log n)

• ρ = ε/2m

• q = Θ(ρ−4hd log n)

We verify that the conditions of Theorem 4.5(2) are met. As before,
(
h+d−1

d

)
> n andd < log n.

O(mhd log2 q) + log(1/ρ) = O(k1/2+δ log2 n) < k

holds by the lower bounds onk andδ. Using a code with blocklength(log q/ρ)O(1) for the conversion from
q-ary extractors, the seed length is:

t = d log q + O

(
log

log q

ρ

)
≤ d log h + d ·O(log m + log log n).

By the lower bound onk, we haveh > log1/(2δ) n, so log log n < 2δ log h and thusd log h = (1 +
O(δ)) log n andd log log n = O(δ log n). Finally, log m = 2δ log h, so d log m = O(δ log n), and so
altogether, we obtain the stated bound ont. The running time isqO(d) = (hdm)O(d) = hO(d) = nO(1).

The quality of our extractors can be significantly improved by using a more complex transformation of
q-ary extractors to (regular) extractors. Such a transformation was given in [TSZS01].

Theorem 4.17. [TSZS01] LetF be the field withq elements. For everyk, ρ, andm, there is a polynomial
time computable function

B : Fm × {0, 1}O(log log q)+logO(1)(1/ρ) → {0, 1}(1−O(
√

ρ))m−O(log∗m(log∗m+log(1/ρ)))

such that for any(k, ρ) q-ary extractorE with output lengthm,

E′(x; (y, j)) = B(E(x, y), j)

is a (k, O(ρ log∗m))-extractor.

The expressions above are a bit complicated. The important thing to notice is that whenρ is not too
small, theq-ary extractor is converted into a regular extractor with roughly the same seed length and output
length. While this is also the case with Lemma 4.16 the important difference is the relation between the
error of theq-ary extractor and the final extractor. In Lemma 4.16 the error of the final extractor is2ρm, as
compared toO(ρ log∗m) in Theorem 4.17. In Corollaries 4.6 and 4.7 we had to chooseρ = ε/2m to get
errorε when applying Lemma 4.16. As the seed length of theq-ary extractor is at leastd log(1/ρ) ≥ d log m
we had to make sure thatd log m was small, i.e.,O(log n). Sinced ≈ log n/ log h (so that

(
h+d−1

d

)
> n),

this forces us to chooseh to bemΩ(1). The effect of this choice is that we extract only a small fraction of
the randomness in the source asm ≤ k/h. However using Theorem 4.17 we can chooseρ = O(ε/ log∗m).
This allows us to choose much smallerh, (sayh = logO(1) n), and extract a larger fraction of the randomness
in the source.

Using Theorem 4.17 on top of our construction we get the following extractor:

Corollary 4.8 (restated). For all n, k, constantsε, δ > 0 our construction gives an explicit(k, ε)-extractor
with seed lengtht = O(log n) and output lengthm = k/(log n)2+δ.

18



Proof. We chooseh = log1+δ/2 n, d = log n
log(h−1)−log log n , ρ = Θ(ε/(log∗m)), andq = Θ( (hd)2

ρ4 ). These
choices meet the requirements of Theorem 4.5, and give the required parameters. The computations are
similar to those made in Corollary 4.6. Note that the running time of the extractor isqO(d) ≤ hO(d) =
nO(1).

We can further reduce the seed length to(1 + δ) log n at the cost of extracting slightly fewer bits.

Corollary 4.9 (restated). For all n, k, constantε > 0 and any0 < δ < 1 (not necessarily a constant)
our construction gives an explicit(k, ε)-extractor with seed lengtht = (1 + δ) log n and output length
m = k/(log n)O(1/δ).

Proof. We chooseh = logΘ(1/δ) n, d = log n
log(h−1)−log log n , ρ = Θ(ε/(log∗m)), and q = Θ(hd log q

ρ4 ).

The computations we have to make use the fact thath > logΘ(1/δ) n, and are similar to those made in
Corollary 4.7, with the exception that the running time isqO(d) = hO(d) = nO(1).

4.6 Extractors with small error

The extractor constructions of the previous section were stated for constant errorε, but they can be tuned
to give extractors with small (non-constant) errorε. However, for very smallε, a problem arises. To obtain
error ε, we must construct a(k, ρ) q-ary extractor withρ ≤ ε, which forcesq ≥ 1/ρ ≥ 1/ε. One part of
the running time of the extractor comes from finding the “generator matrix”A, which takes timeqO(d) by
brute-force search (we currently do not know of a better method). For very smallε, this step takes super-
polynomial time, and hence our extractors are not explicit in the usual sense of running in time polynomial
in n, the length of the input11.

In this section we show that with some minor restrictions ond, h andq, we can replaceA with another
matrixB that can be found in time poly(hd, log q). In our constructions we always chooseh andd such that
hd = nO(1), and thus this modification allows the entire construction to run in time polynomial inn, even
for very smallε.

The main observation is the following: The only property ofA that we used (in addition to it being
non-singular) was that for any nonzerov ∈ F d, the polynomial̂x is determined by its evaluations on the

points
{
Aiv|1 ≤ i ≤ qd

}
(which is in factF d \

{
~0
}

for the chosen matrixA). In the modified construction

we replace the matrixA with a matrix B with the following property: There exists a subsetH ⊆ F
of size h such that for every nonzerov ∈ F d, there exists an invertible linear transformTv such that
Tv · Hd ⊆ {

Biv|1 ≤ i < hd
}

. In words, starting fromv and taking consecutive steps according toB
traverses a “shifted cube”, that is a cubeHd shifted by some invertible linear transform. The polynomialx̂
(which is of degreeh − 1) is indeed determined by its evaluations on such a shifted cube. Thus, the proof
works when replacingA with B. We show that finding the matrixB can be done in time poly(hd, log q).

Lemma 4.18. Let h, q and d be such that:h is a prime power,q is a power ofh, andd and logh q are
relatively prime. Then there exists an invertibled × d matrix B with entries fromF = GF (q), and a set
H ⊆ F with |H| = h such thatBhd−1 is the identity matrix and for every nonzerov ∈ F d there is an
invertible linear transformTv : F d → F d for which:

Tv · (Hd \
{
~0
}

) =
{

Biv|1 ≤ i < hd
}

.

11We remark that we can findA in a pre-processing stage; after this one-time expenditure, the extractor runs in time polynomial
in n.

19



Moreover,B can be found in time poly(hd, log q).

The proof of Lemma 4.18 appears in Section 8.

Lemma 4.19. Let x̂ : F d → F be a multivariate polynomial with total degree≤ h − 1. LetH ⊆ F be a
subset of sizeh, and letT : F d → F d be an invertible linear transform. Then̂x is uniquely determined by
its evaluations on the pointsT ·Hd.

Proof. The evaluations of̂x at the pointsT ·Hd are simply the evaluations of the polynomialp(z) = x̂(Tz)
at the pointsHd. Sincep(z) has total degree< h, it is uniquely determined by these evaluations, which in
turn uniquely determinêx, sincex̂(w) = p(T−1w).

The modified construction: We now present the construction of aq-ary extractorE′ that is nearly identi-
cal to the extractorE of Section 4.2. The only difference is thatE′ uses the matrixB of Lemma 4.18 instead
of the matrixA of Lemma 4.4. The result is thatE′ runs in time poly(hd, log q) as opposed to poly(qd).
This allows us to setq large enough to handle very small error without blowing up the running time.

E′(x,~v) = x̂(B1~v) ◦ x̂(B2~v) ◦ · · · ◦ x̂(Bm~v) (8)

The only difference between the following theorem and Theorem 4.5 is the additional restrictions onq,
h, andd.

Theorem 4.20 (q-ary extractors with small error). There exists a universal constantc such that for every
n, d, h and q satisfying

(
h+d−1

d

) ≥ n
log q and for which h is a prime power,q is a power ofh, andd and

logh q are relatively prime,E′ is a (k, ρ) q-ary extractor, provided that

1. k > cmhd log q + log
(

1
ρ

)
andq > c

(
(hd)2

ρ4

)
, or

2. k > cmhd log2 q + log
(

1
ρ

)
andq > c

(
hd log q

ρ4

)
.

Moreover,E can be computed in time poly(hd, log q).

Proof. The proof is almost identical to that of Theorem 4.5 (usingB instead ofA). The only modification
is in the last paragraph of the proof of Lemma 4.13. At this point we have learned the evaluations ofx̂ on
points that include

{
Bip1(1)|1 ≤ i ≤ hd

}
. By Lemma 4.19 these evaluations uniquely determinex̂, and

the reconstruction function then outputsx, as before. The remainder of the proof is unchanged.

Using almost the same choice of parameters as in Corollary 4.6 we obtain the following extractor. To
meet the additional requirements onh, q, andd, we can chooseh andq to be powers of2, andd to be a
prime at most twice the value chosen in Corollary 4.6.

Corollary 4.21. For all n, constantδ > 0, ε ≥ 2−(kδ/4), andk ≥ log4/δ n our construction gives an explicit

(k, ε)-extractor with seed lengtht = O
(
log n + log n

log k log
(

1
ε

))
and output lengthm = k1−δ.

Notice that whenk = nΩ(1) the seed length of this extractor isO(log(n/ε)), which gives the asymptot-
ically optimal dependence onn andε.

It is possible to also get low-error analogs of all our extractors. However, we remark that the additional
“divisibility” requirements ond, h andq allow achieving seed length close to1 · log n only for carefully
chosen values ofn, k andε.
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5 A new pseudorandom generator

In this section we exploit the connection Trevisan noticed between extractors and PRG’s “the other way”:
we build PRGs (and HSGs) using the ideas outlined in Section 2.3.

5.1 Pseudorandom generator preliminaries

In this section the stringx plays the role of a “hard function”.

Definition 5.1. We identify the stringx ∈ {0, 1}n with the functionx : {0, 1}log n → {0, 1} by setting
x(i) = xi. We denote byS(x) the size of the smallest circuit computing functionx.

We now define pseudorandom generators.

Definition 5.2 (PRG). An ε-PRG for sizes is a functionG : {0, 1}t → {0, 1}m such that for all sizes
circuitsC:

|Pr[C(G(Ut)) = 1]− Pr[C(Um) = 1]| ≤ ε (9)

As in the case of extractors, by [Yao82] property (9) follows from the next property:

∀ 1 ≤ i ≤ m and all functionsf : {0, 1}i−1 → {0, 1} with sizes−O(1) circuits,

Pr[f(G(Ut)1...i−1) = G(Ut)i] ≤ 1
2

+
ε

m
. (10)

As in Section 4 we can define theq-ary version of PRGs.

Definition 5.3 (q-ary PRG). Let F be the field withq elements. Aρ-q-ary PRG for sizes is a function
G : {0, 1}t → Fm such that

∀ 1 ≤ i ≤ m and all functionsf : F i−1 → F [ρ−2] with sizes circuits ,

Pr[G(Ut)i ∈ f(G(Ut)1...i−1)] ≤ ρ. (11)

As in Section 4 we will focus on constructingq-ary PRGs and later transform them into (regular) PRGs.

5.2 Overview of changes to the extractor construction

Given a functionx : {0, 1}log n → {0, 1} that cannot be computed by circuits of sizes, our goal is to con-
struct aq-ary PRGGx : {0, 1}t → Fm. The construction will be quite similar to the extractor construction
E(x, ·) : {0, 1}t → {0, 1}m, and to prove correctess, we will derive a contradiction from the existence
of a “predictor”f violating (11) above. As with the extractor this is done by describing a “reconstruction
procedure”R. There are two important differences in what we require ofR in the PRG setting as compared
to the extractor setting. First,R takes an additional inputi (as well as the short advice stringa which is
the same for alli) and should outputx(i) as opposed to simply outputting all ofx. Second,R should be
efficient; that is, it should run in time¿ n (as it is trivial to construct a circuit of sizen for a function on
log n bits). Our goal will be to run in time poly(m) for some fixed polynomial. Sincef also has a small
circuit, we can computex(i) efficiently by evaluatingRf (a, i), which for the proper choice of parameters
will give a circuit of size poly(m) that contradict the hardness of the functionx. In order to meet these new
requirements, we need to make some changes to the construction and the proof.
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The encoding: In the extractor setting,̂x is the Reed-Muller encoding ofx, and in order to determine
x(i) from the encoding, we need to learn enough ofx̂ to be able to interpolate and find its coefficients.
The efficiency demands onR in the PRG setting preclude being able to learn this many evaluations ofx̂
(we would needn evaluations, but are allowed only poly(m) time). Therefore, we use an alternate “low-
degree extension” encoding for the PRG. In this scheme we again encodex as a low-degree polynomial
x̂ : F d → F , but we also ensure that there is an efficiently computable function` : [n] → F d such that
x(i) = x̂(`(i)). Thus, we can determinex(i) by learning only the specified evaluation ofx̂.

The standard way to producêx from x is to pick an arbitrary setH ⊆ F of sizeh with hd = n and any
efficient one-to-one functioǹ: [n] → Hd, and definêx to be any polynomial with degree at mosth in each
variable for whicĥx(`(i)) = x(i). Our reconstruction procedure operates on the cyclic group with generator

A (which corresponds toF d \
{
~0
}

), and if we use this standard low-degree extension, we are stuck having

to compute the integerj such thatAj~1 = `(i) whenever we want to determinex(i). Finding such aj is a
discrete-log problem that we don’t know how to solve efficiently. Instead, we use a specific embedding ofx
into x̂ that avoids this problem:x(i) is embedded at locationAip~1 ∈ F d, for a fixed integerp; thus simply
knowingi gives us the required exponent. Such an embedding is somewhat delicate: we need to arrange for{

Aip~1
}

i∈Z
to coincide withHd; the details on how to achieve such a matrix are in Section 8.

The reconstruction: As explained in the introduction, the main idea is to useseveralpredictors with
varying strides when performing the reconstruction. This allows us to travel quickly from a fixed point (like
~1) to any given point inF d. To implement this idea we need two new ingredients. First, the curvesC1

andC2 need to have the intersection properties we used in the extractor settingfor each stridethat we will
use for the PRG. This is achieved by generalizing the idea used to obtain the intersections for the extractor
setting, which in turn requires slightly larger degree curves. Second, for every~v ∈ F d we need to describe
an efficiently computable short sequence of prediction steps (with varying strides) that starts from~1 and
reaches~v – this is used by the reconstruction procedure to rapidly learnx(i) using only the predictor and
the initial evaluations of̂x supplied by the advice string.

5.3 The actual construction

Our construction starts with a hard functionx : {0, 1}log n → {0, 1} and encodes it as a low-degree polyno-
mial x̂ : F d → F . Just as before, the major parameters are the field sizeq, the dimensiond and the degree
h. As with extractors we will think ofF d as both a vector-space and an extension field ofF . However, to
produce the non-standard low-degree extension described above, we will additionally require thatF have a
subfieldH of sizeh (which forcesh to be a prime power, andq to be a power ofh). We have the following
lemma which extends Lemma 4.4.

Lemma 5.4. Let h, q and d be such that:h is a prime power,q is a power ofh, and d and logh q are
relatively prime. LetF be the field withq elements andH be the subfield ofF with h elements. Then there
exist invertibled× d matricesA andB with entries fromF that satisfy:

• Aqd−1 andBhd−1 are the identity matrix.

• For any non-zero vector~v ∈ F d:
{
Ai~v

}
1≤i<qd = F d \ {0}.

• For any non-zero vector~v ∈ Hd:
{
Bi~v

}
1≤i<hd = Hd \ {0}.
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• B = A(qd−1)/(hd−1).

• A,B can be found in timeqO(d).

The proof of Lemma 5.4 appears in Section 8. For our low-degree-extension ofx, we require (compare to
(5)):

hd > n. (12)

We will “embed” x into a polynomial defined over the vector-spaceF d as follows: we want̂x(Bi~1) =
x(i). Here,~1 is the all-ones vector, which is inHd ⊆ F d since1 ∈ H ⊆ F , and which serves as a reference
vector throughout the construction. Sincehd − 1 ≥ n, there are enough “slots” to embed all ofx, and since
B generatesHd \ {0}, we have embedded all ofx in a d dimensional cube with sidelengthh. Therefore
there exists a polynomial̂x overF d with degree at mosth − 1 in each variable such that̂x(Bi~1) = x(i).
Note that in this sectionh denotes individual variable degrees and the total degree is at mosthd. OnceA
has been determined, the coefficients ofx̂ can be computed in time poly(n) using standard methods, andx̂
can be evaluated at any point inF d in time poly(n, log q).

We now described “candidate” PRGs. For0 ≤ j < d we define functionsG(j)
x : {0, 1}d log q → Fm as

follows. We think of the input~v as a vector inF d.

G(0)
x (~v) = x̂(A1~v) ◦ x̂(A2~v) ◦ · · · ◦ x̂(Am~v)

G(1)
x (~v) = x̂(Aq·1~v) ◦ x̂(Aq·2~v) ◦ · · · ◦ x̂(Aq·m~v)

G(2)
x (~v) = x̂(Aq2·1~v) ◦ x̂(Aq2·2~v) ◦ · · · ◦ x̂(Aq2·m~v)

...
...

G(j)
x (~v) = x̂(Aqj ·1~v) ◦ x̂(Aqj ·2~v) ◦ · · · ◦ x̂(Aqj ·m~v)

...
...

G(d−1)
x (~v) = x̂(Aqd−1·1~v) ◦ x̂(Aqd−1·2~v) ◦ · · · ◦ x̂(Aqd−1·m~v) (13)

Note that eachG(j)
x corresponds to using ourq-ary extractor construction with the “successor function”

Aqj
. Our main theorem will show that at least one of these functions is aq-ary PRG, providedx is a

sufficiently hard predicate.

Theorem 5.5 (PRG main).There exists a universal constantc such that for everyn, d, h andq satisfying
hd > n and the conditions of Lemma 5.4, at least oneG

(j)
x is a ρ-q-ary PRG for sizes, provided that

S(x) > s·poly(m, q) andq > max(cρ−4hd2 log2 q, 2d4 log2 q). Furthermore, all theG(j)
x s are computable

in timepoly(qd, n), givenx.

We prove Theorem 5.5 in Section 5.5. We now show how to construct asingle(binary) PRG. It will be
convenient to fix all parameters as functions ofn,m. We require thatlog n ≤ m ≤ n and set:

• ρ = m−3

• h = m

• d = log n/ log m
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• q = m20 > cρ−4hd2 log2 q

By these choices the seed length of each “candidate generator” isO(log n). Our next goal is to transform
theq-ary candidates into binary ones, and for this we use a computational analogue of Lemma 4.16. In this
case, it is not sufficient that the encoding procedure is efficient. We also require that the code has efficient
(list)-decoding.

Lemma 5.6. LetF be the field withq elements, LetC : {0, 1}k̄=log q → {0, 1}n̄ be an efficiently encodable
and efficiently list-decodable(ρ, ρ−2)-list-decodable code. IfGx : {0, 1}t → Fm is aρ-q-ary generator for
sizesn̄ + mn̄O(1) + (n̄/ρ)O(1), thenG′

x : {0, 1}t+log n̄ → {0, 1}m defined by:

G′
x(y, j) = C(Gx(y)1)j ◦ C(Gx(y))2)j) ◦ · · · ◦ C(Gx(y))m)j

is a2ρm-PRG for sizes.

Lemma 5.6 follows from the proof of Lemma 4.16 by using the additional efficiency requirements.
Using, for example, [GS00], we can obtain such a code withn̄ = poly(k̄, ρ−1). However, in our setting
k̄ = log q = O(log m) and we can havēn as large asmO(1) (we just need to avoid losing too much in the
size of the circuit fooled when applying Lemma 4.16). Therefore we can even use the simpler Hadamard
code, together with the trivial list-decoding algorithm.12

We use Lemma 5.6 to transform each of theG
(j)
x ’s into a binary functionG′

x
(j) : {0, 1}d log q+log n̄ →

{0, 1}m (and note thatd log q + log n̄ = O(log n) by our choice of parameters). We conclude that:

Corollary 5.7. At least oneG′
x
(j) is a1/m-PRG for sizes provided thatS(x) > smO(1). Furthermore, all

theG′
x
(j)’s are computable in timenO(1), givenx.

Our PRG is obtained by “XOR-ing” thed candidate functions with independent seeds:

Gx(y0, · · · , yd−1) = G′
x
(0)(y0)⊕ · · · ⊕G′

x
(d−1)(yd−1) (14)

It is standard that “XOR-ing” many candidates where one of them is a PRG for sizes indeed produces
a PRG for sizes; for a proof, see [ISW03]. The seed length ofGx is O(d log n) = O( log2 n

log m ). This matches
the parameters of the PRG construction of [STV01].

Corollary 5.8. For anys, if there exists a functiong : {0, 1}log n → {0, 1} that is computable in timenO(1)

with S(g) ≥ s then there exists a1/m-PRG for sizem with seed lengtht = O(log2 n/ log s) and output
lengthm, for m = sΩ(1). Furthermore, this generator can be computed in timenO(1).

The most important implication of this corollary is a new proof of the Impagliazzo-Wigderson Theorem
[IW97], which states thatBPP = P if there exist a function family inE that requires exponential size
circuits. More precisely giveng ∈ E that requires size2Ω(`) circuits on inputs of length̀, and aBPP
algorithm that runs in timet(n) = nc for some constantc, we choosè = c′ log n wherec′ is a large enough
constant so that our PRG construction based ong with input length̀ fools circuits of sizes = nc. The seed
length ist = O(`2/ log 2Ω(`)) = O(log n) and thus in time polynomial inn we can run the algorithm over
all outputs of the PRG and take the majority vote. This gives a deterministic polynomial time algorithm.

12The trivial list-decoding algorithm is to go over all codewords, encode them and choose the ones that are sufficiently close to
the received word.
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5.4 Hitting set generators and an optimal hardness vs. randomness tradeoff

Hitting set generators (HSGs) are designed to derandomizeRP .

Definition 5.9 (HSG). A functionH : {0, 1}t → {0, 1}m is an ε-HSG for sizes circuits if for all sizes
circuitsC : {0, 1}m → {0, 1}

Pr[C(Um) = 1] ≥ ε ⇒ Pr[C(H(Ut)) = 1] > 0.

One of theG′
x
(j)’s is a PRG and therefore if we choose a random candidate, we will hit this PRG with

positive probability. We define:

Hx(y, j) = G′
x
(j)(y)

It is standard that choosing a random candidate from a collection of functions where one of them is a
PRG produces an HSG; for a proof see [ISW99]. Very few bits (at mostlog d ≤ log log n + O(1)) are
needed to choosej and thus we get anoptimalHSG.

Corollary 5.10. For any s, if there exists a functiong : {0, 1}log n → {0, 1} that is computable in time
nO(1) with S(g) ≥ s then there exists a1/m-HSG for sizem with seed lengtht = O(log n) and output
lengthm = sΩ(1). Furthermore, this generator can be computed in timenO(1).

This improves upon the best previous results by [ISW99] which hasm = sΩ(1/ log log log n). In [ACR98]
(see also [ACRT99, BF99, GVW00]) it was shown how to derandomize two-sided error probabilistic algo-
rithms using an HSG. Applying this result, we extend the Impagliazzo-Wigderson Theorem [IW97] to any
hardness assumption.

Corollary 5.11. If there exists a function familyg = {g`} ∈ E that require sizes(`) circuits, then for any
time constructible functiont(n), BPTIME(t(n)) ⊆ DTIME(2O(s−1(t(n)O(1)))).

Actually, in our setup we can use a simpler construction from [ISW99]. Given many candidate gener-
ators where at least one of them is pseudorandom, [ISW99] showed how to derandomize two-sided error
probabilistic algorithms by conducting a “tournament of generators”.

5.5 Proof of the main PRG theorem

In this section we prove Theorem 5.5. Letn, q, d, andh be as in the statement of Theorem 5.5. We fix a
stringx ∈ {0, 1}n, and letx̂ ∈ F d be the encoding ofx described in the Section 5.3. Assume for the purpose

of contradiction thatno G
(j)
x is aρ-q-ary PRG. Then by definition we have integersi(j) and next-element

predictorsf (j) : F i(j)−1 → F [ρ−2] violating property (11) for eachG(j)
x , respectively. By the symmetry of

our PRGs, we can assume thati(j) = m for all j, as predictorf (j) can simply ignore its firstm− i(j) inputs.
In other words, we have that for allj:

Pr[G(j)
x (Ut)m ∈ f(G(j)

x (Ut)1...m−1)] > ρ

Each of these predictors can be implemented by a sizes circuit. As in the proof of Theorem 4.5 our task
is to use these predictors and a short advice string to reconstructx. However, in this setup reconstructingx
means constructing a small circuit that computesx(i) given inputi.
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It will be helpful to abstract the process used in the proof of Theorem 4.5 to learn a new curve and
present it as a procedure. In the remainder of this section deg(x̂) ≤ d(h − 1) denotes the total degree of
polynomialx̂.

Procedure Learn Next Curve

• Input:

- next curve C : F → F d: a degreev polynomial

- reference points R ⊆ F : a set ofr distinct elements fromF

- stride j: an integer in[0 . . . (d− 1)]

- input evaluations
{
a`

t

}
t∈F,`∈[1...(m−1)]

and{bt}t∈R: elements ofF whoseintended valuesare

ai
t = x̂(A−iqj

C(t)) andbt = x̂(C(t)).

• Output:

- output evaluations {ct}t∈F : elements ofF whoseintended valuesarect = x̂(C(t)).

• Action:

- For eacht ∈ F , computef (j)(am−1
t , am−2

t , . . . , a1
t ), which gives a setSt of ρ−2 values.

- Apply Lemma 3.1 on theprs = qρ−2 pairs{(t, e)}t∈F,e∈St
(assuming the agreement isagr =

ρq/4) to obtain a list of at most8ρ−3 degree deg(x̂) · v univariate polynomialsp(t) that contains
all polynomials such thatp(t) ∈ St for at leastagr = ρq/4 values oft. If this list is empty, fail.
Note that to apply Lemma 3.1 we will need to satisfyagr >

√
2 · deg · prs or equivalently that

q > 32deg(x̂) · v/ρ4.

- If the list contains a unique polynomialp(t) for whichp(t) = bt for all t ∈ R, output{p(t)}t∈F ;
otherwise fail.

We say thatLearn Next Curve succeeds(on a curve, reference points and stride) if itsoutput evalu-
ations are the intended values when itsinput evaluations are the intended values. We now argue that for
a randomnext curve C and a random set ofreference points R ⊆ F , the procedure succeeds with high
probability.

Lemma 5.12. Letn, q, d, andh be as in the statement of Theorem 5.5. Letv be such that

q > 32deg(x̂) · v/ρ4.

For all strides0 ≤ j ≤ d− 1,

Pr
C,R

[Learn Next Curve succeeds] ≥ 1−
(

O(v)
ρq

)v/2

− (8ρ−3)
(

v · deg(x̂)
q

)r

,

whereC : F → F d is a uniformly chosen degreev curve, andR ⊆ F is a uniformly chosen subset ofF of
sizer that is independent fromC.

Proof. The argument is almost identical to that in Section 4.4. We first argue that with high probability
x̂(C(t)) is predicted correctly for manyt’s.
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Claim 5.13. With probability at least1−
(

O(v)
ρq

)v/2
over the choice ofC:

| {t : ∃e ∈ St, e = x̂(C(t))} |
q

≥ ρ

4

Proof. (of Claim 5.13) The proof is identical to that of Claim 4.14. We argue that the collection of points
{C(t)}t∈F is v-wise independent (over the choice ofC), and then use Lemma 3.2.

It follows that with probability at least1 −
(

O(v)
ρq

)v/2
the procedure applies Lemma 3.1 with enough

“correct pairs”, and therefore one of the polynomials in the list is the polynomialp(t) = x̂(C(t)). Two
polynomials of degreev ·deg(x̂) can agree on at most av ·deg(x̂)/q fraction of their points, so the probability
that an “incorrect” polynomial from the list agrees withp on r random points is at most

(8ρ−3)
(

v · deg(x̂)
q

)r

.

If x̂(C(t)) is predicted correctly for enought’s so thatp(t) appears in the list, and no “incorrect” polynomials
in the list agree on ther random points inR, the procedure succeeds.

As in the previous section, ifC : F → F d is a degreev curve andA is ad×d matrix, then we denote by
AC the function defined byAC(t) = A ·C(t) and recall that this is also a degreev curve. In some contexts
we also useAC to denote the multi-set{AC(t)|t ∈ F} ⊆ F d, and we adopt the shorthandA(C1 ∪ C2) for
AC1 ∪AC2. Given two curvesC1 andC2 we use[C1 ∩ C2] to denote the set{t ∈ F |C1(t) = C2(t)}.
Lemma 5.14. Letn, q, d, andh be as in the statement of Theorem 5.5. There exist degreev = O(d2 log q)
curvesC1 andC2 for which the following hold:

• C1(1) 6= ~0.

• for all 1 ≤ i < qd and all0 ≤ j ≤ d− 1, [Ai+qj
C1 ∩AiC2] and[AiC1 ∩AiC2] are of size at leastr.

• for all 1 ≤ i < qd and all 0 ≤ j ≤ d − 1, Learn Next Curve succeeds givennext curve Ai+qj
C1,

reference points [Ai+qj
C1 ∩AiC2] andstride j, and

• for all 1 ≤ i < qd and all 0 ≤ j ≤ d − 1, Learn Next Curve succeeds givennext curve AiC2,
reference points [AiC1 ∩AiC2] andstride j.

Proof. We pickC1 andC2 randomly with certain intersection properties, and apply Lemma 5.12 to argue
that with high probability each invocation ofLearn Next Curve listed above succeeds. A union bound then
shows that with non-zero probabilityall such invocations succeed, and the lemma follows.

Setr = c′d log q for some constantc′ to be chosen later. Setu = d+1, and pickur random points from
F d:

~y11, ~y12, . . . ~y1r, ~y21, ~y22, . . . ~y2r, . . . ~yu1, ~yu2, . . . ~yur

andur random and distinct values fromF :

t11, t12, . . . t1r, t21, t22, . . . t2r, . . . tu1, tu2, . . . tur.

We define the degreeur− 1 polynomialC1 so thatC1(tij) = ~yij for all i, j; similarly, we define the degree
v = ur − 1 polynomialC2 so thatC2(t1j) = ~y1j for all j andC2(tij) = Aqi−2

~yij for i ≥ 2 and allj. The
curvesC1 andC2 have the following properties for alli:
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• The functionsAiC1 andAiC2 are degreeur − 1 polynomials fromF to F d.

• The functionŝx ◦AiC1 andx̂ ◦AiC2 are univariate polynomials of degree deg(x̂)(ur − 1).

• Forj = 0, 1, 2, . . . , u− 2 the setsAi+qj
C1 andAiC2 intersect atr random positions. More precisely,

the random variable[Ai+qj
C1 ∩ AiC2] is of size at leastr. Let S denote the firstr elements of

[Ai+qj
C1 ∩AiC2]. The random variableS is uniformly distributed over all distinctr tuples inF , and

furthermore,S is independent ofAi+qj
C1.

• The setsAiC1 andAiC2 intersect atr random positions. More precisely, the random variable[AiC1∩
AiC2] is of size at leastr. Let S′ denote the firstr elements of[AiC1 ∩ AiC2]. The random variable
S′ is uniformly distributed over all distinctr tuples inF , and furthermore,S′ is independent ofAiC2.

Therefore, by Lemma 5.12, for eachindividual invocation ofLearn Next Curve listed in the statement
of the lemma, the procedure succeeds with probability at least:

1−
(

Ω(v)
ρq

)v/2

− (8ρ−3)
(

v · deg(x̂)
q

)r

,

which is at least1− 1
8dqd by our choice of parameters for large enoughc′. By the union bound,all 2dqd invo-

cations ofLearn Next Curve listed in the statement of the lemma succeed simultaneously with probability
at least3/4. The probability thatC1(1) = ~0 is q−d. Thus, the lemma holds.

UsingLearn Next Curve with the “good” curvesC1 andC2, we can now construct a small circuit that
when given inputi producesx(i). The basic step involvestwo invocations ofLearn Next Curve to learn the
evaluation of̂x at the pointsAi(C1 ∪ C2), for somei. Specifically, we first invokeLearn Next Curve with
next curve AiC1, reference points [Ai−qj

C2 ∩ AiC1] andstride j; then we invokeLearn Next Curve
with next curve AiC2, reference points [AiC1 ∩ AiC2] andstride j. We will call this two-step process
interleaved learningof Ai(C1∪C2) using stridej. Notice that to supplyLearn Next Curve with the correct
input evaluations for interleaved learning ofAi(C1 ∪ C2) using stridej, we need to know the evaluation
of x̂ at points:

m−1⋃

k=1

Ai−kqj
(C1 ∪ C2).

By Lemma 5.14 we have that for everyi and stridej the interleaved learning ofAi(C1 ∪ C2) succeeds
when supplied with the correct inputs.

Let p = (qd−1)/(hd−1). Recall that by Lemma 5.4 we have thatB = Ap. By our encoding, we know

thatx(i) = x̂(Bi~1) = x̂(Aip~1). Also, sinceA generatesF d \
{
~0
}

, we know thatC1(1) = Aa~1 for some

integera between0 andqd − 1. Thus we need to “travel”b = ip − a (mod qd − 1) steps from curveC1

to reach curveAbC1, and then we output the evaluation ofx̂ atAbC1(1) = Aip−aAa~1 = Aip~1. Our circuit
will be supplied withA, C1, C2, a, and the evaluation of̂x at:

m−1⋃

k=1

Ak(C1 ∪ C2)

as non-uniform advice.
We now useLearn Next Curve in d phases. Writeb′ = (b − mqd−1) mod (qd − 1) in its q-ary

representation:b′ =
∑d−1

j=0 bjq
j . We maintain the invariant that after phasej, we have learned̂x atAw(C1∪
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C2) for an integerw for whichw andb′ agree on the least significantj+1 digits of theirq-ary representation.
Specifically, we execute the following sequence:

Phase0: Perform interleaved learning ofAm+k(C1 ∪ C2) using stride0, for k = 0, 1, . . . ,mq −m − 1.
Notice that the non-uniform advice provides the neededinput evaluations.

Phase1: Perform interleaved learning ofAmq+b0+kq(C1∪C2) using stride1, for k = 0, 1, . . . ,mq−m−1.
Notice that the values learned in phase 0 provide the neededinput evaluations.

Phase2: Perform interleaved learning ofAmq2+b0+qb1+kq2
(C1∪C2) using stride2, for k = 0, 1, . . . , mq−

m− 1. Notice that the values learned in phase 1 provide the neededinput evaluations.

...

Phasej: Perform interleaved learning ofAmqj+
Pj−1

t=0 btqt+kqj
(C1∪C2) using stridej, for k = 0, 1, . . . , mq−

m− 1. The values learned in phasej − 1 provide the neededinput evaluations.

...

Phased− 1. Perform interleaved learning ofAmqd−1+
Pd−2

t=0 btqt+kqd−1
(C1 ∪ C2) using strided − 1, for

k = 0, 1, . . . , bd−1. The values learned in phased−2 provide the neededinput evaluations. The last
value ofk yieldsAmqd−1+b′(C1 ∪ C2), and note thatmqd−1 + b′ ≡ b (mod qd − 1). SinceAqd−1 is
the identity matrix we have learned̂x(AbC1(1)) = x(i), which we output.

Notice that we have invokedLearn Next Curve O(mqd) times. Each invocation requires poly(m, q)
computation time and invokes a predictor (with a circuit of sizes) q times. The total computation time is
thereforeO(mqd(sq+poly(m, q))), and the non-uniform advice has sizeO(mdhur log q) so altogether the
circuit has sizes · poly(m, q). Therefore, ifx has hardness greater than this value, we have a contradiction,

implying that someG(j)
x must be anε-q-ary PRG. This concludes the proof of Theorem 5.5.

6 Pseudorandom generators for nondeterministic circuits

Just as BPP is a randomized version of P, the class AM (defined in [Bab85, BM88]) is a randomized version
of NP. To derandomize BPP (ideally, proveBPP = P ), we can use PRGs that “fool” small (deterministic)
circuits. Such PRGs are built from functions that require large non-uniform (deterministic) complexity, and
indeed PRGs imply the existence of such hard functions. To derandomize AM (ideally, proveAM = NP ),
we can use PRGs that “fool” smallnondeterministiccircuits.13 As usual, such PRGs imply the existence of
functions that require large non-uniformnondeterministiccomplexity, and we therefore construct such PRGs
assuming the existence of functions that require large non-uniformnondeterministiccomplexity. However,
the precise meaning of “non-uniform nondeterministic complexity” is important here, and a number of
definitions have been utilized in previous work.

13It is known thatAM coincides with its one-sided error version [FGM+89], and therefore even HSGs that “fool” small co-
nondeterministic circuits suffice.
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6.1 Previous work

As discussed in the introduction, PRGs and HSGs have been constructed before from a variety of non-
uniform nondeterministic hardness assumptions. Over time, the assumptions have been getting progressively
weaker.

Klivans and van Melkebeek [KvM02] observed that the proofs of the NW PRG and the hardness ampli-
fication constructions relativize, and therefore functions that are worst-case hard forcircuits with SAT oracle
gatessuffice for constructing PRGs that fool circuits with SAT oracle gates, which in turn derandomize AM.
This circuit model is the non-uniform analog ofPNP while nondeterministic circuits are the non-uniform
analog ofNP . One can then ask whether anything can be done with the presumably weaker assumption
that there exist functions that are worst-case hard for nondeterministic circuits.

Miltersen and Vinodchandran [MV99] used novel techniques to show that functions that are worst-case
hard forsingle-valued nondeterministic circuitssuffice to build a HSG that derandomizes AM. Although
this circuit model is a non-uniform analogue ofNP ∩ coNP , this hardness assumption is equivalent to
worst-case hardness for nondeterministic circuits which are a non-uniform analogue ofNP . Thus, their
result derandomizes AM under a presumably weaker assumption than [KvM02].

However, as noted in the introduction the [MV99] HSG does not give an optimal hardness vs. random-
ness tradeoff for AM; in fact it fails altogether if the hard function has hardness less than2

√
log n (on log n

bits inputs). In this section we construct PRGs and HSGs that fool nondeterminstic and co-nondeterministic
circuits using the [MV99] hardness assumption (i.e., there exist functions that are worst-case hard for single-
valued nondeterministic circuits), and as a consequence obtain anoptimalhardness vs. randomness tradeoff
for AM (just as we did for BPP). Our PRGs are also the first PRGs (as opposed to HSGs) to fool nondeter-
ministic and co-nondeterministic circuits using only the [MV99] hardness assumption.

We also mention an earlier result in which Arvind and Köbler [AK97] showed that the NW PRG [NW94]
works in the nondeterministic setting when given a functionx that is hardon averagefor nondeterminis-
tic circuits. In the standard (deterministic) setting such “average-case” hardness assumptions were weak-
ened to worst-case hardness assumptions via “hardness amplification” transformations [BFNW93, Imp95,
IW97, STV01] which convert worst-case hardness into average-case hardness. However, these transforma-
tions were not known to transform worst casenondeterministichardness into average casenondeterministic
hardness. Our techniques also address this problem; in Section 7 we give the first hardness amplification
transformation for nondeterministic circuits.

6.2 Definition of nondeterministic circuits

To state our result we need to briefly review some definitions of nondeterministic circuits.

Definition 6.1 (nondeterministic circuit). A nondeterministic circuitC (resp. co-nondeterministic cir-
cuit C) is a an ordinary circuit with a single output gate and two sets of inputs:x1, x2, . . . , xn and
y1, y2, . . . , ym. The functionf : {0, 1}n → {0, 1} computed byC is defined byf(x) = 1 iff ∃y C(x, y) = 1
(resp.∀y C(x, y) = 1).

Notice that if f is computed by a nondeterministic circuit of sizes, then¬f is computed by a co-
nondeterministic circuit of sizes, and vice versa.

Definition 6.2 (SV nondeterministic circuits and machines).A single-valued (SV) nondeterministic cir-
cuit C is an ordinary circuit with a single output gate, a single “flag” inputz, and two sets of inputs:
x1, x2, . . . , xn andy1, y2, . . . , ym. A functionfn onn bits is computed byC if

C(0, x, y) = 1 ⇒ C(1, x, y) = f(x),
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and for all x, ∃y C(0, x, y) = 1. The size of an SV circuit is the size of the underlying circuitC. We use
SSV (f) to denote the smallest SV nondeterministic circuit that computesf .

A single-valued (SV) nondeterministic machineM computing a function familyf = {fn} is de-
fined in the same way, withM replacingC above. We say that a function familyf is computed inSV -
nondeterministic timet(n) if there is an SV nondeterministic machine that computesf and runs in time
t(n).

Loosely speaking, when the when the first input ofC is “zero”, the output says whether the circuit
“accepted” the “nondeterministic guess”y1, y2, . . . , ym. The requirement is that for every accepted nonde-
terministic guess, the circuit outputs the correct value when its first input is “1”. Notice that iff is computed
by a SV-nondeterministic circuit of sizes, then¬f is also computed by a SV-nondeterministic circuit of size
s. We also remark that the predicates computed in SV-nondeterministic polynomial time are precisely those
in NP ∩ coNP .

The relationship between functions computed by SV-nondeterministic circuits and functions computed
by nondeterministic (and co-nondeterministic) circuits is somewhat tricky. It is believed that SV-nondeterministic
circuits are weaker than nondeterministic (or co-nondeterministic) circuits (as otherwisecoNP ⊆ NP/poly
and the polynomial time hierarchy collapses). Nevertheless, the next easy lemma shows that a hardness
assumption for nondeterministic circuits isequivalentto a hardness assumption for SV-nondeterministic
circuits. It is more convenient to work with SV-nondeterministic circuits because the set of functions they
compute is closed under composition.

Lemma 6.3. For a functionf we denotẽf(x, b) =
{

f(x) b = 0
¬f(x) b = 1

1. f(x) computable by a sizeΘ(s) SV-nondeterministic circuit⇔ f computable by a sizeΘ(s) nonde-
terministic circuitandf computable by a sizeΘ(s) co-nondeterministic circuit

2. f(x) not computable by a sizeΘ(s) SV-nondeterministic circuit⇒ f̃ not computable by a sizeΘ(s)
nondeterministic circuit.

3. f(x) not computable by a sizeΘ(s) SV-nondeterministic circuit⇒ f̃ not computable by a sizeΘ(s)
co-nondeterministic circuit.

4. If f ∈ E thenf̃ ∈ E.

Proof. For the part (1), letC(z, x, y) be a SV-nondeterministic circuit computingf . ThenC ′(x, y) =
C(0, x, y) ∧ C(1, x, y) is a nondeterministic circuit forf ; similarly C ′′(x, y) = ¬C(0, x, y) ∨ C(1, x, y) is
a co-nondeterministic circuit forf . In the other direction, given nondeterministic and co-nondeterministic
circuits forf , C ′(x, y) andC ′′(x, y), respectively, the circuitC(z, x, y) defined by:

C(0, x, y) = C ′(x, y) ∨ ¬C ′′(x, y)
C(1, x, y) = C ′(x, y)

is a SV-nondeterministic circuit forf .
For part (2) we prove the contrapositive. Notice that ifC(x, b; y) is a nondeterministic circuit for̃f ,

thenC ′(x, y) = C(x, 0; y) is a nondeterministic circuit forf andC ′′(x, y) = C(x, 1; y) is a nondeter-
ministic circuit for¬f which implies a co-nondeterministic circuit forf . Applying part (1), we obtain a
SV-nondeterministic circuit forf .

The proof of part (3) is almost identical to the proof of part (2), and the part (4) is trivial.
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6.3 Our results

We now define objects analogous to those in Section 5 for nondeterministic circuits.

Definition 6.4 (PRG against nondeterministic circuits).An ε-PRG for nondeterministic sizes is a func-
tion G : {0, 1}t → {0, 1}m such that for all sizes nondeterministic circuitsC:

|Pr[C(G(Ut)) = 1]− Pr[C(Um) = 1]| ≤ ε (15)

As in the case of PRGs for deterministic circuits, by [Yao82] property (15) follows from the next prop-
erty:14

∀ 1 ≤ i ≤ m and all functionsf : {0, 1}i−1 → {0, 1} with sizes−O(1)
nondeterministic or co-nondeterministic circuits,

Pr[f(G(Ut)1...i−1) = G(Ut)i] ≤ 1
2

+
ε

m
. (16)

Our construction and results translate to the nondeterministic setup with exactly the same parameters.
The only thing we need to change is the proof; the additional arguments used for the nondeterministic setup
are outlined in Section 6.4. We first state our results which are analogous to those in Sections 5.3 and 5.4.

Let x be a functionx : {0, 1}log n → {0, 1} and letG′
x
(j) : {0, 1}d log q+log n̄ → {0, 1}m be the functions

defined by (13) after applying the transformation described in Lemma 5.6 withρ = ε/(8m) to eachG(j)
x

(using, e.g., the Hadamard code, son̄ = q). The next theorem is analogous to Theorem 5.5.

Theorem 6.5 (PRG against nondeterministic circuits: main theorem).There exists a universal constant
c such that for every choice ofn, d, h, q satisfyinghd > n and the conditions of Lemma 5.4, at least one
G′

x
(j) is an ε-PRG against nondeterministic circuits of sizes, provided thatSSV (x) > s · poly(m, q) and

q > max(c(m/ε)4hd2 log2 q, 2d4log2q). Furthermore, all theG′
x
(j)s are computable in timepoly(qd, n)

with oracle access tox.

Note that Theorem 6.5 refers to the binary versions of the candidate generators whereas Theorem 5.5
refers to theq-ary versions. In the deterministic setup this makes no difference, however in the nondetermin-
istic setup we do not know in general how to convert fromq-ary to binary, and rely on particular properties
of our construction.

By fixing the parameters in the same way as in Section 5.3, we obtain the following corollary, which is
analogous to Corollary 5.7.

Corollary 6.6. At least oneG′
x
(j) is a 1/m-PRG against nondeterministic circuits of sizes provided that

SSV (x) > smO(1). Furthermore, all theG′
x
(j)’s are computable in (deterministic) timenO(1), givenx.

By using XOR to combine the generators as in Section 5.3, we obtain the following PRG against non-
deterministic circuits. This corollary is analogous to Corollary 5.8.15

14The argument of [Yao82] converts a distinguishing functionC that violates (15) into a predictor functionf that violates (16).
The argument shows that there exist constants1 ≤ i ≤ m, ai, · · · , am ∈ {0, 1} andb ∈ {0, 1} such thatf(x1, · · · , xi−1) =
C(x1, · · · , xi−1, ai, · · · , am)⊕ b. In the nondeterministic setting note that ifC is computable by a sizes nondeterministic thenf
is computable by a circuit of roughly the same size. Yet, ifb = 0 then this circuit is nondeterministic, and ifb = 1 then this circuit
is a co-nondeterministic circuit. Thus, to obtain the relation between distinguishers and predictors we need to guarantee that the
PRG fools both nondeterministic and co-nondeterministic predictor circuits.

15In the corollary above we allow bothx and the generator to be computable in SV-nondeterministic timenO(1) rather than
deterministic timenO(1). This is because the application we have in mind is derandomizingAM and in this setup the generator
is run by a nondeterministic machine so we can allow it to be computable nondeterministically. However, the assumption thatg
is computable in SV-nondeterministic timenO(1) could be replaced by “g is computable in (deterministic) timenO(1)”. This is a
stronger assumption, and it “buys” a stronger conclusion: the generator will run in (deterministic) timenO(1).
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Corollary 6.7. For any s, if there exists a functiong : {0, 1}log n → {0, 1} that is computable in SV-
nondeterministic timenO(1) withSSV (g) ≥ s then there exists a1/m-PRG against nondeterministic circuits
of sizem with seed lengtht = O(log2 n/ log s) and output lengthm = sΩ(1). Furthermore, this generator
can be computed in SV-nondeterministic timenO(1).

As noted above, the notions of one-sided error and two-sided error coincide forAM and so hitting set
generators against co-nondeterministic circuits suffice to derandomize it.

Definition 6.8 (HSG against nondeterministic circuits).A functionH : {0, 1}t → {0, 1}m is anε-HSG
for nondeterministic sizes if for all sizes nondeterministic or co-nondeterministic circuitsC : {0, 1}m →
{0, 1}

Pr[C(Um) = 1] ≥ ε ⇒ Pr[C(H(Ut)) = 1] > 0.

Combining the candidate generators into an HSG as in Section 5.4 gives the following corollary, analo-
gous to Corollary 5.10.

Corollary 6.9. For any s, if there exists a functiong : {0, 1}log n → {0, 1} that is computable in SV-
nondeterministic timenO(1) withSSV (g) ≥ s then there exists a1/m-HSG against nondeterministic circuits
of sizem with seed lengtht = O(log n) and output lengthm = sΩ(1). Furthermore, this generator can be
computed in SV-nondeterministic timenO(1).

Finally, the HSG can be used to derandomize AM, giving the following optimal tradeoff (compare to
Corollary 5.11):

Corollary 6.10. If there exist a function familyg = {g`} ∈ NE∩ coNE that requires sizes(`) SV nondeter-
ministic circuits, then for every time constructible functiont(n), AMTIME(t(n)) ⊆ NTIME(2O(s−1(t(n)O(1)))).

This extends the previous results by Miltersen and Vinodchandran [MV99] to generals(`).

6.4 Proof of the main theorem for nondeterministic circuits

In this section we prove Theorem 6.5. The proof follows the outline of the proof of Theorem 5.5. We first
explain why we need to modify the proof of Theorem 5.5 for it to work in the nondeterministic setting.

The proof of Theorem 5.5 constructs a small (deterministic) circuitC that computesx when given
(deterministic) circuits that compute the predictorsf (j)’s. In the nondeterministic setting each one of the
f (j)’s has either a small nondeterministic circuit or a small co-nondeterministic circuit, and we want to
construct a small SV nondeterministic circuitC computingx. Suppose thatf (j) is a nondeterministic
circuit, and that in the course of its computation,C wishes to evaluatef (j) on inputa. If f (j)(a) = 1 then
there is a short proof that shows this, andC can use this short proof to justify its computation. However, if
f (j)(a) = 0 we cannot assume that there is a short proof of this fact. In this case,C cannot evaluatef (j)(a)
as part of its computation. More generally, the problem is that an SV nondeterministic circuit cannot use a
nondeterministic circuit as a black box.

To solve this problem we would like to find a short proof thatf (j)(a) = 0. We will use the fact that
at each prediction step,C runs the predictorf (j) on pointsa that are on a random curve16. With high
probability the fraction ofa’s on the curve for whichf (j)(a) = 1 and the fractionp of a’s in F d on which
f (j)(a) = 1 differ by at most some smallδ. If C verifies that a(p− δ) fraction of thea’s on the curve have

16This presentation is oversimplified and confuses between binary predictors andq-ary predictors. The actual proof deals with
this problem.
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f (j)(a) = 1 (which can be done within an SV nondeterministic computation) then it can be sure that almost
all remaininga’s on the curve havef (j)(a) = 0. In particular, ifC assumes thatall remaininga’s have
f (j)(a) = 0 then it agrees withf (j) on at least a(1 − 2δ) fraction of the points in the curve. Thus we can
view C as having access to a predictor that makes slightly more errors thanf (j). By choosing the parameters
appropriatelyC can perform the list-decoding phase even with slightly more errors, and the proof goes on
essentially unchanged. We also need to providep to C as non-uniform advice.

In the remainder of the section we formally prove Theorem 6.5. Recall that the “candidate PRGs”G
′(j)
x :

F d × [n̄] → {0, 1}m have been obtained from theG(j)
x defined in (13) using an(ρ, ρ−2)-efficiently list-

decodable error-correcting code, with encoding functionE : {0, 1}log q → {0, 1}n̄, and thatρ = ε/(8m).
(For clarity, we are splitting the seed of theG

′(j)
x into two parts – the first being the vector inF d and the

second being the index into the codeword of the error-correcting code). We assume for the purpose of
contradiction that noG′(j)

x is anε-PRG against nondeterministic circuits. Then we have next-bit predictors
for all G

′(j)
x . Without loss of generality we assume that all these predictors predict the last bit givenm − 1

previous bits. That is, we assume that there exist functionsf (j) : {0, 1}m−1 → {0, 1} violating property

(16) for eachG′(j)
x , respectively. Furthermore, each of these predictor functions can be implemented by a

sizes nondeterministic or co-nondeterministic circuit.
Using these predictors, we produce a small SV nondeterministic circuit that computesx(i) from input

i. Our algorithm here differs from the algorithm used in the proof of Theorem 5.5only by some additional
steps at the beginning ofLearn Next Curve, and a corresponding modification of the proof of Lemma 5.12.
For clarity we present the modified version ofLearn Next Curve in its entirety; the new actions are marked
with “+”.

Let p(j)
0 = Pry∈F d,z∈[n̄][f (j)(G′(j)

x (y, z)1...m−1) = 0] be the fraction of points on which thej-th predic-

tor predicts0, and letp(j)
1 = 1 − p

(j)
0 be the fraction of points on which it predicts1. The new procedure

will make use of valuesnj ∈ [qn̄] andβj ∈ {0, 1} for j = 0, 1, . . . , d− 1 defined as follows:

βj =
{

1 if f (j) is computed by a sizes nondeterministic circuit
0 if f (j) is computed by a sizes co-nondeterministic circuit

(17)

nj =
⌈
qn̄

(
p
(j)
βj
− ε

4m

)⌉
. (18)

These values will ultimately be supplied as non-uniform advice to the circuit. For allj, let D(j) be the
nondeterministic or co-nondeterministic circuit computingf (j).

Procedure Nondeterministic Learn Next Curve

• Input:

- next curve C : F → F d: a degreev polynomial

- reference points R ⊆ F : a set of elements ofF

- stride j: an integer in[0 . . . (`− 1)]

- input evaluations
{
ai

t

}
t∈F,i∈[1...(m−1)]

and{bt}t∈R: elements ofF whoseintended valuesare

ai
t = x̂(A−iqj

C(t)) andbt = x̂(C(t)).

• Output:

- output evaluations {ct}t∈F : elements ofF whoseintended valuesarect = x̂(C(t)).

34



• Action:

+ Guess a setT of nj distinct pairs(ti, zi) ∈ F × [n̄] and a “witness” stringwi for each.

+ Check that this is a “good guess”; i.e.,

∀(ti, zi) ∈ T f (j)(E(am−1
ti

)zi , E(am−2
ti

)zi , . . . E(a1
ti)zi ; wi) = βj .

If it is not, halt and output “bad guess.”

+ For all t ∈ F and allz ∈ [n̄], setrt
z =

{
βj if (t, z) ∈ T
1− βj otherwise

.

+ For all t ∈ F , setSt to be the list ofρ−2 codewords that differ fromrt in at most(1/2 − ρ)n̄
places.

- Apply Lemma 3.1 on theqρ−2 pairs{(t, e)}t∈F,e∈St
to obtain a list of at most8ρ−3 degree

deg(x̂)v univariate polynomialsp(t) that contains all polynomials for whichp(t) ∈ St for at
leastρq/4 values oft. If this list is empty, fail.

- If the list contains a unique polynomialp(t) for whichp(t) = bt for all t ∈ R, output{p(t)}t∈F ;
otherwise fail.

We say thatNondeterministic Learn Next Curve succeeds(on a curve, reference points and stride) if
its output evaluations are the intended values when itsinput evaluations are the intended valuesfor all
“good” guesses, and there is at least one such “good” guess. As in the proof of Theorem 5.5, we argue that
for a randomnext curve C and a random set ofreference points R ⊆ F , the procedure succeeds with
high probability.

Lemma 6.11. For all stridesj,

Pr
C,R

[Nondeterministic Learn Next Curve succeeds] ≥ 1−O(2−v/2)− (8ρ−3)
(

v · deg(x̂)
q

)r

,

whereC : F → F d is a uniformly chosen degreev ≤ (
ε

4m

)2 (q/4) curve, andR ⊆ F is a uniformly chosen
subset ofF of sizer.

Proof. Fix j, and suppose that theinput evaluations are the intended values. We first argue that the fraction
of points on whichf (j) predictsβj along curveC is close the fraction of points on whichf (j) predictsβj in
the whole space. Define the random variable

Xt = Pr
z∈[n̄]

[f (j)(E(am−1
t )z, E(am−2

t )z, . . . E(a1
t )z) = βj ],

and letX =
∑

t∈F Xt. Notice thatE[X] = qp
(j)
βj

. By Lemma 3.2, we have:

Pr[|X − E[X]| ≥ ε

4m
q] ≤ O

(
2−v/2

)
. (19)

This implies that with probability at least1−O
(
2−v/2

)
,

n̄q
(
p
(j)
βj
− ε

4m

)
≤

∣∣∣
{

(t, z) : f (j)(E(am−1
t )z, . . . E(a1

t )z) = βj

}∣∣∣ ≤ n̄q
(
p
(j)
βj

+
ε

4m

)
(20)
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By integrality, the size of the set in the above inequality is at leastnj . If the “bad” event in (19) does not
occur, two important observations hold: (1) there exists at least one “good guess” ofT and the witness
stringswi, and (2) for any such “good guess,”

Pr
t,z

[rt
z = f (j)(E(am−1

t )z, . . . E(a1
t )z)] ≥ 1− ε

2m
,

since the setT identifies all but anε/(2m) fraction of the points on whichf (j) predictsβj .
Now we argue thatf (j) is correct along curveC on almost the same fraction of points as the fraction of

points in the whole space on whichf (j) is correct. Define the random variable

Yt = Pr
z∈[n̄]

[f (j)(E(am−1
t )z, . . . , E(a1

t )z) = E(x̂(C(t)))z],

and defineY =
∑

t∈F Yt. Notice thatE[Y ] > q(1/2 + ε/m) since we are assuming thatf (j) violates
property (16). By Lemma 3.2, we have:

Pr[|Y − E[Y ]| ≥ ε

4m
q] ≤ O

(
2−v/2

)
. (21)

If neither the event in (19) nor the event in (21) occurs, then we have:

Pr
t,z

[rt
z = E(x̂(C(t)))z] ≥ 1

2
+

ε

4m
.

By an averaging argument we have that for at least anε/(8m) fraction of thet’s, Prz[rt
z = E(x̂(C(t)))z] ≥

1/2 + ε/(8m). For theset, the relative Hamming distance betweenrt andE(x̂(C(t))) is at most1/2− ρ,
soSt containŝx(C(t)). The remainder of the proof of Lemma 5.12 now goes through unchanged.

The remainder of the proof of Theorem 5.5 (following Lemma 5.12) goes through unchanged. Lemma
5.14 now shows that there exist curvesC1 andC2 for whichNondeterministic Learn Next Curve succeeds
on all steps. In the present context, this also means that on these curvesNondeterministic Learn Next
Curve is a bone fide SV-nondeterministic “subroutine” (on “bad” curves there may be no “good guess,”
violating the requirements of Definition 6.2). Using this procedure repeatedly to computex(i) as in the
proof of Theorem 5.5 results in an SV-nondeterministic circuit computingx of size s · poly(m, q, n̄), a
contradiction. This concludes the proof of Theorem 6.5.

7 Hardness amplification for deterministic and nondeterministic circuits

A critical component of previous PRG constructions has beenhardness amplification. Hardness amplifica-
tion is an efficient transformation that takes a functionx : {0, 1}t=log n → {0, 1} that is worst-case hard for
sizes circuits, and produces a functionx′ : {0, 1}t′ → {0, 1} that cannot be computed correctly on even a
1/2 + ε fraction of its inputs by sizes′ circuits. One hopes fort′ not much larger thant, ands′ not much
smaller thans.

Our deterministic and nondeterministic PRG constructions are in fact hardness amplification transfor-
mations when their output is truncated after 1 bit. For example in the deterministic case, starting with a

functionx : {0, 1}t=log n → {0, 1} for which S(x) > s, let G : {0, 1}t′=O(log2 n/ log s) → {0, 1} be the
ε-PRG built fromx in Corollary 5.8, whose output is truncated after 1 bit. We claim thatG cannot be com-
puted correctly on even a1/2 + ε fraction of its inputs by sizes′ = sΩ(1) circuits. If there was such a circuit
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P , then it would constitute a predictor for the function̂G(y) = y ◦ G(y). Standard minor modifications
to the proof thatG is anε-PRG reveal that just as with a predictor forG, a predictor forĜ can be used to
construct a small circuit computingx correctly on every input, and contradicting the hardness ofx.17

Currently, the hardness amplification transformation for deterministic circuits that achieves the best
parameters is [STV01]; they obtains′ = sΩ(1) and t′ = O(t). The construction sketched above fails to
match these parameters because ourt′ may be as large ast2. However, in this particular setting, we can
get awaywithoutXORing the candidate binary PRGsG

′(i)
x (from Section 5.3) to obtainG. In fact, taking

G = G
′(0)
x is sufficient for the following reason. IfG is not average-case hard, then the predictorP we must

use to obtain a contradiction has (by definition):

Pr
y,j

[P (y, j) = C(x̂(Ay))j ] >
1
2

+ ε.

Defining P (i)(y, j) = P (Aqi−1y, j) we obtain similar predictors for allG′(i)
x from the single predictor

P . Using these predictors, the proof arrives at a contradiction as before. SinceG
′(0)
x has seed length

t′ = O(log n), this hardness amplification transformation essentially matches the parameters of [STV01]
for deterministic circuits.

For nondeterministic circuits, we obtain a new result. Hardness amplification transformations were
known for circuits with SAT oracle gates [KvM02], using the fact that known deterministic hardness am-
plification transformations (e.g., [STV01]) relativize. However, no such transformations were known that
transform worst-case hardness for nondeterministic circuits (Definition 6.1) into average-case hardness for
nondeterministic circuits. Our PRG against nondeterministic construction gives the first hardness amplifi-
cation transformation for nondeterministic circuits. The argument is the same as the one for deterministic
circuits outlined above. For clarity we state the result for nondeterministic circuits in the following theorem.

Theorem 7.1. For every functiong : {0, 1}t → {0, 1} such thatSSV (g) ≥ s there is a functionh :
{0, 1}O(t) → {0, 1} such that for every nondeterministic or co-nondeterministic circuitC of sizes′ = sΩ(1)

computing a functionf : {0, 1}O(t) → {0, 1}:,

Pr
y

[f(y) = h(y)] ≤ 1
2

+
1
s′

.

Furthermore,h can be computed in (deterministic) time2O(t) given oracle access tog.

We remark that in a subsequent work [SU04] we show how to apply the argument of [STV01]directly
for the nondeterministic case. This gives a simpler and more modular proof of the theorem above.

8 Constructions of “traversing matrices”

In the previous sections we used matricesA andB with entries inF = GF (q) that “traverse” subsets
of F d as components in our extractor and PRG constructions. In this section we show how to construct
such matrices and prove Lemma 4.4, Lemma 4.18 and Lemma 5.4. Throughout the section, we will need a
representation of the fieldGF (q) in order to perform field arithmetic. For our purposes it is sufficient that
whenq = pc for a primep, such a representation can be found deterministically in time poly(p, c) [Sho90].

17The literature refers to such a PRG as a “strong” PRG, and many PRG constructions in fact produce strong PRGs.
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The basic idea is to view the vector spaceF d = GF (q)d as the extension fieldGF (qd) and use the
additional multiplicative structure to obtain the matrices. We fix a basis forGF (qd) as a vector-space over
F , and letg be a generator for the multiplicative groupGF (qd)∗. The functionT : F d → F d that given a
vector~v interprets it as a field elementv and outputsg · v is an invertible linear transform, and we can pick
A to be the matrix such thatAv = T (v). We start by restating and proving Lemma 4.4

Lemma 4.4 (restated). Let F be a field withq elements and letd be an integer. There exists an invertible
d × d matrix A with entries inF such thatAqd−1 is the identity matrix and for every non-zero~v ∈ F d,{
Ai~v

}
1≤i<qd = F d \ {0}. Furthermore, such anA can be found in timeqO(d).

Proof. (of Lemma 4.4) The fieldGF (qd) is a vector space of dimensiond overF = GF (q) and is thus
isomorphic toF d. Let g be a generator of the multiplicative group ofGF (qd) (which is cyclic). Multipli-
cation with a fixed element in the field corresponds to a linear transform in the vector-space, so the linear
transformA corresponding to multiplication byg satisfies (6). We can findg by exhaustive search18 in time
qO(d).

Our construction of extractors for small error required a more sophisticated version which is restated
below.

Lemma 4.18 (restated). Let h, q andd be such that:h is a prime power,q is a power ofh, andd and
logh q are relatively prime. Then there exists an invertibled × d matrix B with entries fromF = GF (q),
and a setH ⊆ F with |H| = h such thatBhd−1 is the identity matrix and for every nonzerov ∈ F d there
is an invertible linear transformTv : F d → F d for which:

Tv · (Hd \
{
~0
}

) =
{

Biv|1 ≤ i < hd
}

.

Moreover,B can be found in time poly(hd, log q).
The proof of Lemma 4.18 uses the proof technique of the following more general Lemma which we

used for our PRG construction.

Lemma 5.4 (restated). Leth, q andd be such that:h is a prime power,q is a power ofh, andd andlogh q
are relatively prime. LetF be the field withq elements andH be the subfield ofF with h elements. Then
there exist invertibled× d matricesA andB with entries fromF that satisfy:

• Aqd−1 andBhd−1 are the identity matrix.

• For any non-zero vector~v ∈ F d:
{
Ai~v

}
1≤i<qd = F d \ {0}

• For any non-zero vector~v ∈ Hd
{
Bi~v

}
1≤i<hd = Hd \ {0}.

• B = A(qd−1)/(hd−1).

• A,B can be found in timeqO(d).

18More precise bounds, and significant improvements in certain cases can be found in [Sho92] and [Shp96].
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Proof. (of Lemma 5.4) We first need a polynomial of degreed with coefficients inH that is irreducible over
F . Let c = logh q and letp(z) be a polynomial of degreed that is irreducible overH = GF (h). Let α
be a root ofp and notice that the fieldGF (hc)[α] contains bothF andGF (hd). Furthermore,GF (hc)[α]
is contained inGF (hcd). However, noproper subfield ofGF (hcd) can contain bothF = GF (hc) and
GF (hd) becausec andd are relatively prime. ThereforeGF (hc)[α] = GF (hcd), which implies thatp is
irreducible overF = GF (hc), as desired. We now constructGF (qd) by considering its elements to be
polynomials overF modulop(z). Let

{
1, z, z2, . . . zd−1

}
be the standard basis forGF (qd) overF . In this

basis, the setHd is exactly the following subset ofGF (qd):
{

d−1∑

i=0

βiz
i|βi ∈ H

}
.

Sincep(z) has all coefficients inH, this subset is closed under multiplication. It follows thatHd is isomor-
phic toGF (hd). Moreover,Hd \ {0} is a subgroup of orderhd− 1 of the multiplicative group ofGF (F d).
Therefore, if we findA corresponding to a generator of the multiplicative group ofGF (F d) (as in Lemma
4.4), thenB = A(qd−1)/(hd−1) generates the unique subgroup of orderhd−1, whose elements areHd \{0}.
As beforeA can be found by exhaustive search.

We now prove Lemma 4.18:

Proof. (of Lemma 4.18) We use the technique of Lemma 5.4. We have shown that under the conditions of
the lemma, there is a polynomialp of degreed with coefficients inH that is irreducible overF . Such a
polynomial can be found in timehO(d) by exhaustive search. We constructGF (qd) usingp, and then as
noted above the setHd is a subfield. We letB be a matrix (with entries inH) that corresponds to multiplying
by a generator of the multiplicative group of this subfield. Such a matrix can be found (by exhaustive search
for a generator of the multiplicative group) in timehO(d).

Finally, letA be a matrix that corresponds to multiplying by a generator of the multiplicative group of
GF (qd). We havev = Aj~1 for somej, sinceA generatesF d \ {0}. Note thatA andB commute (sinceB
is a power ofA), and that~1 (the all-ones vector) is inHd. Using these two facts, we have:

{
Biv|1 ≤ i ≤ hd

}
=

{
BiAj~1|1 ≤ i ≤ hd

}
=

{
AjBi~1|1 ≤ i ≤ hd

}
= Aj · (Hd \

{
~0
}

).
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