Simple Extractors for All Min-Entropies
and a New Pseudorandom Generator

Ronen Shaltiel Christopher Umans
December 8, 2004

Abstract

A “randomness extractor” is an algorithm that given a sample from a distribution with sufficiently
high min-entropy and a short random seed produces an output that is statistically indistinguishable from
uniform. (Min-entropy is a measure of the amount of randomness in a distribution). We present a simple,
self-contained extractor construction that produces good extractors for all min-entropies. Our construc-
tion is algebraic and builds on a new polynomial-based approach introduced by Ta-Shma, Zuckerman,
and Safra [TSZS01]. Using our improvements, we obtain, for example, an extractor with output length
m = k/(logn)®1/*) and seed lengthl + a)logn for an arbitraryd < o < 1, wheren is the input
length, andk is the min-entropy of the input distribution.

A “pseudorandom generator” is an algorithm that given a short random seed produces a long output
that is computationally indistinguishable from uniform. Our technique also gives a new way to con-
struct pseudorandom generators from functions that require large circuits. Our pseudorandom generator
construction iotbased on the Nisan-Wigderson generator [NW94], and turns worst-case hatdness
rectly into pseudorandomness. The parameters of our generator match those in [IW97, STV01] and in
particular are strong enough to obtain a new proofthat BPP if E requires exponential size circuits.

Our construction also gives the following improvements over previous work:

e We construct an optimal “hitting set generator” that streto@é®gn) random bits intos(")
pseudorandom bits when given a functionlogn bits that requires circuits of size This yields
a quantitatively optimal hardness versus randomness tradeoff forR¥dtand BP P and solves
an open problem raised in [ISW99].

e We give the first construction of pseudorandom generators thatfmaleterministicircuits when
given a function that requires large nondeterministic circuits. This technique also give a quanti-
tatively optimal hardness versus randomness tradeoff far and the first hardness amplification
result for nondeterministic circuits.

*A preliminary version of this paper appeared in the Proceedings of the 42nd Annual IEEE Symposium on Foundations of
Computer Science, 2001.

TDepartment of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel. Some
of this research was performed at the Institute for Advanced Study, Princeton. This research was also supported in part by the
Koshland Scholarship.

tComputer Science Department, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125. Some of
this research was performed while the author was a postdoc at Microsoft Research. This research was supported in part by NSF
grant CCF-0346991.

1 Introduction

A central question in Complexity Theory concerns the power of probabilistic algorithms. Such algorithms
are allowed to use a string of independent coin tosses in their computation. Two different approaches for
obtaining such a string have resulted in two fundamental objects.

Randomness Extractors (defined by [NZ96]) are deterministic machines that extract “pure randomness”
from physical sources of “crude randomness”. More formally, an extractor takes two inputsbiftong

string that is sampled from an arbitrary distribution with min-entropy at ledstnd a “seed” of < n truly
random bits. The extractor should output> ¢ bits that arestatistically closeo truly random bits. Given

an extractorE/, one can run any probabilistic algorithm using only the crude source of randomness. This is
done by taking a sample from the source, and running the algorithm usitige, y) as random coins for

all 2¢ possible seedg. The final output is the majority vote of tH# outputs. It is easy to verify that this
algorithm outputs the correct answer with high probability and runs in polynomial time i (logn).

Extractors have been used in a remarkable variety of settings beyond their intended application. These
include complexity theory [Sip88, NZ96, GZ97], algorithms [WZ99], hardness of approximation [Zuc96,
Uma99], distributed protocols [Zuc97, RZ98], and coding theory [TSZ04]. A long line of research [NZ96,
SZ99, Zuc97, TS96, NTS99, Tre02, RRV02, RRV99, ISW03, RSW00, TSUZ01, LRVWO03] has focused on
constructing extractors with gradual improvement in various parameters. Typically, one wants to minimize
the seed lengthand maximize the output length and achieve this for any relation between the length of
the sourcer and the min-entropy threshokd A probabilistic argument shows the existence of an “optimal
extractor” that matches the lower bounds given in [NZ96, RTS00] and achieves seedtleadtiy(n —

k) + O(1) and output lengthn = k£ + ¢ — O(1). However, all the applications above require extractors that
areexplicitin the sense that they run in polynomial time. For more information on extractors the reader is
referred to survey papers [NTS99, Sha02]

Pseudorandom Generators (defined by [BM84, Yao82]) are deterministic machines that stretch a short

t bit long “seed” of truly random bits into a long “pseudorandom” string of lengthlt is required that

no small circuit can distinguish between the distribution of pseudorandom strings and that of truly ran-
dom strings. The existence of pseudorandom generators implies the existence of functions that cannot
be computed by small circuits; thus, in the absence of strong circuit lower bounds, we cannot get un-
conditional constructions of pseudorandom generators. The “hardness versus randomness paradigm” (ini-
tiated by [BM84, Yao82]) suggests basing constructions of pseudorandom generators on the assumption
that certain hard functions exist. A weaker notion of PRGs was suggested in [NAAI®d§, notion per-

mits PRG constructions using the assumption that there exists a function famifg, 1}'¢™ — {0,1}

that can be computed in time polynomialsnand is hard for small circuits of size = s(n) (wheres

lies betweerlog n andn).® Given a pseudorandom generator one can determistically simulate any prob-

A distribution has min-entropy at leaktf it the probability it assigns to every element is at mst.

2The notion of pseudorandom generator used in [BM84, Yao82] is stronger than the one used here. It is required that PRGs fool
circuits that aréarger than the running time of the PRG. Such PRGs imply the existence of one-way functions. Following [NW94]
we use a weaker notion of PRGs that only fools circuits thasarallerthan the running time of the PRG. This is often called the
“Nisan-Wigderson” setting. A typical choice of parameters in this setting is a PRG that runs in time polynomjatiatches
O(log n) bits inton*(") bits, and fools all circuits of size‘**) where this size is smaller than the running time of the PRG. As
pointed out in [NW94], such PRGs suffice to derandomize probabilistic algorithms.

3We remark that a different way to state this assumption is to measure the complexity of the fgrintterms of the length of
its input. In this language the assumption is that there exists a function family=nDTIME (2°()) that cannot be computed by

| Additional randomness | Output lengthn | which & | Reference |

O(logn) k10 k > 1log®1/% | Corollary 4.6
(1+6)logn ££200) k > 1log®1/% | Corollary 4.7
(14 a)logn k/(0g®1 /%) n) | anyk Corollary 4.9
| logn+ O(1) | k | anyk | optimal \

Table 1: Examples of extractors constructed in this paper. Here 0 is any constant) < « < 1is an
arbitrary function. The results are stated for constant error.

abilistic algorithm by running the algorithm on &l pseudorandom strings and outputting the majority
vote. This deterministic simulation runs in polynomial time whtea O(logn). A long line of research
[NW94, BFNW93, Imp95, IW97, STVO01, ISW99, ISWO03] has focused on constructing PRGs under such
an assumption. An important milestone was achieved in [IW97] (and later in [STVO01]). They show that
if there exist sufficiently hard functions (functiopsoverlog n bits that are computable in time’() yet

hard for circuits of sizes = n‘¥1)) then there is a PRG that stretchies: O(logn) bits intom = n®(1)

bits and every polynomial time probabilistic algorithm can be simulated by a polynomial time deterministic
algorithm; i.e.,BPP = P. For more information on pseudorandom generators the reader is referred to
survey papers [Gol98, Kab02].

Connections between extractors and PRGs The two areas were recently linked in [Tre02], which showed

that Nisan-Wigderson-style PRGs, properly interpreted, are also extractors. For this correspondence, one
should think of a PRG construction as receiving an additional input. In addition to the seed the PRG also
gets the “hard functiony : {0,1}'°®™ — {0,1} encoded as an bit long truth table. Trevisan [Tre02]

shows that every such construction with certain “black-box properties” yields an extractor.

1.1 Ourresults

The main contribution of this paper is developing a simple, self-contained, and versatile construction of
both extractors and PRGs that achieves good results for a wide range of parameters. We build on a recent
new technique introduced in [TSZS01] for building extractors from Reed-Muller codes. By extending this
technique and adding some new ideas we are able to construct extractors over a broader parameter range
(the extractors in [TSZS01] lose quite a bit of the source randomness and as a consequence only work for
sources with high min-entropy). In terms of parameters, our extractors are comparable to the best current
constructions, although somewhat inferior in their output length.

Our improvements also allow using Trevisan’s connection [Tre02] “the other way” and give a new
construction of pseudorandom generators. This construction is the first construction that is not based on the
Nisan-Wigderson generator [NW94] and gives an “optimal conversion of hardness into pseudorandomness”.
In addition, our construction also allows constructing PRGs against nondeterministic circuits from weaker
assumptions than previously known. Below, we outline our results in more detail:

circuits of sizes’(n) wheres’ is a function that satisfies (log n) = s. We prefer the first setting as it allows a “unified framework”
for both extractors and PRGs. However, we also state our results in the second setting to allow easy comparison to previous work.

Extractor constructions: Our extractors are summarized in Table 1. For simplicity we will only discuss
the case when the error is constant. Precise statements of the results appear in Section 4.6. Our first ex-
tractor achieves a relatively large output length & k'~ for any constant > 0), while retaining the
asymptotically optimal seed lengthtof O(logn). This matches the parameters of previous constructions
by [Tre02] (which achieved these parametersifor n*(})) and [ISW03, TSUZ01]. Our second extractor
uses a shorter seed length= (1 + a)logn where0 < a(n) < 1 is an arbitrary function, and the choice
of a affects the output lengtlh = k@), A seed length approaching log n was achieved in [TSZS01]
for & = n2() while our result works for arbitrarg. Our third extractor improves the dependence of the
output length orx and achieves output length = k:/(logo(l/a) n). Unlike the first two extractors it is not
self-contained — it relies on another extractor construction from [TSZS01, NZ96].

In a subsequent work, [LRVWO03] have constructed an extractor with seed lengtt(logn) and
output lengthm = Q(k) for arbitrary min-entropy thresholel This construction (as well as some previous
ones; see [Sha02] for more details) achieves better output length than our extractors. However, note that we
can achieve = (1 + «) logn for smalla > 0, whereas [LRVWO03] can only achieve= clogn for some
unspecified constaiat> 1.

Pseudorandom generators constructions: Prior to this paper, all known PRG constructions were based

on the original Nisan-Wigderson PRG [NW94] (with the exception of the Blum-Micali-Yao-style PRGs
[BM84, Yao82], which are based on a stronger type of hardness assumption). Coming up with an alternate
construction has long been an open problem. Our constructionmbese the NW PRG, and is arguably
simpler than previous constructions. In particular, there is no explicit hardness-amplification component:
we transform worst-case hardness directly into pseudorandomness. The parameters of our PRG match
[IW97, STVO1]; that is, given a functiog : {0,1}'°¢™ — {0, 1} that cannot be computed by circuits of size

s we construct a PRG with seed length= O(log? n/ log s) and output lengthn = s(1). Consequently,

(by settings = n*(})) we obtain a new proof of the theorem of [IW97] thePP = P if there exists a
function family in E that requires exponential size circuits.

An optimal hitting set generator. A hitting set generator (HSG) is the one-sided variant of a PRG, and
the canonical construct for derandomizing RP (instead of BPP). We give the first constructioopdihaal

HSG; that is, a HSG with seed length= O(logn) that outputsm = s*(1) bits when given a function

g: {0,1}1°8™ —, {0, 1} that requires size circuits. Our construction is optimal in the sense made formal in
[ISW99, ISWO03]; namely, any construction that does significantly better also produces a harder function than
the one initially supplied to it. Additionally, by [Tre02] any conversion of hardness into pseudorandomness
with a “black-box proof” yields extractors or dispersers. Thus, any such conversion that does significantly
better is ruled out by the unconditional lower bounds of [NZ96, RTS00] on extractors and dispersers. The
reader is referred to [ISWO03] for the precise notions of optimality we are discussing here.

An optimal hardness versus randomness tradeoff for BPP: An optimal HSG immediately gives an
optimal hardness versus randomness tradeoffifBr Using the result of [ACR98], (see also [ACRT99,
BF99, GVWO00]) that HSGs suffice to derandomiBé® P, we use our HSG to obtain an optimal hard-
ness versus randomness tradeoff P P. Specifically, we get the following tradeoff: if there exists
a family of functions inE requiring circuits of sizes(n), then for any time constructible functiorn)
BPTIME(¢(n)) C DTIME (206" ¢m°™)) The previous best result (due to [ISW99, ISW03]) obtained
the weaker conclusion that BPTIMEn)) C DTIME (200!t = D))y \ne remark that in a sub-

sequent work, [Uma02] uses our technique to construct optimal PRGs (rather than HSGs) and this gives a
more direct proof of the optimal tradeoff for BPP.

PRGs that fool nondeterministic circuits and derandomization of AM: The classAM (introduced by
[BM88, GMR89]) is the nondeterministic version BfPP. The AM NP problem is the nondeterminis-

tic analog of theBP P Zp problem. It was observed in [AK97, GZ97] that PRGs that fool nondeterministic
circuits suffice to derandomize AM. It was observed in [KvMO02] that existing constructions of PRGs against
deterministic circuits can be used against nondeterministic circuits if one assumes that the fuisdtiar
against circuits of size that use & AT-oracle. This assumption was relaxed in [MV99]; their construction
requires only hardness for nondeterministic circtiitdowever, their construction only gives an HSG and
not a PRG. (HSGs for co-nondeterministic circuits do suffice to derandamiZeas AM coincides with

its one-sided error variant [FGN89]).

We use specific properties of our proof technique to show that both our PRG and HSG, with identical
parameters, can be used to fomindeterministic circuitsvhen given a function that is hard faondeter-
ministiccircuits. This gives an optimal hardness versus randomness tradedfffaand improves and ex-
tends previous works by [KvM02] (which relied on a seemingly stronger hardness assumption) and [MV99]
(which does not work for low hardness).

Our technique also gives a way to transform a function familyithat is hard on the worst case for
small nondeterministic circuits into a function family #hthat is hard on average for small nondeterministic
circuits. Such transformations are often called “hardness amplification” results. Several such results were
proven in the case adeterministiccircuits [BFNW93, IW97, STVO01]. This is the first such result for
nondeterministic circuits.

While the constructions in [TSZS01] and the present work are simple, the proofs are more involved. The
common thread in the proof techniques of [STV01, TSZS01] and this work is the use of specific properties
of error-correcting codes, and ideas for decoding them. In the next section we describe the construction of
[TSZS01] and our improvements at a high level.

2 Overview of the Technique

We first outline the relevant prior work on extractors in Section 2.1, then our new ideas in Section 2.2, and
finally we describe the additional ideas needed to build PRGs and HSGs in Section 2.3.

2.1 Previous work

The reconstruction proof technique. Trevisan [Tre02] showed that a powerful proof technique that at
first seems natural only for PRGs can in fact be used for extractors. The proof technique works by contra-
diction. One assumes that the extractor’s output is not close to uniform for some high min-entropy source
X and therefore does not pass some prediction test. That is, there exists an amiea functionf (the

“Note that nondeterministic circuits are the nonuniform analogy/ & whereasS AT-oracle circuits are the nonuniform ana-
logue of PV T, FurthermoreS AT-oracle circuits are stronger than nondeterministic circuits assuming the polynomial time hierar-
chy does not collapse. We also remark that the result of [MV99] (as well as ours) can be stated with respect to hardness for “single
valued nondeterministic circuits” (see Section 6).

5In a subsequent work [SU04] we extend the technique developed in this paper to show that if there are furigtibasrequire
large nondeterministic circuits then there are functiong'ithat require large circuits that make non-adap8§\w&7'-queries. This
gives a more modular way to prove our results for nondeterministic circuits.

predicton that is able to predict théth output of the extractor given the first- 1 outputs. More formally,

if we denote then output symbols of the extractor By(x, y)1,--- , E(x, y), then
xf}; y[f(E($7 y)la E(.’L’, y)27 Tty E(.’IJ, y>i—1) = E(I’, Z/)z} (1)

is noticeably larger than randomly guessing#tiesymbol. (In this discussion, we consider a generalization

of extractors that we callg-ary extractors,” which output: symbols from an alphabet of sizaather than

m bits; such extractors can be converted to extractors that output bits [TSZS01] — cf., Section 4.5). Then one
gives a “reconstruction procedure” based on the predittdihis procedure is able to reconstruct the string

x sampled from the weak random source usfngnd a short “advice string”. More precisely, for many

z’s (namely those on which the predictor has noticeable advantage) there exists a short “advice: string”
such that the reconstruction procedure can reconsirwsing f when givenz. If the source has large
min-entropy, this is a contradiction because it implies that a large number of strings have short description
(whereas there are only a few short descriptions).

The extractor of [TSZS01] Ta-Shma, Zuckerman and Safra [TSZS01] proposed a hew extractor construc-
tion based on polynomials that uses this proof technique in a new way. Their construction is very simple.
One thinks of the string: sampled from the weak random source as a low-degree multivariate polynomial
pe : FY — F over a finite fieldF' of sizeq, and the seed is a random evaluation pgimt F¢. The extrac-

tor computesn “successive” pointg, - - - ,y,, € F¢ starting withy; = y (the meaning of “successive”

is purposely left a bit vague in this presentation and we will elaborate on it later) and outmyisibols
E(z,y) = (pe(y1), -+ P2(ym))-

Their proof describes a reconstruction procedure that attempts to reconstruct a source string (viewed as a
polynomialp,.) using a predictoy and a short advice stringwhich contains the value @f, at a small fixed
set of points which we will call the “startup points”. The basic idea is to reconstrustep by step, where
in each step the reconstruction procedure “learns” the evaluatipp af a new point. In the first step the
procedure uses— 1 successive points from the startup points to predict the valpg af the “next” point
(using f). In the next step the predictor can be “advanced” by one step and-u8esuccessive points plus
the one just predicted to predict the valuepgfat the next point, and so on, until all pf is reconstructed.

There are however two complications.

First, the predictor is only correct with a small advantage over random guessing. To overcome this,
at each step the predictor is used to predict in parallel all points along a randoif im&?. (Loosely
speaking, this can be done by taking more startup points; more details are below). Because points on a
random line are pairwise independent, with high probability the predictor is correct on the same fraction of
points inL as its total advantage over the whole space. The collection of values along the line can now be
error-corrected sincg, restricted toL is a low-degree univariate polynomial.

Second, the relative number of errors is so large that unique decoding is impossible, and one must use
“list-decoding” [Sud97] to obtain a small number of possible options, (that is univariate polynomials), one
of which is correct in the sense that it agrees withon the lineL. To pin down the correct one, the advice
string includes the evaluation ¢f. at a random point o, which with high probability agrees witbnly
the correct polynomial in the list.

To summarize, the [TSZS01] reconstruction procedure gets an advice string that enables it to evaluate
P ONi — 1 successive lines. and the process described above is used to recgnsyitiearning” a new
line in each step.

2.2 Improvements of this paper

The key to improving the quality of the [TSZS01] extractor is reducing the length of the advice string. As
the length of the advice string depends (amongst other things) on the degrgevbich we will denote

by h, we want to reduce the degree. Recall that F¢ — F is supposed to encode arbit long source
elementz and to encode this amount of information we néédx n. Therefore, when reducing the degree

h we must increase the dimensianit turns out that the straightforward way of increasing the dimension in
the construction of [TSZS0lIhcreaseghe length of the advice string (so the best result is obtained when
Pz 1S @ polynomial in only two variables, i.d.= 2). Our improvements enable us to increase the dimension
d without this deleterious effect.

An algebraic approach. What does “successive” mean? In [TSZS01] (say in two dimensions over finite
field F'), the successor @fi, a2) is (a1 + 1, az). The rationale is that starting from a random line and taking
successive steps, one covers the whole vector-spacdhe advice string must include the valuespef
on roughlym (the output length) lines, becausan Equation (1) may be as large as— 1. However, this
geometric approach succumbs to the “curse of dimensionality” as the dimension is increased: for dimension
d, the advice string must include the valuespgfon roughlym (d — 1)-dimensional subspaces, and its
length becomes huge (namely, it is greater thafd—! > mh?—!, which approaches ~ h¢, the length of
the source string).

The main source of our improvement comes from taking an algebraic instead of a geometric approach.
The polynomials we wish to learn are defined over the vector-spdceOur insight is to view this space
as an extension field af. The multiplicative group of this field is cyclic and has genergtoand for us,
the successor of an element is obtainedviftiplicationby ¢. This indeed has the essential property that
by repeatedly taking successors, we cover the whole space. We also use critically that multiplication by
g corresponds to dnear transformin the vector-space, so that lines get mapped to lines. Replacing the
geometric approach by an algebraic approach avoids the geometric struciffend now the dimension
does not come into play. Our advice string includes roughlynes regardless of the dimension, and thus
is of length~ mh. To make use of this improvement we also need the following new ideas.

Curves instead of lines. In [TSZS01], each prediction step fails with probability abaug whereq is
the size of the field, and a union bound is used to argue thatprediction steps fails during the entire
reconstruction process.

Recall that we are increasing the dimensiband decreasing the degredwhich in turn forces us to
decrease the field sizein order to have a short seed length). This decreases the number of points on a line
and means that it takes many more prediction steps to traverse the whole space and therefore many more
events are in the union bound. Decreasing the fieldgimereases the failure probability of each individual
event. Together these effects overwhelm us.

We overcome this by predicting alomiggreer curvesinstead of lines. Since the collection of points
on such curves is-wise independent, we can use higher moment tail inequalities to argue that the failure
probability of each prediction stepésponentially smaih r. Choosing- large enough permits us to use the
union bound even for our much larger collection of events. Using curves instead of lines is also necessary
for the improvement described next.

Furthermore, we remark that when successive points are on a line, (as is the case in [TSZS01])sthentthe evaluations
are evaluations of some univariate polynomjalith the same degree as. Thus, one has to set smaller than the degree of the
polynomialp,, as otherwise the predictgrcan easily predict the last point by interpolating the polynomiahen given all points
but the last one. Our improvement allow us to break this barrier and set the degre®mdfe much smaller tham.

Interleaved reconstruction procedures. There’s an additional cost to using more prediction steps. Recall
that in [TSZS01], the advice string must include the value of the polynomial at a random point on the line,
for each prediction stefHaving to include these will blow up the size of the advice string.

To overcome this problem we run two “interleaved” reconstruction procedures. Each uses its own ran-
dom curve and startup points but we arrange it so that the two curves intersect at a few random points. The
two reconstruction procedures work on their own. However, when one needs the value of the polynomial at
arandom point on its curve, it can use the valready calculatedby the other reconstruction procedure in-
stead of relying on the advice string. Thus, no additional information is required in the advice string beyond
the startup points needed to get the two interleaved reconstruction procedures started.

To conclude, the improvements above allow us to decrease the defp@® about,/n to polylogn
and the advice string contains only the startup points and has length roughlyhis gives extractors that
work for every min-entropy threshofdand extract roughly/h = k/polylog n bits from the source.

We stress that almost all of what we have described in the preceding subsections relatpsoif that
our construction is indeed an extractor. The extractor construction itself remains very simple.

2.3 Constructing PRGs and HSGs

Since the reconstruction proof technique outlined above was originally applied to PRG constructions, it is
easy to adapt to that setting. To convert our extractor into a PRG, we fix the “source sttongé the truth

table of a hard functiowy, use the seeg as before to pick an evaluation point, and outpusuccessive
evaluations. If this isiota PRG, then there is afficientpredictor f, and we wish to us¢ to produce a
smallcircuit C' that computes the function(j) = «;, contradicting the hardness ©f

Two things contribute to the size ¢t: the length of the advice string (which must be hardwired into
(), and the number of prediction steps (since each step invbkesl requires computation to perform the
list-decoding). Because the advice string must be small, the improvements we get over [TSZS01] in this
area are essential for the PRG construction.

However, the natural adaptation of our extractor into a PRG suffers from an inherent problem of the
method of [TSZSO01]: It is highly sequential. Specifically, computingat a positionj that is “far away”
from the startup points (one that takes many successive prediction steps to get to) takes too many steps and
makesC' too large to derive a contradiction.

The problem is that we can’t have a “successor function” defined B¢én such a way that very few
applications of the function can get éwerypoint from a fixed starting location. A helpful idea is to allow
severalsuch successor functions so that short sequences of applications of the different successor functions
can reach every point. To achieve this we will take the first successor function to be the one we used for the
extractor, the second successor function tq bpplicationsof the first, the third to bg? applications of the
first and so on, wherg s the field size. By first taking a few small strides, then a few larger strides, then a
few even larger strides, etc., we can reach every point in a small number of steps.

Each one of these successor functions corresponds to a construction very similar to our extractor con-
struction. We show thait least oneof these constructions must be a PRG, since if none of them are, then
we have predictors for all of them and this would give us the predictors with differing strides needed to
contradict the hardness of

By running all of these “candidate” PRGs with independent seeds, and XOR-ing their output, we obtain
the desired single PRG. Each one of the candidate PRGs uses a seed oflgngth). Because we need
so few candidate generators the seed length of the XORed generator is still relatively short. More precisely,
the number of candidate generatorsoign,/ log s whenz (viewed as a functiom : {0,1}°¢™ — {0,1})

requires circuits of size. (Note that this isonstantwhenx has exponential hardness.) Thus, the seed of
the XORed generator is of lengf(log® n/ log s) and matches the parameters of [STV01]. We can reduce
the seed length to the optimél(log n) when constructing a hitting-set generator (HSG). This is done by
taking theunionof the candidate PRGs rather than their exclusive-or. More precisely, the seed of our HSG
has two partsy andi, and when givery andw it runs thei'th candidate on seeg. This corresponds to
choosing a random candidate PRG and running it on a random seed.

Generators for nondeterministic circuits. In the nondeterministic setting we construct PRGs and HSGs
for nondeterministic circuits based on functions that are hard for nondeterministic circuits. We use the same
proof technique as for “ordinary” PRGs; however, to derive a contradiction in the new setting, we must use
anondeterministigredictor circuitf to construct anondeterministicircuit that computes the (supposedly
hard) functionz. The deterministic reconstruction procedure runs the nondeterministic predie®r
subroutine. The difficulty is that a deterministic procedure with a nondeterministic subroutine does not
necessarily yield a nondeterministic procedure. (For exapi€ is not likely to be contained itV P). To

obtain a nondeterministic circuit the reconstruction procedure can only use the nondeterministic predictor
/ in a one-sided way: It can efficiently verify that the predictor outputs “one” on a given input, but there’s
not necessarily an efficient way to verify that the output is “zero”. Klivans and van Melkebeek [KvMO02]
bypassed this problem by imposing a stronger hardness assumption leerdness for circuits with AT'-

oracle gates. Under this assumption constructions based on [NW94] can be used to fool circuitdit4th
oracle gates, as the proof of Nisan and Wigderson relativizes. Our “ordinary” PRG and HSG constructions
also relativize and therefore immediately translate to this framework. Miltersen and Vinodchandran [MV99]
gave an alternate construction using a hardness assumptigindite-valued nondeterministic circuigSV -
circuits), which are (presumably) weaker than both circuits with SAT-oracle gates and nondeterministic
circuits! However, their construction gives only HSGs (not PRGs), and works only for the “high end” of
possible hardness assumptions, meaning that it requires circuit lower bounds of 2t ¥#distor a function

g onlog n bits.

Both our PRG and our HSG constructions can be adapted to fool nondeterministic (and co-nondeterministic)
circuits using hardness assumptions$af-circuits. The main observation is that we always use our predic-
tors along random curves. When used this way the fraction of “ones” we expect to find in the output of the
predictor along a random curve is close to the fraction in the whole space, and the probability of deviation
is very small. The reconstruction receives the fraction of “ones” the predictor outputs over the whole space
as non-uniform advice. Then, at every step, guessthis fraction of locations along our random curve,
and assume the predictor outputs “ones” at these locations and “zeros” elsewhere. We can efficiently verify
that the predictor indeed outputs “ones” at the specified locations, and then the only new errors we have
introduced are the small number of “ones” we have assumed to be “zeros.” However, the number of errors is
still small enough to allow the (list-)decoding phase to proceed unchanged. The same technique also gives
a hardness amplification result for nondeterministic circuits.

It should be noted that the presentation in this section is over-simplified and the reader is referred to

the technical sections for exact details. The actual PRG and HSG constructions also involve a non-standard
version of the “low degree extension” encoding that is suitable for our application.

"Loosely speaking, nondeterministic circuits are a nonuniform analay Bf and SV -circuits are a nonuniform analog of
NP NcoNP. A precise definition appears as Definition 6.2.

2.4 Outline

The remainder of the paper is organized as follows. In Section 3 we state some previous results. Section 4
is devoted to extractors and contains the core of all of the other constructions that follow. Section 5 contains
the PRG and HSG constructions, and Section 6 extends these to the nondeterministic setting. In Section 7
we briefly describe a further application of our ideas to hardness amplification. An important ingredient in
our constructions are constructions of “traversing matrices” and in Section 8 we show how to construct such
matrices.

3 Preliminaries

We begin with some standard definitions. Whenever weljjgewe mean the random variable that is
uniform on{0,1}". Two distributions on the same domain areloseif the statistical distance between
them is at most; i.e., the probabilities they give to any event differ by at mosgive a fieldF, a function
C: F — Fis adegree curve ifC(t) = Y.1_ a;t’ for someag, - - - ,a,_1 € F?. By FI?l we denote the
set of all subsets of’ of sizep.

We need the following list-decoding bound due to [Sud97]:

Lemma 3.1 ([Sud97]). Let prs, agr, deg be integers. Giveprs distinct pairs(z;, y;) in field F' with agr >
V2 - deg - prs, there are at mostprs/agr polynomialsy of degreedeg such thatg(x;) = y; for at leastagr
pairs. Furthermore, a list of all such polynomials can be computed in timg paljog | F'|).

We also need the following tail inequality ferwise independent random variables:

Lemma 3.2 ([BR94]). Lett > 4 be an even integer. Suppodg, X, ..., X, are t-wise independent
random variables taking values [, 1]. LetX = > X;, u = E[X]and A > 0. Then:

tu+12\"?
)

PrnX—MZA]gs-(

4 Extractors

In this section we give our extractor constructions. In Section 4.1 we give definitions of extractors and an
generalization of extractors which we callry extractors. In Section 4.2 we present our basic construction.

In Sections 4.3 and 4.4 we prove our main theorem: that our construction yiglai/axtractor. In Section

4.5 we discuss two transformations that conyeary extractors into (regular) extractors. This allows us to
obtain regular extractors. In Section 4.6 we give a modified constructigranf extractors that allows the
construction of extractors with small error.

4.1 Extractor preliminaries

A random variableX has min-entropy at leastif Pr[X = z] < 27* for all z; formally:

Definition 4.1 (min-entropy). Themin-entropyof a random variableX over{0, 1}", written Ho.(X), is
defined ad . (X) = min,e (g 13~ log, @.

10

Definition 4.2 (extractor). A (k, €) extractoris a functionE : {0,1}" x {0,1}" — {0,1}™ such that for
all random variablesX with H(X) > k:

E(X,U,) is e-close toU,,. (2)

An extractorE is explicitif £ can be computed in time polynomialin By [Ya082], to show that (2)
above holds, it is sufficient to prove (3):

V 1 <i < mandall functionsf : {0,1}""" — {0,1},

P (B(X, Ur.i1) = BX U < 5 + < 3)

and indeed the proofs for many recent extractor constructions follow this route. Property (3) requires that
each successive bit of output be “unpredictable” based on the previous bits.

As our construction of extractors is algebraic, we will be working over the finite field yvitlements.
It will therefore be useful to define ajary” extractor. Such an extractor is required to satisfy an unpre-
dictability property analogous to (3); however, in the larger field we allow the prediction funttmautput
a small list of possible next elements, instead of just®bne.

Definition 4.3 (g-ary extractor). Let F' be the field withy elements. Ak, p) ¢g-ary extractoiis a function
E :{0,1}" x {0,1}" — F™ such that for all random variableX with H..(X) > k:

V 1 <i<mandall functionsf : F'~! — Flo™*]
Pr(E(X,Ur)i € f(E(X,Up1..i-1)] < p. (4)

In [RRVO02, TSZS01] it was shown how to transforgrary extractors into regular extractors. This
transformation does not significantly change the parameters af-#ng extractor. The precise details of
this transformation are given in Section 4.5. This allows us to focus on buildinggaogextractors.

4.2 The basic construction

Our construction is very simple. Following [TSZS01] our first step is to encode the stfiogn the weak
random source with a-ary Reed-Muller {-variate polynomial) code. The coordinates of such a code are
in one-to-one correspondence with the vectors in the vector-spaceur ¢-ary extractor uses its truly
random bits to pick a randome . It outputs thei-th symbol of the encoded string and— 1 successive
symbols. The successor dis Av, whereA is a speciall x d matrix, on which we elaborate below.

More formally, letF" be the field withy elements, and fix the dimensidnLet i be an integer such that

h+d—-1 n
> 5
(d >_10gq ®)

Forz € {0,1}", letZ denote thel-variate polynomial of total degree at mdst- 1 whose coefficients are
specified byr. Such a polynomial ha@*j’l) coefficients, so (5) implies that distineigive rise to distinct
#. Next, we require a matrixi that “generatesF? \ {0}. That is, for every non-zero vectare F<,

{Ai6}1§¢<qd = F? \ {0} (6)

8Allowing predictors to output a list is not really necessary. We use this definition as it enables us to get a slightly shorter seed
length for our final extractor.

11

It is easy to show that such a matrix exists and can be found efficiently. Loosely speaking, theAnatrix
corresponds to multiplying by a generator of the multiplicative grou@ B{¢?).

Lemma 4.4. Let I be a field withy elements and let be an integer. There exists an invertildlex d matrix
A with entries inF such that4?’~1 is the identity matrix and for every non-zeifce F¢, {Aiﬁ}Kqu =

F¢\ {0}. Furthermore, such anl can be found in timg®(@,

The proof of Lemma 4.4 appears in Section 8. We can now defing-aty extractorE : {0,1}" x
{0,1}4%°87 _, Fm_\We interpret the second input of theary extractor as a vectare F7.

E(z,7) = #(A'%) 0 2(A%0) o - - - 0 #(A™7). (7)
Our main theorem is the following:

Theorem 4.5 (extractor main). There exists a universal constansuch that for every., d, h and prime

powergq satisfying(”j’l) > lo’g‘q, Eis a(k, p) g-ary extractor, provided that

(hpdzl)Q), or

1. k > cmhdlog g + log (%) andq > ¢(

2. k > emhdlog? ¢ + log (%) andg > ¢ (hdll)(zgq>.
Moreover,E can be computed in time pgly).

Part (1) of the theorem is used when we are maximizing the output length; part (2) is used when we are
minimizing the seed length. The proof of Theorem 4.5 is given in the next two sections. In Section 4.5 we
explain how to converE into a binary extractor and choose the parameters in order to prove the following
corollaries:

Corollary 4.6. For all n, constants, d > 0, andk > log*°n our construction gives an explicik, €)-
extractor with seed length= O(logn) and output lengthn = k=9,

Corollary 4.7. For all n, constants > 0 and1/8 > ¢ > 0, andk > log*/® n, our construction gives an
explicit (k, ¢)-extractor with seed length= (1 + O(9)) log n and output lengttn = &°.

Corollary 4.8. For all n, k, constants:;, § > 0 our construction gives an explidit, ¢)-extractor with seed
lengtht = O(logn) and output lengtn = & /(log n)?*2.

Corollary 4.9. For all n, k, constant > 0 and any0 < ¢ < 1 (not necessarily a constant) our construction
gives an explicit k, €)-extractor with seed length= (1 +) log n and output lengtin = k/(log n)?(1/9).

All the Corollaries above are stated for constant 0. We address the case of non-constantSection 4.6.

4.3 The reconstruction proof paradigm

To prove thatE is a g-ary extractor, we use ideas that originated in [Tre02] and are refined in [TSZS01],
which one might label the “reconstruction proof paradigm”. An important aspect of this paradigm is that to
show that a given functiof is an extractor it is sufficient to analyze the behavioEodn fixedz's.

12

Definition 4.10 (good strings).Let £ : {0,1}" x {0,1}' — F™ be some function. Lét < i* < m be
some index ang : F*"~1 — FlP™*] pe some function. A string € {0,1}" is p-goodfor f with respect to
Eif

PrlE(z, Up)i- € f(E(z,Up)1.in-1)] 2 p/2.

A reconstruction procedure is a randomized procedure that when given oracle access to a gredictor
able to reconstruct’s that are good foy.

Definition 4.11 (reconstruction procedure). Given a function® : {0,1}" x {0,1}' — F™, an (a, p)-
reconstructiorfor E is a randomized procedur® such that for anyl < i* < m, functionf : F©" =1 —
Fl\™*landz € {0,1}" such thatz is p-good for f with respect ta&,

Pr[3z € {0,1}*, R/ () = 2] > 1/2].

Note that we place no restrictions on the running timeRo&nd so the particular mode in which it
accesseg is not important. We chose the computational flavor of the definition above in order to compare
to the computational setup of constructing PRGs. The next Lemma shows that any fuiid¢tiahhas a
reconstruction procedure isjaary extractor.

Lemma 4.12.1f E has an(a, p)-reconstruction thed” is a (k, p) g-ary extractor withk = a+log(1/p)+2.

Proof. Let X be some distribution ove0, 1}" with Ho(X) > k. Letl < i* < m and fix some “predictor”
f: F"-1 — Flr~®, According to Definition 4.3 we need to show that

PrlE(X,Up)¢ € f(E(X,Up)1..i+-1)] < p.

We define:
p= PrX[a: is p-good for f with respect taZ].

Note that the success probability pis bounded by + p/2, and thus it is sufficient to show that< p/2.
We have that for every that isp-good for f, with probability at least /2 there exists a string € {0,1}"
such thatR/ (z) = x. It follows that
Pg{[ﬂz € {0,1}*, R/ (2) = 2] > p/2.
Where the probability above is over the choiceradind the coin tosses @t. There exists a fixing of the
coin tosses oR such that the inequality above holds when the probability is only over the chaicerdter
this fixing, R has at mosg® outputs. For every such output the probability that: = w is at mos2—*.
Thus,
PrX[Hz € {0,1}*, R/ (z) = 2] < 207F,
We conclude thap < 2°~**+! and by our choice of, 2¢F+1 < p/2. O

Our main task is thus to construct a reconstruction proceffungth a short advice string. To obtain
R, we use essentially the framework of [TSZS01] in which the reconstruction runs the given prgdictor
many “prediction steps” and performs error correction after each such step. In the next section we describe
our reconstruction procedure.

13

4.4 Proof of the main extractor theorem

In this section we prove Theorem 4.5. The following lemma describes the reconstruction procedure.

Lemma 4.13. Letn, ¢, d, h and p be as in the statement of Theorem 4.5 (1) (resp. Theorem 4.5 (2)). There
is an (a, p)-reconstruction forE with « = O(mhdlog q) (resp.a = O(mhdlog? q)).

Proof. Fix a functionf : F©"~1 — FlP~*] and anz that isp-good for f with respect toE. Our goal is to
reconstruct: from a short advice string. The predictor functibrcan “attempt to predict” the evaluation of
Z atu, when given the evaluation dfat the points

A0y A= =2), A

This is becausé(z, A" u)1..i1 = (Z(A~ D), .- #(A). Thus, ify = A " is one of
the seeds for whiclf correctly predictsE(z, y);» given E(z,y);..;—1 then f computest atu given the
previous evaluations.

Recall thatA is invertible, and thus, = A® y is uniformly distributed whemy is uniformly distributed.
Consequently, this prediction succeeds grf Zfraction of the points:. The crux of the proof is a random-
ized choice of low-degree curves with special intersection properties. These curves allow us to error-correct
the answer of the predictor gives on points on the curves. The overall argument uses a short advice string
that contains the evaluation #fonm successive curves. We then conduct a sequence of “prediction steps”
where in each one we learn the evaluatiort @ at least one new point. In the end we learn the evaluation
of Z on all input points and can interpolate to recovelVe now define the curves.

e Letc be some constant to be chosen later.sSetc'd (resp.r = /dlog q)

e Pick 2r random pointsji, 43, . . . ya» from F?¢, and2r random and distinct values, ts, . . . ta, from
F.

e Letp; : F — F?be the degre@r — 1 polynomial such thap, (¢;) = 4;, fori =1,2,...,2r.

e Letp, : F — F< be the degre@r — 1 polynomial such thap,(t;) = Ag; fori = 1...r and
p2(t;) =gifori=r—+1...2r.

Given afunctiorp : F — F?and adxd matrix A over F', we usedp to denote the functiop : ' — F¢
defined byp’(w) = Ap(w). Itis important to observe thatjfis a degre@r — 1 curve therp’ = Ap is also
a degreer — 1 curve. Forl < i < 2¢? we define a random variablé (over the choice of the;'s and the
y;'s). Each such variable is a functidd : F* — F4. For oddi = 2j + 1 we definePy; 1 = AJp, and for
eveni = 2j + 2 we definePy; 2 = AJp,. Note that each such variable is a degtee- 1 curve. We also
view them as multi-set§P;(w)|w € F} C F? and thus we write: € P; to mean that there existsac F

such thatP;(w) = u. SinceA “generates’¢ \ {5} we have that; ;5,4 P; = Fd\ {6} Using the fact
that A is a non-singular linear transform we have for:all

e P : F — F%is adegre@r — 1 polynomial.
e The polynomialz o P; is a univariate polynomial of degree at mo3t — 1)(h — 1).

¢ The sequence of poin{s;(w)},, - is 2r-wise independent.

14

e P, and P; intersect at- random distinct positions. More precisely, there exist distinct positions
S = (wy,---,w,) € F such thatP;_; and P; agree in all the positions i§. Furthermore, the
random variableS is uniformly distributed over all distinct-tuples inF', and.S is independent of
P;. This is because seeing only one of the two cupe®- gives no information on the values of
t1,- -+ ,to, Used to construct them.

We will set up the reconstruction function by supplying it with an advice string that will allow it to
compute the evaluation df on all the points in{Pl, e ,P2(i*_1)}. This is done by giving as advice the
(2r —1)(h — 1) + 1 < 2hr coefficients ofz o P; for 1 < i < 2(i* — 1). Thus, the length of the advice
string is at mosttmhr log ¢ < a as stated. From these evaluations we can use the preditiattempt to
predict the evaluations df at the points?; for i > 2(i* — 1). In general, fori > 2(i* — 1) we assume that
we already computed the evaluationstdadt points:

P o1y, Pic1

we will now show how to use these evaluations to compute the evaluatidnatd,.

We first invokef once for attempting to predict every point P;. That is we runf on the evaluations
of £ at{ A~ u, -, A~" =Dy} to obtain a list of at mosp~—2 “candidates” fori (u). (Note thatA~/u €
AT P, = P;_yj). We will show that with high probability these predicted values and the evaluatignsrof
P,_, completely determine the valuesdbn P;. The first step is to show that with high probability, many
of the pointsu in P; are predicted correctly.

Claim 4.14. With probability at least — 1/8¢¢ over the coin tosses dt:

Pr [#(#) € f(@(A D), .. 2(A710)] > p/4.

uer;

Proof. (of Claim 4.14) LetY; be the indicator random variable for the event that the set of predicted values
for ¢-th point in P; contains the evaluation df at that point, and leY” = >"7_, ¥;. Sincex is p-good for

f, we have that for every, E[Y;] > p/2. By linearity of expectationg = E[Y] > (p/2)q. SinceP; is a
2r-wise independent set of points, we can apply Lemma 3.2, and get that the probabilitythgi/4)q is

at most:

O(r))r 1
Pr[|Y — E[Y]| > E[Y]/2] < < —,
v - 5] > B2 < (O2) < o
where the final inequality holds using the conditiongdn Theorem 4.5 and choosing large enougvhen
settingr asc’d (for part 1) and ag’d log ¢ (for part 2). O

Therefore, with high probability, we hawgr = (p/4)q “good” evaluations that agree with the degree
deg < 2rh univariate polynomiak p,, out of a total ofprs = p~2q pairs. To apply Lemma 3.1 we need to

verify thatagr > /2 - deg - prs or equivalently that; > C;Zh for some constant’. By our choice of; and
r we can meet this requirement by choosing a large enough comnstaising Lemma 3.1 we conclude that
at most8p—3 degreerh polynomials agree with our evaluations on this number of points. We point out that
these polynomials depend only é#. This is because the set of pairs supplied to Lemma 3.1 depend only
on P; (as well asf andz, which are both fixed).

Now, P;_; intersectsP; at r random distinct position$, and the choice of is independent of>,.

Note that we already know the evaluationiot the points inP;_;. Two different degreérh polynomials

15

can agree on at mo8t-h/q fraction of their points, so the probability that an “incorrect” polynomial from
among our candidates agrees with P; on allr random points is at most:

o (2rh\" 1
8p %) [— —
(8)(q) = 8¢
where the inequality holds by our choicerofndgq for large enouglh’.

So, with probability at least — ﬁ over the random coins a®, we learn the evaluations dfon the
points inP; successfully.

After 2¢% such prediction steps, we have learriedn F'¢ \ {5} By the union bound, the probability

that all steps of this reconstruction are successful is at le@stThese evaluations uniquely determite
and the reconstruction functidi then outputs: (which can be easily computed frai). O

Theorem 4.5 now follows using Lemma 4.12.

4.5 From g-ary extractors to regular extractors

We are now left with the task of convertingjaary extractor into a regular one (Definition 4.2). The standard
way to achieve this is to use “list-decodable” error correcting codes. The transformation described in Lemma
4.16 below is essentially the information-theoretic analog of the hard-core bit constructions of Goldreich-
Levin [GL89]. In the following definitionA is the Hamming distance function.

Definition 4.15. A binary codeC : {0, 1}E — {0,1}" is (p, £)-list-decodableif for all ~ € {0,1}", the
setS, = {z: A(C(z),r) <(1/2— p)n} has size at most. The code isfficiently encodablef C' is
computable in time poly:), andefficiently list-decodablé S, can be computed fromin time polyn, ¢).

By the Johnson bound (see, e.g., [GS01]), any binary code with relative distance at/feasp? is
(p, p~2)-list-decodable.

Lemma 4.16 ([TSZS01]).Let F' be the field withy elements and le€ : {0, 1}’5:10“ — {0,1}" be
a (p,p~?)-list-decodable code. If7 : {0,1}" x {0,1Y/ — F™is a (k,p) g-ary extractor, thenk’ :
{0,1}" x {0,1}'°¢™ _ {0,1}™ defined by:

E'(x;(y,j)) = C(E(z;y)1)j 0+ 0 C(E(3y)m);
is a (k, 2pm)-extractor.

Proof. SupposeF’ is not an extractor. Then there exists some distribufiowith min-entropy at least
and a functionf violating property (3) withe = 2pm. More precisely, there exists asuch that

P (B (X, Udr..i1) = B/(X, U] > 5 +2
It follows from an averaging argument that fopdraction of pairs(z, y)
lj.r[f(E’(x; (¥ 31, i1 = E'(@3(y,9))i] =2 1/2+p
We now design g-ary predictorf’ for E. Giveni — 1 g-ary inputswy, - - - , w;_1, we compute
rj = f(C(w)j, -, C(wi-1);)

16

for 1 < j < n. Predictorf’ outputs a list of size—2 of those codewords that differ fromin at most
(1/2 — p)n positions. For @ fraction of pairs(x,y) at least al /2 + p fraction of ther;s are predicted
correctly, and hence this list contaifi¥z, y);. The existence of predictgf’ contradictsE being a(k, p)
g-ary extractor. O

There are explicit constructions of codes with the required minimum distance and short blocklength
n= (10%)0(1) (see, e.g., [GS00]). Thus, this transformation has minimal effect on the seed length. Even
relatively simple codes, like a Reed-Solomon code concatenated with a Hadamard code yield the desired
parameters. If we are not optimizing constants in the seed length, we can even afford to use perhaps the
simplest binary code, the Hadamard cydehich has relative distance 1/2.

We now combine Lemma 4.16 with Theorem 4.5 to obtain the first two corollaries stated in Section 4.2.
We now restate and prove these corollaries.

Corollary 4.6 (restated). For all n, constants, § > 0, andk > log*/? n our construction gives an explicit
(k, €)-extractor with seed length= O(logn) and output lengttm = k' 9.

Proof. We choose:
o h=k?
e d=logn/(log(h — 1) —loglogn)
e p=¢/2m
e ¢=0(p i (hd)?)

We verify that the conditions of Theorem 4.5 (1) are met:
h+d—1 h—1\%_ (h—1\"
> —] > >n
d d “\logn/ —

O(mhdlog q) + log(1/p) = O(k'°k%?logn) < k

By the lower bound o,

The lower bound ork also gives thati > log?n > d and thus the extractor runs in tim@(® =
(hdm)Od) = pOd/5) = pO(1/9) 10 ysing the Hadamard code for the conversion frgmry extractors,
the seed length= dlog g + log ¢ = O(logn) is as stated in the corollary. O

One of the advantages of the extractors constructed in [TSZS01] are that they optimize the leading
constant in the seed length. By picking parameters appropriately, we can also approach seédliength

Corollary 4.7 (restated). For all n, constants > 0 and1/8 > § > 0, andk > log*/% n, our construction
gives an explicitk, ¢)-extractor with seed length= (1 + O(§)) log n and output lengtmn = k°.

Proof. We choose the following parameters:

®The Hadamard encoding ofleg ¢-bit stringz is C(z) = {3_ z:y; mod 2}y€{oyl}logq.
OWe remark that in Corollary 4.21 we get an extractor with the same parameters with runningtithevhere the constant in
the running time does not depend &n

17

o h=k

e d=1logn/(log(h— 1) —loglogn)

e p=¢/2m

e ¢ =0(p *hdlogn)

We verify that the conditions of Theorem 4.5(2) are met. As bef(d?ég_l) > n andd < logn.
O(mhdlog? q) +1log(1/p) = O(k'/**1og?n) < k

holds by the lower bounds dnands. Using a code with blocklengttiog ¢/p)°") for the conversion from
g-ary extractors, the seed length is:

1
qu) < dlogh+d-O(logm + loglogn).
p

t=dlogq+ O (log

By the lower bound ork, we haveh > log!/(*) n, sologlogn < 28logh and thusdlogh = (1 +
0(9))logn anddloglogn = O(dlogn). Finally, logm = 2jlogh, sodlogm = O(dlogn), and so
altogether, we obtain the stated bound:ofihe running time ig°® = (hdm)°@ = pOd) = n0M)

The quality of our extractors can be significantly improved by using a more complex transformation of
g-ary extractors to (regular) extractors. Such a transformation was given in [TSZS01].

Theorem 4.17.[TSZS01] LetF be the field withy elements. For every, p, andm, there is a polynomial
time computable function

B F™ x {0,1}00081080) H10s°D(1/p) _, 1) 11(1-0(/p))m—O(log" m{log" m-+log(1/p))

such that for any(k, p) g-ary extractorE with output lengthm,
E'(z;(y, 7)) = B(E(z,y),)
is a(k,O(plog* m))-extractor.

The expressions above are a bit complicated. The important thing to notice is thapusant too
small, theg-ary extractor is converted into a regular extractor with roughly the same seed length and output
length. While this is also the case with Lemma 4.16 the important difference is the relation between the
error of theg-ary extractor and the final extractor. In Lemma 4.16 the error of the final extra&pmisas
compared ta(plog* m) in Theorem 4.17. In Corollaries 4.6 and 4.7 we had to chgosee/2m to get
errore when applying Lemma 4.16. As the seed length oftaey extractor is at leastlog(1/p) > dlogm
we had to make sure thdtogm was small, i.e.0(logn). Sinced ~ logn/ log h (so that("*4~!) > n),
this forces us to choodeto bem!*(!). The effect of this choice is that we extract only a small fraction of
the randomness in the sourceras< k/h. However using Theorem 4.17 we can chopse O(e/ log* m).
This allows us to choose much smallei(sayh = logo(l) n), and extract a larger fraction of the randomness
in the source.

Using Theorem 4.17 on top of our construction we get the following extractor:

Corollary 4.8 (restated). For all n, k, constants, § > 0 our construction gives an expligik, ¢)-extractor
with seed length = O(log n) and output lengthn = k/(log n)>+9.

18

2
Progf. We chooser = lpg1+5/2 n,d = bg(h_ll(;%, p= @(e/(log*" m)), andq = @(%). These '
choices meet the requirements of Theorem 4.5, and give the required parameters. The computations are
similar to those made in Corollary 4.6. Note that the running time of the extractgt{s < hO() —

nOM), O
We can further reduce the seed lengtfiter §) log n at the cost of extracting slightly fewer bits.

Corollary 4.9 (restated). For all n, k, constantt > 0 and any0 < § < 1 (not necessarily a constant)
our construction gives an explicii, €)-extractor with seed length = (1 + ¢) logn and output length
m = k/(logn)°1/9),

Proof. We chooseh = 1og®!/9n, d = 8, p = O(¢/(log"m)), andg = O(1LGe1),
The computations we have to make use the fact that 1log®(1/?

(
) n, and are similar to those made in
Corollary 4.7, with the exception that the running time®® = »r(

d) — ,0), a

4.6 Extractors with small error

The extractor constructions of the previous section were stated for constant,dsubthey can be tuned

to give extractors with small (non-constant) ersoHowever, for very smak, a problem arises. To obtain
errore, we must construct &, p) g-ary extractor withp < €, which forces; > 1/p > 1/e. One part of

the running time of the extractor comes from finding the “generator mattjxihich takes time©(4 by
brute-force search (we currently do not know of a better method). For very snthit step takes super-
polynomial time, and hence our extractors are not explicit in the usual sense of running in time polynomial
in n, the length of the inpdt.

In this section we show that with some minor restrictionsiph andg, we can replacel with another
matrix B that can be found in time pol§?, log). In our constructions we always chodsandd such that
h? = n®M), and thus this modification allows the entire construction to run in time polynomia|l éven
for very smalle.

The main observation is the following: The only property4that we used (in addition to it being
non-singular) was that for any nonzeroc F¢, the polynomiali is determined by its evaluations on the
points{Aiv|1 <i< qd} (which is in factF¢ \ {6 for the chosen matrix). In the modified construction
we replace the matrid with a matrix B with the following property: There exists a subdét C F
of size h such that for every nonzero € F<¢, there exists an invertible linear transforfiy such that
T, - HY C {B%|l <i<h?}. In words, starting from and taking consecutive steps accordingo
traverses a “shifted cube”, that is a culié shifted by some invertible linear transform. The polynomniial
(which is of degreér — 1) is indeed determined by its evaluations on such a shifted cube. Thus, the proof
works when replacingl with B. We show that finding the matri® can be done in time poly?, log q).

Lemma 4.18. Let h, ¢ and d be such that:h is a prime powerg is a power ofh, andd andlog;, ¢ are
relatively prime. Then there exists an invertilale< d matrix B with entries fromF” = GF(q), and a set
H C F with |H| = h such thatB"'~1 is the identity matrix and for every nonzesoc F¢ there is an
invertible linear transfornt, : F¢ — F for which:

T, - (H\ {6}) - {B%|1 <i< hd}.

1we remark that we can find in a pre-processing stage; after this one-time expenditure, the extractor runs in time polynomial
inn.

19

Moreover,B can be found in time pof}¢, log q).
The proof of Lemma 4.18 appears in Section 8.

Lemma 4.19. Let& : F* — F be a multivariate polynomial with total degree h, — 1. LetH C F be a
subset of sizé, and letT : F? — F? be an invertible linear transform. Thehis uniquely determined by
its evaluations on the poinfs - H<.

Proof. The evaluations aof at the point§”- H¢ are simply the evaluations of the polynomigk) = #(T'2)
at the pointsi/?. Sincep(z) has total degree h, it is uniquely determined by these evaluations, which in
turn uniquely determing, sincez(w) = p(T~'w). O

The modified construction: We now present the construction of-ary extractorE’ that is nearly identi-
cal to the extractoFE of Section 4.2. The only difference is that uses the matrix3 of Lemma 4.18 instead
of the matrix A of Lemma 4.4. The result is thd’ runs in time polyh?,log ¢) as opposed to poly?).
This allows us to sej large enough to handle very small error without blowing up the running time.

E'(z,7) = &(B'%) 0 #(B*%) 0 - - - 0 &(B™7) (8)
The only difference between the following theorem and Theorem 4.5 is the additional restrictigns on
h, andd.

Theorem 4.20 ¢-ary extractors with small error). There exists a universal constarguch that for every
n,d, h andq satisfying("*%"1) > eg andfor which /. is a prime powery is a power ofh, andd and

log;, ¢ are relatively primeE’ is a (k, p) g-ary extractor, provided that

1. k > emhdlog q + log (%) andg > ¢ ((hpCfl)z>’ or

2. k> emhdlog? ¢ + log (%) andg > ¢ (%)_

Moreover,E can be computed in time pghy/?, log q).

Proof. The proof is almost identical to that of Theorem 4.5 (usthgnstead of4). The only modification
is in the last paragraph of the proof of Lemma 4.13. At this point we have learned the evaluatioos of
points that include{ Bip; (1)1 < < h?}. By Lemma 4.19 these evaluations uniquely deterniinand
the reconstruction function then outputsas before. The remainder of the proof is unchanged. O

Using almost the same choice of parameters as in Corollary 4.6 we obtain the following extractor. To
meet the additional requirements bng, andd, we can choosé andq to be powers of, andd to be a
prime at most twice the value chosen in Corollary 4.6.

Corollary 4.21. For all n, constan® > 0, ¢ > 2=’ andk > log*/% n our construction gives an explicit

(k, €)-extractor with seed length= O (logn + {gg;; log (%)) and output lengthn = k19,

Notice that wherk = n‘{!) the seed length of this extractor@log(n/e)), which gives the asymptot-
ically optimal dependence onande.

Itis possible to also get low-error analogs of all our extractors. However, we remark that the additional
“divisibility” requirements ond, h andq allow achieving seed length close 1o logn only for carefully
chosen values ot, k& ande.

20

5 A new pseudorandom generator

In this section we exploit the connection Trevisan noticed between extractors and PRG’s “the other way”:
we build PRGs (and HSGSs) using the ideas outlined in Section 2.3.

5.1 Pseudorandom generator preliminaries

In this section the string plays the role of a “hard function”.

Definition 5.1. We identify the string: € {0,1}" with the functionz : {0,1}'°™ — {0,1} by setting
x(i) = x;. We denote by (x) the size of the smallest circuit computing function

We now define pseudorandom generators.

Definition 5.2 (PRG). An e-PRG for sizes is a functionG' : {0,1}* — {0,1}™ such that for all sizes
circuits C:
| Pr{C(G(U) = 1] = PriC(Un) =1]| < ¢ (9)

As in the case of extractors, by [Yao82] property (9) follows from the next property:

V1 < i < mand all functionsf : {0,1}"! — {0,1} with sizes — O(1) circuits,

P (GWUL.a-1) = GUN] < 5 + = (10)

As in Section 4 we can define tleary version of PRGs.

Definition 5.3 (g-ary PRG). Let F' be the field withy elements. Ao-g-ary PRG for sizes is a function
G :{0,1}' — F™ such that

V 1 <i<mandallfunctionsf : F©! — Fl** with sizes circuits
Pr[G(Ut)i € f(G(Up)1...i-1)] < p- (11)

As in Section 4 we will focus on constructiggary PRGs and later transform them into (regular) PRGs.

5.2 Overview of changes to the extractor construction

Given a functionz : {0,1}'°™ — {0, 1} that cannot be computed by circuits of sigeur goal is to con-
struct ag-ary PRGG,, : {0,1}' — F™. The construction will be quite similar to the extractor construction
E(z,-) : {0,1} — {0,1}", and to prove correctess, we will derive a contradiction from the existence
of a “predictor” f violating (11) above. As with the extractor this is done by describing a “reconstruction
procedure”R. There are two important differences in what we requir&af the PRG setting as compared

to the extractor setting. Firsk takes an additional input(as well as the short advice strimgwhich is

the same for alt) and should output(:) as opposed to simply outputting all of Second,R should be
efficient that is, it should run in time« n (as it is trivial to construct a circuit of size for a function on
log n bits). Our goal will be to run in time polyn) for some fixed polynomial. Sincg also has a small
circuit, we can compute (i) efficiently by evaluating?/ (a, i), which for the proper choice of parameters
will give a circuit of size polym) that contradict the hardness of the functiarin order to meet these new
requirements, we need to make some changes to the construction and the proof.

21

The encoding: In the extractor settingi is the Reed-Muller encoding of, and in order to determine
x(i) from the encoding, we need to learn enoughtdb be able to interpolate and find its coefficients.
The efficiency demands oR in the PRG setting preclude being able to learn this many evaluatiofs of
(we would needh evaluations, but are allowed only péiy) time). Therefore, we use an alternate “low-
degree extension” encoding for the PRG. In this scheme we again encasl@ low-degree polynomial
#: F? — I, but we also ensure that there is an efficiently computable funétiom] — F¢ such that
x(i) = &(£(3)). Thus, we can determing:) by learning only the specified evaluationiof

The standard way to produdefrom z is to pick an arbitrary sell C F of sizeh with h% = n and any
efficient one-to-one functiof: [n] — H¢, and definet to be any polynomial with degree at mdsin each
variable for whichz(¢(i)) = x(z). Our reconstruction procedure operates on the cyclic group with generator

A (which corresponds t&'¢ \ {6}), and if we use this standard low-degree extension, we are stuck having

to compute the integeir such thatd’1 = ¢(1) whenever we want to determing:). Finding such g is a
discrete-log problem that we don’t know how to solve efficiently. Instead, we use a specific embedding of
into & that avoids this problem:(:) is embedded at location’”T € F'¢, for a fixed integep; thus simply
knowing: gives us the required exponent. Such an embedding is somewhat delicate: we need to arrange for

{Aipf , to coincide withH?; the details on how to achieve such a matrix are in Section 8.
1€

The reconstruction: As explained in the introduction, the main idea is to sseeralpredictors with

varying strides when performing the reconstruction. This allows us to travel quickly from a fixed point (like

1) to any given point inf¢. To implement this idea we need two new ingredients. First, the cufyes
andC5 need to have the intersection properties we used in the extractor Jettieach stridethat we will

use for the PRG. This is achieved by generalizing the idea used to obtain the intersections for the extractor
setting, which in turn requires slightly larger degree curves. Second, for &verf? we need to describe

an efficiently computable short sequence of prediction steps (with varying strides) that starfs dr@
reacheg/ — this is used by the reconstruction procedure to rapidly le&husing only the predictor and

the initial evaluations of: supplied by the advice string.

5.3 The actual construction

Our construction starts with a hard function {0,1}'°¢™ — {0, 1} and encodes it as a low-degree polyno-

mial & : F¢ — F. Just as before, the major parameters are the field;sibe dimensionl and the degree
h. As with extractors we will think of*¢ as both a vector-space and an extension fielH.oHowever, to

produce the non-standard low-degree extension described above, we will additionally requitddvata

subfieldH of sizeh (which forcesh to be a prime power, angto be a power oh). We have the following

lemma which extends Lemma 4.4.

Lemma 5.4. Let h, ¢ and d be such that:h is a prime powery is a power ofh, andd andlog;, ¢ are
relatively prime. Letf” be the field withy elements and{ be the subfield of’ with i elements. Then there
exist invertibled x d matricesA and B with entries fromZ’ that satisfy:

o A9'~1 and B"~1 are the identity matrix.
e For any non-zero vectof € F%: {AT} o = Fa\ {0}.

e Forany non-zero vectof € H: {B'7},_,_,. = H*\ {0}.

22

o B— A=1)/(hi-1)

e A, B can be found in timg® (.

The proof of Lemma 5.4 appears in Section 8. For our low-degree-extensigmef require (compare to
(5)):
hd > n. (12)

We will “embed” z into a polynomial defined over the vector-spaceas follows: we want:(B'1) =
x (7). Here,1 is the all-ones vector, which is iH? C F? sincel € H C F, and which serves as a reference
vector throughout the construction. Singe— 1 > n, there are enough “slots” to embed alligfand since
B generateg?? \ {0}, we have embedded all afin a d dimensional cube with sidelength Therefore
there exists a polynomial over F'¢ with degree at mosi — 1 in each variable such tha(B'1) = x(7).
Note that in this sectioh denotes individual variable degrees and the total degree is athio€dnce A
has been determined, the coefficients:afan be computed in time pdly) using standard methods, afd
can be evaluated at any point#f in time poly(n, log q).

We now describe “candidate” PRGs. Fav < j < d we define functionﬁg) : {0, 1}d1°g‘1 — F™ as
follows. We think of the inpuf as a vector inF'%,

GO(@) = 2(A71%) 0 2(AT25) 0 0 2(AY D)

GUV@) = #(4”" 15 0 2(A” 25 00 4(ATT) (13)

‘Note that eacld}ggj) corresponds to using ograry extractor construction with the “successor function
A? . Our main theorem will show that at least one of these functionsgsagy PRG, provided: is a
sufficiently hard predicate.

Theorem 5.5 (PRG main). There exists a universal constansuch that for every,, d, h and ¢ satisfying

h? > n and the conditions of Lemma 5.4, at least a@@ is a p-¢g-ary PRG for sizes, provided that
S(z) > s-poly(m, q) andg > maz(cp~*hd?log? ¢, 2d* log? q). Furthermore, all the>Y’s are computable
in timepoly(¢?,n), givenz.

We prove Theorem 5.5 in Section 5.5. We now show how to constrsicige (binary) PRG. It will be
convenient to fix all parameters as functions:ofn. We require thatogn < m < n and set:

° p:m73
e h=m

e d=1logn/logm

23

o ¢ =m% > cp~*hd?log?q

By these choices the seed length of each “candidate generafdflogn). Our next goal is to transform
the g-ary candidates into binary ones, and for this we use a computational analogue of Lemma 4.16. In this
case, it is not sufficient that the encoding procedure is efficient. We also require that the code has efficient
(list)-decoding.

Lemma 5.6. Let F' be the field withy elements, Let" : {0, 1}’5:1‘)“ — {0,1}" be an efficiently encodable
and efficiently list-decodablg, p—2)-list-decodable code. If7,, : {0, 1YY — F™is ap-g-ary generator for
sizesin +mnPW + (7/p)°W), thenG’, : {0,1}°8™ {0, 1}™ defined by:

Go(y,5) = C(Gu(y)1)j 0 C(Gu(y))2);) -+ 0 C(Ga(y))m);
is a2pm-PRG for sizes.

Lemma 5.6 follows from the proof of Lemma 4.16 by using the additional efficiency requirements.
Using, for example, [GS00], we can obtain such a code with poly(k, p~!). However, in our setting
k = log ¢ = O(logm) and we can have as large asn®(!) (we just need to avoid losing too much in the
size of the circuit fooled when applying Lemma 4.16). Therefore we can even use the simpler Hadamard
code, together with the trivial list-decoding algoriti#.

We use Lemma 5.6 to transform each of t§’s into a binary functionG,? : {0, 1}%lsa+loen _,
{0,1}™ (and note thatl log q + log 7 = O(log n) by our choice of parameters). We conclude that:

Corollary 5.7. At least oneCJ{E(j) is a1/m-PRG for sizes provided thatS(z) > sm®®). Furthermore, all
theG.,")'s are computable in time®®), givenz.

Our PRG is obtained by “XOR-ing” the candidate functions with independent seeds:
Galyo,ya1) = G " (o) @ @ G,V (ya) (14)

It is standard that “XOR-ing” many candidates where one of them is a PRG fos sideed produces

a PRG for sizes; for a proof, see [ISW03]. The seed length®f is O(dlogn) = O(lf(’)g;rs). This matches
the parameters of the PRG construction of [STVO01].

Corollary 5.8. For anys, if there exists a function : {0,1}'°6”™ — {0, 1} that is computable in time®(!)
with S(g) > s then there exists &a/m-PRG for sizem with seed length = O(log®n/ log s) and output
lengthm, for m = s*(1). Furthermore, this generator can be computed in tin®&b).

The most important implication of this corollary is a new proof of the Impagliazzo-Wigderson Theorem
[IW97], which states thaBPP = P if there exist a function family in® that requires exponential size
circuits. More precisely givep € E that requires siz&®(® circuits on inputs of lengtlf, and aBPP
algorithm that runs in timé(n) = n° for some constant, we choosé = ¢’ logn wherec’ is a large enough
constant so that our PRG construction based with input length? fools circuits of sizes = n¢. The seed
length ist = O(¢2/log 2%)) = O(log n) and thus in time polynomial in we can run the algorithm over
all outputs of the PRG and take the majority vote. This gives a deterministic polynomial time algorithm.

12The trivial list-decoding algorithm is to go over all codewords, encode them and choose the ones that are sufficiently close to
the received word.

24

5.4 Hitting set generators and an optimal hardness vs. randomness tradeoff

Hitting set generators (HSGs) are designed to derandoRize

Definition 5.9 (HSG). A functionH : {0,1}' — {0,1}™ is ane-HSGfor sizes circuits if for all sizes
circuits C': {0,1}™ — {0,1}

Pr[C(Up,) = 1] > ¢ = Pr[C(H(U})) = 1] > 0.

One of theG;(j)’s is a PRG and therefore if we choose a random candidate, we will hit this PRG with
positive probability. We define:

Hy(y.j) = G,V ()
It is standard that choosing a random candidate from a collection of functions where one of them is a

PRG produces an HSG; for a proof see [ISW99]. Very few bits (at rwesf < loglogn + O(1)) are
needed to choosgand thus we get aoptimalHSG.

logn

Corollary 5.10. For any s, if there exists a functiog : {0,1} — {0,1} that is computable in time
nP) with S(g) > s then there exists &/m-HSG for sizen with seed lengtht = O(logn) and output
lengthm = s*(1). Furthermore, this generator can be computed in tin&").

This improves upon the best previous results by [ISW99] whichihas s¢2(1/legloglogn) ' |n [ACR98]
(see also [ACRT99, BF99, GVWO00]) it was shown how to derandomize two-sided error probabilistic algo-
rithms using an HSG. Applying this result, we extend the Impagliazzo-Wigderson Theorem [IW97] to any
hardness assumption.

Corollary 5.11. If there exists a function family = {g,} € E that require sizes(¢) circuits, then for any
time constructible function(n), BPTIME(t(n)) € DTIME(20(™' (™)),

Actually, in our setup we can use a simpler construction from [ISW99]. Given many candidate gener-
ators where at least one of them is pseudorandom, [ISW99] showed how to derandomize two-sided error
probabilistic algorithms by conducting a “tournament of generators”.

5.5 Proof of the main PRG theorem

In this section we prove Theorem 5.5. Lelg, d, andh be as in the statement of Theorem 5.5. We fix a
stringz € {0,1}", and leti € F be the encoding of described in the Section 5.3. Assume for the purpose
of contradiction thaho G;” is ap-¢g-ary PRG. Then by definition we have integé¥d and next-element
predictorsf) : V=1 plo~?) violating property (11) for each?:(pj), respectively. By the symmetry of
our PRGs, we can assume tti@dt = m for all j, as predictorf!) can simply ignore its first, — (/) inputs.

In other words, we have that for gli
Pr[GY (U m € F(CP(U)1..m-1)] > p

Each of these predictors can be implemented by asstieuit. As in the proof of Theorem 4.5 our task
is to use these predictors and a short advice string to reconstrtitiwever, in this setup reconstructing
means constructing a small circuit that comput&g given input;.

25

It will be helpful to abstract the process used in the proof of Theorem 4.5 to learn a new curve and
present it as a procedure. In the remainder of this sectiofdleg d(h — 1) denotes the total degree of
polynomialz.

Procedure Learn Next Curve
e Input:

- next curve C : FF — F%: a degree polynomial

- reference points R C F': a set ofr distinct elements fron#'

- stride j: anintegerin0...(d — 1)]

- input evaluations {a; }, pycr1 (m_1)
al = (A7 O(t)) andb, = (C(t)).

and{b;},. - elements off” whoseintended valueare

e Output:
- output evaluations {c;},. . elements of" whoseintended valuearec; = z(C(t)).
e Action:

- For eacht € F, computef¥) (a7"~!, a" "2, ... a}), which gives a se$; of p~2 values.

- Apply Lemma 3.1 on thers = ¢p~2 pairs{(t, €)}ierees, (@ssuming the agreementagr =
pq/4) to obtain a list of at mostp— degree deg) - v univariate polynomialg(t) that contains
all polynomials such thai(t) € S, for at leastagr = pq/4 values oft. If this list is empty, fail.
Note that to apply Lemma 3.1 we will need to satispr > /2 - deg - prs or equivalently that
q > 32ded2) - v/p*.

- If the list contains a unique polynomia{t) for whichp(t) = b, forall t € R, output{p()},.
otherwise fail.

We say that.earn Next Curve succeedgon a curve, reference points and stride) ifatgput evalu-
ations are the intended values when itput evaluations are the intended values. We now argue that for
a randomext curve C and a random set g&ference points R C F', the procedure succeeds with high
probability.

Lemma5.12. Letn, ¢, d, andh be as in the statement of Theorem 5.5. bk such that
q > 32deq) - v/pl.
For all strides0 < j <d —1,

v/2 . AN T
(l/?r [Learn Next Curve succeeds> 1 — (Op(:)> —(8p7%) <queg(m)> ,

)

whereC : F — 4 is a uniformly chosen degreecurve, andR C F is a uniformly chosen subset Bfof
sizer that is independent fror@'.

Proof. The argument is almost identical to that in Section 4.4. We first argue that with high probability
z(C(t)) is predicted correctly for manys.

26

v/2
Claim 5.13. With probability at leasi — <%) / over the choice of:

|{t:3JeeS, e=z(C(t))}| P
q — 4
Proof. (of Claim 5.13) The proof is identical to that of Claim 4.14. We argue that the collection of points
{C(t)};cr is v-wise independent (over the choicey, and then use Lemma 3.2. O

v/2
It follows that with probability at least — (%) / the procedure applies Lemma 3.1 with enough

“correct pairs”, and therefore one of the polynomials in the list is the polynopial = z(C(t)). Two
polynomials of degree-ded &) can agree on at mostaded z)/q fraction of their points, so the probability
that an “incorrect” polynomial from the list agrees wjilon » random points is at most

) ()

q

If Z(C(t)) is predicted correctly for enougls so thatp(¢) appears in the list, and no “incorrect” polynomials
in the list agree on the random points ink, the procedure succeeds. O

As in the previous section, @ : ' — F?is a degree curve andA is ad x d matrix, then we denote by
AC the function defined byAC(¢) = A - C(t) and recall that this is also a degreeurve. In some contexts
we also usedC to denote the multi-setAC (t)|t € F'} C F?, and we adopt the shorthandC; U Cs) for
AC) U AC,. Given two curves; andCy we uselCy N Cy) to denote the seit € F|Cy(t) = Ca(t)}.

Lemma 5.14. Letn, ¢, d, andh be as in the statement of Theorem 5.5. There exist degte@© (d* log q)
curves(C andCy for which the following hold:

e Ci(1) #0.
o foralll1 <i<g¢?andall0 < j < d—1, [AT9 C, N AICy] and[AICy N AiCy) are of size at least.

e forall 1 <i<g?andall0 < j < d— 1, Learn Next Curve succeeds givenext curve AT O,
reference points [A™+% C; N A°Cs) andstride 5, and

o foralll < i < qd and all0 < j < d — 1, Learn Next Curve succeeds givenext curve A*Cs,
reference points [A'Cy N A*Cs] andstride j.

Proof. We pick C; andCsy randomly with certain intersection properties, and apply Lemma 5.12 to argue
that with high probability each invocation béarn Next Curve listed above succeeds. A union bound then
shows that with non-zero probabilighl such invocations succeed, and the lemma follows.
Setr = /dlog q for some constant to be chosen later. Set= d + 1, and pickur random points from
Fd:
YT, Y12, - - YTry Y21, Y22, - - - Yors -+ Yuls Yu2, - - - Yur

andur random and distinct values frof:

t11,t12, - - - tir, t21,t02, -« Bopy v Ty1, b2, - - b

We define the degree- — 1 polynomialC; so thatC; (¢;;) = vi; for all i, j; similarly, we define the degree
v = ur — 1 polynomialCy so thatCy(t1;) = y1; for all j andCa(t;;) = A‘I“Qy?j fori > 2 and allj. The
curvesC, andCs have the following properties for all

27

e The functionsA’C; and A'C, are degrees — 1 polynomials fromF' to F°.
e The functionsi o A*Cy andz o A’C, are univariate polynomials of degree deyur — 1).

e Forj=0,1,2,...,u—2the setsd'T%’ C; and A’C,, intersect at random positions. More precisely,
the random variablgA™*’ C, N A'Cy] is of size at least. Let S denote the first- elements of
[A“fqJ i n AiCQ]. The random variablé' is uniformly distributed over all distinet tuples inf’, and
furthermore,S is independent ofA*t% (1.

e The setsd’C; andA*Cs intersect at random positions. More precisely, the random varigte; N
A'Cy) is of size at least. Let S denote the first elements of A°‘C; N A’Cy). The random variable
S’ is uniformly distributed over all distinettuples inF’, and furthermore$’ is independent ofl*Cs.

Therefore, by Lemma 5.12, for eattdividual invocation ofLearn Next Curve listed in the statement
of the lemma, the procedure succeeds with probability at least:

() e ()

Pq

which is at least — ﬁ by our choice of parameters for large enoufyBy the union boundall 2d¢® invo-

cations ofLearn Next Curve listed in the statement of the lemma succeed simultaneously with probability
at least3/4. The probability that’; (1) = 0 is ¢~%. Thus, the lemma holds. O

UsingLearn Next Curve with the “good” curveg’; andCs, we can now construct a small circuit that
when given input produces:(i). The basic step involvasioinvocations olearn Next Curve to learn the
evaluation off at the pointsd’(Cy U Cs), for somei. Specifically, we first invok&earn Next Curve with
next curve A'Cy, reference points [Ai‘q] Co N A'C4] andstride j; then we invokd_earn Next Curve
with next curve A‘Cs, reference points [A'C N A'Cy] andstride 5. We will call this two-step process
interleaved learningf A*(C; UCs) using stridej. Notice that to supplizearn Next Curve with the correct
input evaluations for interleaved learning ofl!(C; U Cs) using stridej, we need to know the evaluation
of z at points:

m—1
U Alkd (01 U 02)
k=1

By Lemma 5.14 we have that for eveinand stridej the interleaved learning of’(C; U Cs) succeeds
when supplied with the correct inputs.

Letp = (¢* —1)/(h?—1). Recall that by Lemma 5.4 we have thiat= AP. By our encoding, we know
thatz(i) = #(B'I) = #(A®I). Also, sinced generates'® \ {6} we know thatC; (1) = A°I for some
integera betweerD andq¢? — 1. Thus we need to “travelb = ip — a (mod ¢? — 1) steps from curve’;
to reach curved®C}, and then we output the evaluationiofit A°C; (1) = AP~2A*T = A1, Our circuit
will be supplied withA, C4, Cs, a, and the evaluation af at:

m—1
J A¥(crucy)
k=1

as non-uniform advice.
We now useLearn Next Curve in d phases. Writ¢/ = (b — mqg?~!) mod (¢¢ — 1) in its g-ary
representationy’ = Z?;é bj¢’. We maintain the invariant that after phgseve have learned at A (C U

28

C5) for an integerw for whichw andi’ agree on the least significait 1 digits of theirg-ary representation.
Specifically, we execute the following sequence:

Phase0: Perform interleaved learning of™*+*(C; U Cy) using stride0, for k = 0,1,...,mqg — m — 1.
Notice that the non-uniform advice provides the nedadedt evaluations.

Phasel: Perform interleaved learning ef™+to+ka(Cy UCy) using stridel, fork = 0,1,...,mg—m—1.
Notice that the values learned in phase 0 provide the neegeatievaluations.

Phase2: Perform interleaved learning gf™a*+botabika* (Cy U Cy) using stride2, fork = 0,1,..., mq—
m — 1. Notice that the values learned in phase 1 provide the ndagatievaluations.

Phasej: Perform interleaved learning afe’+%i=o bia'+ke’ (01 UCy) using stridej, fork = 0,1, . . ., mq—
m — 1. The values learned in phage- 1 provide the neederhput evaluations.

Phased — 1. Perform interleaved learning oiqu_1+2§l:_3 "tqt“fqd_l((]l U Cy) using strided — 1, for
k=0,1,...,by_1. The values learned in phage- 2 provide the needeidput evaluations. The last
value ofk yields A™4" ™+ (Cy U Cy), and note thatag?! + b = b (mod ¢% — 1). SinceA?' ! is
the identity matrix we have learngd A*C1 (1)) = (i), which we output.

Notice that we have invokedearn Next Curve O(mgqd) times. Each invocation requires poty, q)
computation time and invokes a predictor (with a circuit of siye times. The total computation time is
thereforeO (mqd(sq+ poly(m, ¢))), and the non-uniform advice has si2émdhur log q) so altogether the
circuit has sizes - poly(m, q). Therefore, ifx has hardness greater than this value, we have a contradiction,

implying that someGg) must be are-g-ary PRG. This concludes the proof of Theorem 5.5.

6 Pseudorandom generators for nondeterministic circuits

Just as BPP is a randomized version of P, the class AM (defined in [Bab85, BM88]) is a randomized version
of NP. To derandomize BPP (ideally, proisa” P = P), we can use PRGs that “fool” small (deterministic)
circuits. Such PRGs are built from functions that require large non-uniform (deterministic) complexity, and
indeed PRGs imply the existence of such hard functions. To derandomize AM (ideally,fkdve N P),

we can use PRGs that “fool” smaibndeterministicircuits 13 As usual, such PRGs imply the existence of
functions that require large non-uniformondeterministicomplexity, and we therefore construct such PRGs
assuming the existence of functions that require large non-unii@mdeterministicomplexity. However,

the precise meaning of “non-uniform nondeterministic complexity” is important here, and a number of
definitions have been utilized in previous work.

31t is known thatAM coincides with its one-sided error version [FGB9], and therefore even HSGs that “fool” small co-
nondeterministic circuits suffice.

29

6.1 Previous work

As discussed in the introduction, PRGs and HSGs have been constructed before from a variety of non-
uniform nondeterministic hardness assumptions. Over time, the assumptions have been getting progressively
weaker.

Klivans and van Melkebeek [KvMO02] observed that the proofs of the NW PRG and the hardness ampli-
fication constructions relativize, and therefore functions that are worst-case haiddids with SAT oracle
gatessuffice for constructing PRGs that fool circuits with SAT oracle gates, which in turn derandomize AM.
This circuit model is the non-uniform analog 8" while nondeterministic circuits are the non-uniform
analog of N P. One can then ask whether anything can be done with the presumably weaker assumption
that there exist functions that are worst-case hard for nondeterministic circuits.

Miltersen and Vinodchandran [MV99] used novel techniques to show that functions that are worst-case
hard forsingle-valued nondeterministic circuissiffice to build a HSG that derandomizes AM. Although
this circuit model is a non-uniform analogue &tP N coN P, this hardness assumption is equivalent to
worst-case hardness for nondeterministic circuits which are a non-uniform analo@UB.ofrhus, their
result derandomizes AM under a presumably weaker assumption than [KvMO02].

However, as noted in the introduction the [MV99] HSG does not give an optimal hardness vs. random-
ness tradeoff for AM; in fact it fails altogether if the hard function has hardness lese & (onlogn
bits inputs). In this section we construct PRGs and HSGs that fool nondeterminstic and co-nondeterministic
circuits using the [MV99] hardness assumption (i.e., there exist functions that are worst-case hard for single-
valued nondeterministic circuits), and as a consequence obtaistiamal hardness vs. randomness tradeoff
for AM (just as we did for BPP). Our PRGs are also the first PRGs (as opposed to HSGs) to fool nondeter-
ministic and co-nondeterministic circuits using only the [MV99] hardness assumption.

We also mention an earlier result in which Arvind andifer [AK97] showed that the NW PRG [NW94]
works in the nondeterministic setting when given a functiotihat is hardon averaggor nondeterminis-
tic circuits. In the standard (deterministic) setting such “average-case” hardness assumptions were weak-
ened to worst-case hardness assumptions via “hardness amplification” transformations [BFNW93, Imp95,
IW97, STVO01] which convert worst-case hardness into average-case hardness. However, these transforma-
tions were not known to transform worst casmndeterministidiardness into average casandeterministic
hardness. Our techniques also address this problem; in Section 7 we give the first hardness amplification
transformation for nondeterministic circuits.

6.2 Definition of nondeterministic circuits

To state our result we need to briefly review some definitions of nondeterministic circuits.

Definition 6.1 (nondeterministic circuit). A nondeterministic circuiC (resp. co-nondeterministic cir-
cuit (') is a an ordinary circuit with a single output gate and two sets of inputs; xs,...,z, and
Y1,Y2, - - -, Ym. The functionf : {0,1}" — {0, 1} computed by is defined by (z) = 1iff Iy C(x,y) =1
(resp.Vy C(z,y) = 1).

Notice that if f is computed by a nondeterministic circuit of sizethen—f is computed by a co-
nondeterministic circuit of size, and vice versa.

Definition 6.2 (SV nondeterministic circuits and machines).A single-valued (SV) nondeterministic cir-
cuit C is an ordinary circuit with a single output gate, a single “flag” input and two sets of inputs:
T1,T, ..., Ty @ndyi, yo, ..., ym- A functionf,, onn bits is computed by’ if

C(0,z,y) =1= C(1,x,y) = f(x),

30

and for all z, 3y C(0,z,y) = 1. The size of an SV circuit is the size of the underlying cir€uitWe use
Ssv(f) to denote the smallest SV nondeterministic circuit that compfutes

A single-valued (SV) nondeterministic machiné computing a function family = {f,} is de-
fined in the same way, with/ replacingC' above. We say that a function famjfyis computed inSV'-
nondeterministic time(n) if there is an SV nondeterministic machine that computesd runs in time

t(n).

Loosely speaking, when the when the first input(dis “zero”, the output says whether the circuit
“accepted” the “nondeterministic guesg’, yo, . . . , ym. The requirement is that for every accepted nonde-
terministic guess, the circuit outputs the correct value when its first input is “1”. Notice that domputed
by a SV-nondeterministic circuit of sizgthen—f is also computed by a SV-nondeterministic circuit of size
s. We also remark that the predicates computed in SV-nondeterministic polynomial time are precisely those
in NPNcoNP.

The relationship between functions computed by SV-nondeterministic circuits and functions computed
by nondeterministic (and co-nondeterministic) circuits is somewhat tricky. Itis believed that SV-nondeterministic
circuits are weaker than nondeterministic (or co-nondeterministic) circuits (as otheoWise C N P/poly
and the polynomial time hierarchy collapses). Nevertheless, the next easy lemma shows that a hardness
assumption for nondeterministic circuitsagjuivalentto a hardness assumption for SV-nondeterministic
circuits. It is more convenient to work with SV-nondeterministic circuits because the set of functions they
compute is closed under composition.

. = | f®) b=0
Lemma 6.3. For a functionf we denotef (z,b) = { f(z) b=1
1. f(x) computable by a siz®(s) SV-nondeterministic circuit> f computable by a siz®(s) nonde-
terministic circuitand f computable by a siz®(s) co-nondeterministic circuit

2. f(z) notcomputable by a siz@(s) SV-nondeterministic circuit- f notcomputable by a siz8(s)
nondeterministic circuit.

3. f(z) notcomputable by a siz@(s) SV-nondeterministic circuit- f notcomputable by a siz8(s)
co-nondeterministic circuit.

4.1f f € Ethenf € E.

Proof. For the part (1), leC(z,z,y) be a SV-nondeterministic circuit computing ThenC’(z,y) =
C(0,z,y) A C(1,z,y) is a nondeterministic circuit fof; similarly C”(z,y) = =C(0,z,y) V C(1, z,y) is

a co-nondeterministic circuit fof. In the other direction, given nondeterministic and co-nondeterministic
circuits for f, C’'(x,y) andC”(z, y), respectively, the circuif’(z, z, y) defined by:

C0,z,y) = C'(x,y)V-C"(z,y)
C(l?$7y) = C/(x’y)

is a SV-nondeterministic circuit fof.

For part (2) we prove the contrapositive. Notice thaf'ifr, b; y) is a nondeterministic circuit fof,
thenC’(z,y) = C(z,0;y) is a nondeterministic circuit fof andC”(x,y) = C(z,1;y) is a nondeter-
ministic circuit for —f which implies a co-nondeterministic circuit fgt. Applying part (1), we obtain a
SV-nondeterministic circuit fof.

The proof of part (3) is almost identical to the proof of part (2), and the part (4) is trivial. O

31

6.3 Our results

We now define objects analogous to those in Section 5 for nondeterministic circuits.

Definition 6.4 (PRG against nondeterministic circuits). An e-PRG for nondeterministic sizeis a func-
tion G : {0,1}" — {0,1}™ such that for all size nondeterministic circuite:

[PHC(G(U)) = 1] — Pr[C(Un) = 1]| < ¢ (15)

As in the case of PRGs for deterministic circuits, by [Yao82] property (15) follows from the next prop-
erty:14
v 1 <4< mandall functionsf : {0,1}'"" — {0,1} with sizes — O(1)
nondeterministic or co-nondeterministic circuits
1 €
Pr[f(G(Ui)r...i-1) = G(Up)i] < st (16)

Our construction and results translate to the nondeterministic setup with exactly the same parameters.
The only thing we need to change is the proof; the additional arguments used for the nondeterministic setup
are outlined in Section 6.4. We first state our results w‘hich are analogous to those in Sections 5.3 and 5.4.

Letz be a function: : {0,1}'°5™ — {0,1} and letG.,) : {0, 1}41°87+loe™ _, 1 11™ be the functions
defined by (13) after applying the transformation described in Lemma 5.6pnthe /(8m) to eachGY
(using, e.g., the Hadamard code,se- ¢). The next theorem is analogous to Theorem 5.5.

Theorem 6.5 (PRG against nondeterministic circuits: main theorem).There exists a universal constant
c such that for every choice of, d, h, q satisfyingh? > n and the conditions of Lemma 5.4, at least one
G;(]) is ane-PRG against nondeterministic circuits of sizeprovided thatSsy (z) > s - poly(m, ¢) and

q > maz(c(m/e)*hd?log? ¢, 2d*log2q). Furthermore, all thei,")s are computable in timgoly(q?, n)
with oracle access ta.

Note that Theorem 6.5 refers to the binary versions of the candidate generators whereas Theorem 5.5
refers to they-ary versions. In the deterministic setup this makes no difference, however in the nondetermin-
istic setup we do not know in general how to convert frgmry to binary, and rely on particular properties
of our construction.

By fixing the parameters in the same way as in Section 5.3, we obtain the following corollary, which is
analogous to Corollary 5.7.

Corollary 6.6. At least oneG;(j) is a1/m-PRG against nondeterministic circuits of sig@rovided that
Ssv(z) > smP1). Furthermore, all the5”,")’s are computable in (deterministic) tim& 1), givenz.

By using XOR to combine the generators as in Section 5.3, we obtain the following PRG against non-
deterministic circuits. This corollary is analogous to Corollary’s.8.

14The argument of [Yao82] converts a distinguishing funcii®that violates (15) into a predictor functighthat violates (16).
The argument shows that there exist constants « < m, a;, - ,am € {0,1} andb € {0,1} such thatf(z1, - ,zi—1) =
C(x1,--+ ,mi—1,a4,- - ,am) @ b. In the nondeterministic setting note thatifis computable by a sizenondeterministic theyf
is computable by a circuit of roughly the same size. Yei,# 0 then this circuit is nondeterministic, andbif= 1 then this circuit
is a co-nondeterministic circuit. Thus, to obtain the relation between distinguishers and predictors we need to guarantee that the
PRG fools both nondeterministic and co-nondeterministic predictor circuits.

¥In the corollary above we allow both and the generator to be computable in SV-nondeterministic tiffé) rather than
deterministic timen®"). This is because the application we have in mind is derandomitibfjand in this setup the generator
is run by a nondeterministic machine so we can allow it to be computable nondeterministically. However, the assumgtion that
is computable in SV-nondeterministic tim& ") could be replaced byg‘is computable in (deterministic) time®)", This is a
stronger assumption, and it “buys” a stronger conclusion: the generator will run in (deterministie)tiie

32

Corollary 6.7. For any s, if there exists a functiog : {0,1}'°™ — {0,1} that is computable in SV-
nondeterministic time ") with Ssy-(g) > s then there exists &//m-PRG against nondeterministic circuits
of sizem with seed length = O(log? n/ log s) and output lengthn = s*(1). Furthermore, this generator
can be computed in SV-nondeterministic tinf).

As noted above, the notions of one-sided error and two-sided error coincidé/foand so hitting set
generators against co-nondeterministic circuits suffice to derandomize it.

Definition 6.8 (HSG against nondeterministic circuits). A functionH : {0,1} — {0,1}™ is ane-HSG
for nondeterministic size if for all size s nondeterministic or co-nondeterministic circuis: {0,1}" —
{0,1}

Pr[C(Uy,) = 1] > e = Pr[C(H(U:)) = 1] > 0.

Combining the candidate generators into an HSG as in Section 5.4 gives the following corollary, analo-
gous to Corollary 5.10.

Corollary 6.9. For any s, if there exists a functiog : {0, 1}1°g” — {0,1} that is computable in SV-
nondeterministic time ™) with Ssy-(g) > s then there exists &/m-HSG against nondeterministic circuits
of sizem with seed length = O(log n) and output lengthn = s*(1). Furthermore, this generator can be
computed in SV-nondeterministic tim&(%).

Finally, the HSG can be used to derandomize AM, giving the following optimal tradeoff (compare to
Corollary 5.11):

Corollary 6.10. If there exist a function family = {g,} € NEN coNE that requires siz&¢) SV nondeter-
ministic circuits, then for every time constructible function), AMTIME(¢(n)) € NTIME(20(™ty

This extends the previous results by Miltersen and Vinodchandran [MV99] to getiéral

6.4 Proof of the main theorem for nondeterministic circuits

In this section we prove Theorem 6.5. The proof follows the outline of the proof of Theorem 5.5. We first
explain why we need to modify the proof of Theorem 5.5 for it to work in the nondeterministic setting.

The proof of Theorem 5.5 constructs a small (deterministic) cir€uthat computes: when given
(deterministic) circuits that compute the predictgf8)’s. In the nondeterministic setting each one of the
f@'s has either a small nondeterministic circuit or a small co-nondeterministic circuit, and we want to
construct a small SV nondeterministic circdit computingz. Suppose thaf?) is a nondeterministic
circuit, and that in the course of its computatiGhwishes to evaluatg) on inputa. If £)(a) = 1 then
there is a short proof that shows this, afidcan use this short proof to justify its computation. However, if
Y (a) = 0 we cannot assume that there is a short proof of this fact. In this €asannot evaluatg?) (a)
as part of its computation. More generally, the problem is that an SV nondeterministic circuit cannot use a
nondeterministic circuit as a black box.

To solve this problem we would like to find a short proof tbfét')(a) = 0. We will use the fact that
at each prediction stefg; runs the predictorf) on pointsa that are on a random cuf®e With high
probability the fraction oti’s on the curve for whicrf(j)(a) = 1 and the fractior of a’s in F'¢ on which
Y9 (a) = 1 differ by at most some smail If C verifies that gp —) fraction of thea’s on the curve have

8This presentation is oversimplified and confuses between binary predictorsamgpredictors. The actual proof deals with
this problem.

33

i (a) = 1 (which can be done within an SV nondeterministic computation) then it can be sure that almost
all remaininga’s on the curve have?)(a) = 0. In particular, ifC' assumes thall remaininga’s have
fU)(a) = 0 then it agrees withf) on at least 41 — 26) fraction of the points in the curve. Thus we can
view C as having access to a predictor that makes slightly more errorg thaBy choosing the parameters
appropriatelyC can perform the list-decoding phase even with slightly more errors, and the proof goes on
essentially unchanged. We also need to proyitieC' as non-uniform advice.

In the remainder of the section we formally prove Theorem 6.5. Recall that the “candidate Bé’és”
F? x [a] — {0,1}™ have been obtained from tr@?) defined in (13) using alip, p~2)-efficiently list-
decodable error-correcting code, with encoding funcfibn {0, 1}'°¢7 — {0,1}", and thatp = ¢/(8m).
(For clarity, we are splitting the seed of thé(j) into two parts — the first being the vector Ff' and the
second being the index into the codeword of the error-correcting code). We assume for the purpose of
contradiction that naﬂ;(j) is ane-PRG against nondeterministic circuits. Then we have next-bit predictors
for all G;(j). Without loss of generality we assume that all these predictors predict the last bitgiveh
previous bits. That is, we assume that there exist functjdfis: {0,1}™ ' — {0,1} violating property
(16) for eachGg(j), respectively. Furthermore, each of these predictor functions can be implemented by a
sizes nondeterministic or co-nondeterministic circuit.

Using these predictors, we produce a small SV nondeterministic circuit that comgutésom input
1. Our algorithm here differs from the algorithm used in the proof of Theoreno@lysby some additional
steps at the beginning dkarn Next Curve, and a corresponding modification of the proof of Lemma 5.12.
For clarity we present the modified versionl@farn Next Curve in its entirety; the new actions are marked
with “+”.

Letp((]j) = Prycpd cin) [f(j)(Ggg(J)(y, 2)1..m—1) = 0] be the fraction of points on which theth predic-
tor predicts0, and Ietpgj) =1- p(()j) be the fraction of points on which it predicts The new procedure

will make use of values; € [¢gn] andg; € {0,1} for j =0,1,...,d — 1 defined as follows:
5 — 1 if fU) is computed by a size nondeterministic circuit a7
I 0 if fU) is computed by a size co-nondeterministic circuit
R S ¢ B O
m = [on (o) - 50)] (18)

These values will ultimately be supplied as non-uniform advice to the circuit. Fgr &t DU) be the
nondeterministic or co-nondeterministic circuit computjfigy.

Procedure Nondeterministic Learn Next Curve
e Input:

- next curve C : F — F%: a degree polynomial
- reference points R C F': a set of elements of
- stride j: anintegerin0... (¢ — 1)]
- input evaluations {aé}tEF,ie[l...(m—l)} and{b;},.: elements off" whoseintended valueare
al = 2(A7 O(t)) andb, = &(C(t)).
e Output:

- output evaluations {¢;},. . elements of’ whoseintended valuearec; = #(C(t)).

34

e Action:

+ Guess a s€t’ of n; distinct pairs(t;, z;) € F' x [n] and a “witness” stringu; for each.
+ Check that this is a “good guess”; i.e.,

V(tiz) €T fOE(])z, Bl s, Blag)ziwi) = ;.

(3

If it is not, halt and output “bad guess.”
ﬂj if (t, Z) eT

+ Forallt € Fand allz € [n], setrl = { 1 8; otherwise
—Mj

+ For allt € F, setS, to be the list ofp~2 codewords that differ from’ in at most(1/2 — p)n
places.

- Apply Lemma 3.1 on theyp—?2 pairs {(t, e)}teF,eGSt to obtain a list of at mossp— degree
deqz)v univariate polynomial®(¢) that contains all polynomials for which(t) € S, for at
leastpq /4 values oft. If this list is empty, fail.

- Ifthe list contains a unique polynomia{t) for whichp(t) = b; forall t € R, output{p(t)}. p;
otherwise fail.

We say thaiNondeterministic Learn Next Curve succeedgon a curve, reference points and stride) if
its output evaluations are the intended values wheniitgput evaluations are the intended valuder all
“good” guesses, and there is at least one such “good” guessin the proof of Theorem 5.5, we argue that
for a randomnext curve C and a random set akference points R C F, the procedure succeeds with
high probability.

Lemma 6.11. For all stridesj,

[Nondeterministic Learn Next Curve succeeds> 1 — O(27%/2) — (8p~3) <vdeg(x)) ,

Pr
C,R q

whereC : F — F%is a uniformly chosen degree< (ﬁ)2 (¢/4) curve, andR C F'is a uniformly chosen
subset off’ of sizer.

Proof. Fix j, and suppose that theput evaluations are the intended values. We first argue that the fraction
of points on whichf) predictsg; along curveC'is close the fraction of points on whigh?) predicts3; in
the whole space. Define the random variable

X; = Pr [fUO(E(@™)., E(@™?).,... E(a}).) = Bil;

z€[n]

and letX =}, X;. Notice thatE[X] = qu_). By Lemma 3.2, we have:
€
_ > 4 < —v/2)
Pr{|X — B[X]| 2 1—q] <O (2) (19)
This implies that with probability at least— O (27/2),

na (p) - 1) < [{t2) FOB@ e Blah)) = 6} <ng (b5 + =) (20)

4m

35

By integrality, the size of the set in the above inequality is at leastf the “bad” event in (19) does not
occur, two important observations hold: (1) there exists at least one “good guegsamd the witness
stringsw;, and (2) for any such “good guess,”

Prirt = fO(E(a™Y)., ... B(a}).)] > 1— —

Prirt = fO (B0)z, Ba)a)] 21— 5,
since the set’ identifies all but ar/(2m) fraction of the points on whiclf?) predicts3;.

Now we argue thaf(?) is correct along curvé' on almost the same fraction of points as the fraction of

points in the whole space on whig¥) is correct. Define the random variable

Y= Pr [fU(E(a" "), E(a}).) = E(&(C(1))).],

z€(n]

and definey’ = Y, ;. Notice thatE[Y] > ¢(1/2 + ¢/m) since we are assuming th#t/) violates
property (16). By Lemma 3.2, we have:

€
_ >_ 4l < —v/2)
Pr[|Y — E[Y]| > 4mq] <0 (2) (22)
If neither the event in (19) nor the event in (21) occurs, then we have:

1 €
t — -, > _ [
Prlrt = B@(C(0):] 2 5 + 5
By an averaging argument we have that for at least/&sm) fraction of thet’s, Pr,[r! = E(2(C(t))).] >
1/2 + ¢/(8m). For these, the relative Hamming distance betweérand E(z(C(t))) is at mostl /2 — p,
s0.S; containsz(C(t)). The remainder of the proof of Lemma 5.12 now goes through unchanged. [

The remainder of the proof of Theorem 5.5 (following Lemma 5.12) goes through unchanged. Lemma
5.14 now shows that there exist cunégsandC, for which Nondeterministic Learn Next Curve succeeds
on all steps. In the present context, this also means that on these Blowdsterministic Learn Next
Curve is a bone fide SV-nondeterministic “subroutine” (on “bad” curves there may be no “good guess,”
violating the requirements of Definition 6.2). Using this procedure repeatedly to computes in the
proof of Theorem 5.5 results in an SV-nondeterministic circuit computirgj size s - poly(m, ¢,n), a
contradiction. This concludes the proof of Theorem 6.5.

7 Hardness amplification for deterministic and nondeterministic circuits

A critical component of previous PRG constructions has begdness amplificatianHardness amplifica-
tion is an efficient transformation that takes a function{0, 1}='°¢™ — {0, 1} that is worst-case hard for
sizes circuits, and produces a functian : {0, 1}t/ — {0, 1} that cannot be computed correctly on even a
1/2 + e fraction of its inputs by size’ circuits. One hopes faf not much larger than, ands’ not much
smaller thars.

Our deterministic and nondeterministic PRG constructions are in fact hardness amplification transfor-
mations when their output is truncated after 1 bit. For example in the deterministic case, starting with a
functiona : {0,1}*=1¢™ — {0,1} for which S(z) > s, letG : {0,1}"=C0&"n/18) _, 10 1} pe the
e-PRG built fromz in Corollary 5.8, whose output is truncated after 1 bit. We claim ¢haannot be com-
puted correctly on evenly/2 + ¢ fraction of its inputs by size’ = s**(!) circuits. If there was such a circuit

36

P, then it would constitute a predictor for the functi6iy) = y o G(y). Standard minor modifications
to the proof that7 is ane-PRG reveal that just as with a predictor f6r a predictor for& can be used to
construct a small circuit computingcorrectly on every input, and contradicting the hardness'df

Currently, the hardness amplification transformation for deterministic circuits that achieves the best
parameters is [STVO1]; they obtait = () and#’ = O(t). The construction sketched above fails to
match these parameters becausetbunay be as large ag. However, in this particular setting, we can
get awaywithout XORing the candidate binary PRG&'(” (from Section 5.3) to obtairy. In fact, taking

G= G;(O) is sufficient for the following reason. & is not average-case hard, then the predi¢tove must
use to obtain a contradiction has (by definition):

Pr{P(y.) = C(a(Ay));] > 5 + e

Defining P (y, j) = P(A7 -1y, ;) we obtain similar predictors for ati\”’ from the single predictor

P. Using these predictors, the proof arrives at a contradiction as before. Sifitenas seed length

t" = O(logn), this hardness amplification transformation essentially matches the parameters of [STV01]
for deterministic circuits.

For nondeterministic circuits, we obtain a new result. Hardness amplification transformations were
known for circuits with SAT oracle gates [KvMO02], using the fact that known deterministic hardness am-
plification transformations (e.g., [STVO01]) relativize. However, no such transformations were known that
transform worst-case hardness for nondeterministic circuits (Definition 6.1) into average-case hardness for
nondeterministic circuits. Our PRG against nondeterministic construction gives the first hardness amplifi-
cation transformation for nondeterministic circuits. The argument is the same as the one for deterministic
circuits outlined above. For clarity we state the result for nondeterministic circuits in the following theorem.

Theorem 7.1. For every functiong : {0,1}' — {0,1} such thatSgy(g) > s there is a functior :
{0, 1}O(t) — {0, 1} such that for every nondeterministic or co-nondeterministic cir€uitf sizes’ = s*(*)
computing a functiorf : {0,1}°® — {0,1}:,

Pr(f(y) = h(y)] <

1
+ =
Y S

N |

Furthermore i can be computed in (deterministic) tira€®) given oracle access t@

We remark that in a subsequent work [SU04] we show how to apply the argument of [Sdllvexdt]y
for the nondeterministic case. This gives a simpler and more modular proof of the theorem above.

8 Constructions of “traversing matrices”

In the previous sections we used matricesind B with entries inF' = GF(q) that “traverse” subsets

of F% as components in our extractor and PRG constructions. In this section we show how to construct
such matrices and prove Lemma 4.4, Lemma 4.18 and Lemma 5.4. Throughout the section, we will need a
representation of the field F'(¢) in order to perform field arithmetic. For our purposes it is sufficient that
wheng = p° for a primep, such a representation can be found deterministically in time(poty [Sho90].

The literature refers to such a PRG as a “strong” PRG, and many PRG constructions in fact produce strong PRGs.

37

The basic idea is to view the vector spacé = GF(q)¢ as the extension field'F(¢¢) and use the
additional multiplicative structure to obtain the matrices. We fix a basi&'#(q?) as a vector-space over
F, and letg be a generator for the multiplicative groGf¥'(¢%)*. The functionT : F¢ — F9 that given a
vectorv interprets it as a field elementand outputg - v is an invertible linear transform, and we can pick
A to be the matrix such thatv = T'(v). We start by restating and proving Lemma 4.4

Lemma 4.4 (restated). Let I be a field withg elements and let be an integer. There exists an invertible
d x d matrix A with entries inF such thatA?'~! is the identity matrix and for every non-zefoc F¢,
{A"5}, ;0 = F*\ {0}. Furthermore, such ani can be found in timg®(®).

Proof. (of Lemma 4.4) The field7F(¢?) is a vector space of dimensiehover F = GF(q) and is thus
isomorphic toF?. Let g be a generator of the multiplicative group@#'(¢?) (which is cyclic). Multipli-

cation with a fixed element in the field corresponds to a linear transform in the vector-space, so the linear
transformA corresponding to multiplication by satisfies (6). We can finglby exhaustive searéin time

qO(d). 0

Our construction of extractors for small error required a more sophisticated version which is restated
below.

Lemma 4.18 (restated). Leth,q andd be such that:h is a prime powery is a power ofh, andd and
log;, ¢ are relatively prime. Then there exists an invertible d matrix B with entries fromF' = GF(q),
and a setd C F' with |H| = h such thatB"'~1 is the identity matrix and for every nonzercc F< there
is an invertible linear transfornt, : F¢ — F for which:

T, (HO\ {6}) - {Biv\l <i< hd}.

Moreover,B can be found in time pof}¢, log q).

The proof of Lemma 4.18 uses the proof technique of the following more general Lemma which we
used for our PRG construction.

Lemma 5.4 (restated). Leth, ¢ andd be such that# is a prime powery is a power ofh, andd andlog, ¢
are relatively prime. Lef’ be the field withy elements andd be the subfield of" with i elements. Then
there exist invertiblel x d matricesA and B with entries fromF' that satisfy:

o A9'~1 and B"~1 are the identity matrix.

For any non-zero vectorf € F%: {AT} e = F\ {0}

For any non-zero vectof € H' { B'z}, _. ., = H*\ {0}.

B — Ala-1/(h-1)

A, B can be found in timg®@,

8More precise bounds, and significant improvements in certain cases can be found in [Sho92] and [Shp96].

38

Proof. (of Lemma 5.4) We first need a polynomial of degdaeith coefficients irf that is irreducible over
F. Letc = log;, q and letp(z) be a polynomial of degreé that is irreducible ovet/ = GF(h). Let«
be a root ofp and notice that the fieldF(h¢)[a] contains bothF andG F(h?). FurthermoreG F (h¢)[a]

is contained inGF(h?). However, noproper subfield of GF(h°?) can contain bott¥ = GF(h¢) and
GF(h?) because andd are relatively prime. Therefor€@ F(h¢)[a] = GF(he?), which implies that is
irreducible overF = GF(h¢), as desired. We now constru6tr'(¢?) by considering its elements to be
polynomials ove#” modulop(z). Let {1, z, 22,... 297!} be the standard basis f6F(¢%) over F. In this
basis, the sefl? is exactly the following subset @ F'(¢%):

a1
{Zﬁizl’ﬁi € H} :

=0

Sincep(z) has all coefficients i, this subset is closed under multiplication. It follows ti&t is isomor-
phic toGF(h?). Moreover,H? \ {0} is a subgroup of ordegr? — 1 of the multiplicative group o&; F(F?).
Therefore, if we findA corresponding to a generator of the multiplicative groug:éf(F?) (as in Lemma
4.4), thenB = A(@"~1/(h"=1) generates the unique subgroup of orer- 1, whose elements afg? \ {0}.
As beforeA can be found by exhaustive search. O

We now prove Lemma 4.18:

Proof. (of Lemma 4.18) We use the technique of Lemma 5.4. We have shown that under the conditions of
the lemma, there is a polynomialof degreed with coefficients inH that is irreducible ove#'. Such a
polynomial can be found in timgé®(?) by exhaustive search. We constr@&F(¢?) usingp, and then as
noted above the s&f? is a subfield. We lef3 be a matrix (with entries i) that corresponds to multiplying
by a generator of the multiplicative group of this subfield. Such a matrix can be found (by exhaustive search
for a generator of the multiplicative group) in tinh&(@.

Finally, let A be a matrix that corresponds to multiplying by a generator of the multiplicative group of
GF(q%). We havey = A71 for somej, sinceA generates™® \ {0}. Note thatd and B commute (since3
is a power of4), and thatl (the all-ones vector) is if¢. Using these two facts, we have:

{Bivu <i< hd} - {BiAjﬂl <i< hd} - {AjBiT\l <i< hd} = AT (HY\ {6}).

9 Acknowledgments

We thank Henry Cohn, Venkat Guruswami, Valentine Kabanets, Omer Reingold, Muli Safra, Amnon Ta-

Shma, Salil Vadhan, Avi Wigderson and David Zuckerman for helpful discussions. We are especially grate-
ful to the authors of [TSZS01] for explaining their result to us. We thank the anonymous referees for their
very detailed comments and suggestions that improved the presentation significantly.

References

[ACR98] A. E. Andreev, Andrea E. F. Clementi, and J. D. P. Rolim. A new general derandomization
method.Journal of the ACM45(1):179-213, January 1998.

39

[ACRT99]

[AK97]

[Bab85]

[BF99]

[BFNW93]

[BM84]

[BM8S]

[BRY4]

[FGM+89]

[GL89]

[GMR89]

[Gol98]

[GS00]

[GS01]

[GVWOO]

[GZ97]

[Imp95]

A. E. Andreev, A. E. F. Clementi, J. D. P. Rolim, and L. Trevisan. Weak random sources, hitting
sets, and BPP simulationSIAM Journal on Computin@8(6), 1999.

V. Arvind and J. Kdbler. On resource-bounded measure and pseudorandomndéascéed-
ings of the 17th Conference on Foundations of Software Technology and Theoretical Computer
Sciencepages 235-249, 1997.

L. Babai. Trading group theory for randomness. Aroceedings of the 17th Annual ACM
Symposium on Theory of Computii®85.

H. Buhrman and L. Fortnow. One-sided versus two-sided error in probabilistic computation. In
Theoretical aspects of computer science, 16th annual sympos2.98.

L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations
unless EXPTIME has publishable prooSomputational Complexityd(4):307-318, 1993.

M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random
bits. SIAM Journal on Computindg.3(4):850—-864, 1984.

L. Babai and S. Moran. Arthur-merlin games: A randomized proof system and a hierarchy of
complexity classeslournal of Computer and System Scien@&s254—-276, 1988.

M. Bellare and J. Rompel. Randomness-efficient oblivious samplind?rdneedings of the
35th Annual IEEE Symposium on Foundations of Computer Sci&aéd.

M. Furer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On completeness and soundness
in interactive proof systems. In S. Micali, edit®tandomness and Computatjgrages 429—
442, Greenwich, Connecticut, 1989. Advances in Computing Research, vol. 5, JAI Press.

0. Goldereich and L. A. Levin. A hard-core predicate for all one-way functionBrdneedings
of the 21st Annual ACM Symposium on Theory of Compupiages 25-32, 1989.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems SIAM Journal on Computind.8(1):186—208, 1989.

0. Goldreich.Modern Cryptography, Probabilistic Proofs and Pseudorandomn8gsinger-
Verlag, Algorithms and Combinatorics, 1998.

V. Guruswami and M. Sudan. List decoding algorithms for certain concatenated codes. In
Proceedings of the 32nd Annual ACM Symposium on Theory of Comp2@idg.

V. Guruswami and M. Sudan. Extensions to the Johnson bound. Manuscript, February 2001.

O. Goldreich, S. Vadhan, and A. Wigderson. Simplified derandomization of BPP using a hitting
set generator. Technical Report TR00-004, Electronic Colloguium on Computational Complex-
ity, January 2000.

0. Goldreich and D. Zuckerman. Another proof that BPP subseteq PH (and more). Technical
Report TR97-045, Electronic Collogquium on Computational Complexity, 1997.

R. Impagliazzo. Hard-core distributions for somewhat hard problem&rdoeedings of the
36th Annual IEEE Symposium on Foundations of Computer Sgipages 538-545, 1995.

40

[ISW99]

[ISWO03]

[IW97]

[Kab02]

[KvMO2]

[LRVWO03]

[MV99]

INTS99]

INW94]

[NZ96]

[RRV99]

[RRVO02]

[RSWOO]

[RTS00]

[RZ98]

R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversion of hardness into
pseudo-randomness. Rroceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Scienggpages 181-190, 1999.

R. Impagliazzo, R. Shaltiel, and A. Wigderson. Reducing the seed length in the nisan-wigderson
generator. Manuscript, a preliminary version appeared in STOCO0O0 under the title “extractors
and pseudorandom generators with optimal seed length, 2003.

R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomizing
the XOR lemma. IProceedings of the 29th Annual ACM Symposium on Theory of Computing
pages 220-229, 1997.

V. Kabanets. Derandomization: a brief overvieBulletin of the European Association for
Theoretical Computer Sciencgs:88-103, 2002.

A. R. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs
unless the polynomial-time hierarchy collaps&AM Journal on Computing31:1501-1526,
2002.

C. J. Lu, Omer Reingold, S. Vadhan, and A. Wigderson. Extractors: Optimal up to constant
factors. InProceedings of the 35th Annual ACM Symposium on Theory of Comp2@i68.

P. B. Miltersen and N. V. Vinodchandran. Derandomizing Arthur-Merlin games using hitting
sets. InProceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science
pages 71-80, 1999.

N. Nisan and A. Ta-Shma. Extracting randomness: A survey and new constructammsal
of Computer and System Sciends:148-173, 1999.

N. Nisan and A. Wigderson. Hardness vs randomndsarnal of Computer and System Sci-
ences49(2):149-167, 1994.

N. Nisan and D. Zuckerman. Randomness is linear in spimgrnal of Computer and System
Sciencesb2(1):43-52, 1996.

R. Raz, O. Reingold, and S. Vadhan. Error reduction for extractof8rdceedings of the 40th
Annual IEEE Symposium on Foundations of Computer Scjdi9&.

R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness and reducing the error in
Trevisan's extractorsJCSS: Journal of Computer and System Scier@é®s2002.

O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness via repeated condensing. In
Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer S2ifitce

J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extractors, and depth-two supercon-
centrators SIAM Journal on Discrete Mathematick3(1):2—24, February 2000.

A. Russell and D. Zuckerman. Perfect-information leader electidnghn + O(1) rounds.
Journal of Computer and System Sciend€98. To appear. Preliminary versiorRroceedings
of the 39th Annual IEEE Symposium on Foundations of Computer Scages 576—-583.

41

[Sha02]

[Sho90]

[Sho92]

[Shpo6]

[Sip88]

[STVO1]

[SU04]

[Sud97]

[SZ99]

[Tre02]

[TS96]

[TSUZ01]

[TSZ04]

[TSZS01]

[Uma99]

[Uma02]

[WZ99]

R. Shaltiel. Recent developments in explicit constructions of extraddotetin of the EATCS
77.:67-95, 2002.

V. Shoup. New algorithms for finding irreducible polynomials over finite fielathematics
of Computation54:435-447, 1990.

V. Shoup. Searching for primitive roots in finite fieldglathematics of Computatiob8:369—
380, 1992.

I. Shparlinski. On finding primitive roots in finite fieldsTheoretical Computer Science
157:273-275, 1996.

M. Sipser. Expanders, randomness, or time versus spam&rnal of Computer and System
Sciences36(3):379—-383, 1988.

M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the xor [KD88a.
Journal of Computer and System Sciené2s 2001.

R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling. Tech-
nical Report TR04-086, Electronic Colloquium on Computational Complexity (ECCC), 2004.

M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bdounchal of
Complexity 13, 1997.

A. Srinivasan and D. Zuckerman. Computing with very weak random sou&i&d$/ Journal
on Computing28(4):1433—-1459, August 1999.

L. Trevisan. Extractors and pseudorandom generatdosrnal of the ACM48(4):860-879,
2002.

A. Ta-Shma. On extracting randomness from weak random sourcBgodaeedings of the 28th
Annual ACM Symposium on Theory of Computjpaiges 276—285, 1996.

A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less condensers, unbalanced expanders, and
extractors. IrProceedings of the 33rd Annual ACM Symposium on Theory of Comppéiggs
143-152, 2001.

A. Ta-Shma and D. Zuckerman. Extractor cod#sEE Transactions on Information Theoery
50(12):3015-3025, 2004.

A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller codBsodaedings
of the 42nd Annual IEEE Symposium on Foundations of Computer Sciiake

C. Umans. Hardness of approximatiig minimization problems. IfProceedings of the 40th
Annual IEEE Symposium on Foundations of Computer Scigaages 465-474, 1999.

C. Umans. Pseudo-random generators for all hardnessd3o¢eedings of the 34th Annual
ACM Symposium on Theory of Computipgges 627-634, 2002.

A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue bound: Explicit construc-
tion and applicationsCombinatorica 19(1):125-138, 1999.

42

[Yao82] A.C. Yao. Theory and applications of trapdoor functionsPhceedings of the 23rd Annual
IEEE Symposium on Foundations of Computer Scignages 80-91, 1982.

[Zuc96] D. Zuckerman. On unapproximable versions of NP-complete problegidM Journal on
Computing 25:1293-1304, 1996.

[Zuc97] D. Zuckerman. Randomness-optimal oblivious sampliRgndom Structures and Algorithms
11:345-367, 1997.

43

