
Fast modular composition in any characteristic

Kiran S. Kedlaya∗

MIT
Christopher Umans†

Caltech

August 3, 2008

Abstract

We give an algorithm for modular composition of degree n univariate polynomials over a finite field
Fq requiring n1+o(1) log1+o(1) q bit operations; this had earlier been achieved in characteristic no(1) by
Umans (2008). As an application, we obtain a randomized algorithm for factoring degree n polynomials
over Fq requiring

(n1.5+o(1) + n1+o(1) log q) log1+o(1) q

bit operations, improving upon the methods of von zur Gathen & Shoup (1992) and Kaltofen & Shoup
(1998). Our results also imply algorithms for irreducibility testing and computing minimal polynomials
whose running times are best-possible, up to lower order terms.

As in Umans (2008), we reduce modular composition to certain instances of multipoint evaluation
of multivariate polynomials. We then give an algorithm that solves this problem optimally (up to lower
order terms), in arbitrary characteristic. The main idea is to lift to characteristic 0, apply a small number
of rounds of multimodular reduction, and finish with a small number of multidimensional FFTs. The
final evaluations are then reconstructed using the Chinese Remainder Theorem. As a bonus, we obtain a
very efficient data structure supporting polynomial evaluation queries, which is of independent interest.

Our algorithm uses techniques which are commonly employed in practice, so it may be competitive
for real problem sizes. This contrasts with previous asymptotically fast methods relying on fast matrix
multiplication.

∗Supported by NSF DMS-0545904 (CAREER) and a Sloan Research Fellowship.
†Supported by NSF CCF-0346991, BSF 2004329, a Sloan Research Fellowship, and an Okawa Foundation research grant.

1 Introduction

The problem of MODULAR COMPOSITION is, given three univariate polynomials f(x), g(x), h(x) over a
ring with h having invertible leading coefficient, to compute f(g(x)) (mod h(x)). Modular composition
serves as the backbone of numerous algorithms for computing with polynomials over finite fields, most
notably the asymptotically fastest methods for polynomial factorization.

In contrast to other basic modular operations on polynomials (e.g modular multiplication), it is not
possible to obtain an asymptotically fast algorithm for modular composition with fast algorithms for each
step in the natural two step procedure (i.e., first compute f(g(x)), then reduce modulo h(x)). This is
because f(g(x)) has n2 terms, while we hope for a modular composition algorithm that uses only about
O(n) operations. Not surprisingly, it is by considering the overall operation (and beating n2) that asymptotic
gains are made in algorithms that employ modular composition.

Perhaps because nontrivial algorithms for modular composition must handle the modulus in an inte-
grated way (rather than computing a remainder after an easier, nonmodular computation) there have been
few algorithmic inroads on this seemingly basic problem. Brent & Kung [BK78] gave the first nontrivial
algorithm in 1978, achieving an operation count of O(n(ω+1)/2), where ω is the exponent of matrix multipli-
cation. Huang & Pan [HP98] achieved a slight improvement, by noting that the bound is actually O(nω2/2)
where ω2 is the exponent of n × n by n × n2 matrix multiplication, and giving an upper bound on ω2 that
is slightly better than the best known bound on ω, plus one. These algorithms cannot beat O(n1.5), and it
is not feasible in practice to achieve their theoretical guarantees, because those rely on the asymptotically
fastest algorithms for matrix multiplication, which are currently impractical. Finding new algorithms for
MODULAR COMPOSITION with running times closer to O(n) was mentioned several times as an important
and longstanding open problem (cf. [Sho94, KS98], [BCS97, Problem 2.4], [vzGG99, Research Problem
12.19]).

Very recently, Umans [Uma08] gave an algorithm that achieves the optimal operation count up to lower
order terms, but only in fields with small characteristic (specifically, the characteristic p was required to be
no(1)).

In this paper, we essentially solve the MODULAR COMPOSITION problem completely, presenting an
algorithm for modular composition over any finite field, whose running time is optimal up to lower order
terms. Our algorithm uses the reduction from MODULAR COMPOSITION to MULTIVARIATE MULTIPOINT

EVALUATION from [Uma08], and then solves the latter problem in a completely different way, by lifting to
characteristic 0 followed by multimodular reduction and a small number of multidimensional FFTs.

In contrast to [Uma08], our algorithm is nonalgebraic, which carries some minor disadvantages. One is
that a general method (the “transposition principle”) for transforming an algebraic algorithm for MODULAR

COMPOSITION into one for the transpose problem (called MODULAR POWER PROJECTION, itself useful
in algorithms for computing with polynomials), does not directly apply. However, in Section 5.2 we show
that this disadvantage can be overcome – the nonalgebraic parts of our algorithm interact well with the
transposition principle – and consequently we obtain an algorithm for MODULAR POWER PROJECTION

whose running time is optimal up to lower order terms.
A major advantage of our algorithm (apart from working in any characteristic) is that it is simple, prac-

tical and implementable. Multimodular reduction is used in practice in a variety of settings, and while we
use it recursively to state our most general results, only two rounds are required to achieve an algorithm for
MODULAR COMPOSITION whose running time is optimal up to lower order terms.

1

1.1 From modular composition to multipoint evaluation

While the algorithms of [BK78] and [HP98] reduce MODULAR COMPOSITION to matrix multiplication,
the method of [Uma08] reduces MODULAR COMPOSITION to the problem of MULTIVARIATE MULTIPOINT

EVALUATION of polynomials over Fq: given an m-variate polynomial f(x0, . . . , xm−1) over Fq of degree at
most d− 1 in each variable, and given αi ∈ Fm

q for i = 0, . . . , N − 1, compute f(αi) for i = 0, . . . , N − 1.
Using this reduction, an algorithm for MULTIVARIATE MULTIPOINT EVALUATION that is optimal up to
lower order terms yields an algorithm for MODULAR COMPOSITION that is optimal up to lower order terms.

Unfortunately, MULTIVARIATE MULTIPOINT EVALUATION does not seem susceptible to the techniques
successfully used to obtain near-optimal (up to polylogarithmic factor) algorithms for the univariate case,
and in general seems to be a more challenging problem. In fact, prior to this paper, there were only two
nontrivial algorithms for MULTIVARIATE MULTIPOINT EVALUATION. First, Nüsken & Ziegler [NZ04]
gave an algorithm for the bivariate case that can be generalized to yield an algorithm with operation count
O(d(ω2/2)(m−1)+1) times lower order terms, but this is not sufficient to make any gains over Huang & Pan’s
algorithm for MODULAR COMPOSITION via the reduction. Second, Umans [Uma08] gave an algorithm that
uses a somewhat intricate lifting method using the p-power Frobenius, for p the characteristic of Fq. This
operation count for this algorithm is optimal up to lower order terms for m ≤ do(1), but it only works in
small characteristic p ≤ do(1).

This paper gives a new algorithm for MULTIVARIATE MULTIPOINT EVALUATION over any field Fq

(when m ≤ do(1)) with running time (dm + N)1+δ log1+o(1) q (for any constant δ > 0 and sufficiently
large d) that is optimal up to lower order terms. Via the reduction, this yields an algorithm for MODULAR

COMPOSITION whose running time is optimal up to lower order terms. We describe the main idea next, for
the case when q = p is prime; the reduction from the general case to this case uses similar ideas.

1.2 Our techniques

A basic observation when considering algorithms for MULTIVARIATE MULTIPOINT EVALUATION is that if
the evaluation points happen to be all of Fm

p , then they can be computed all at once via the multidimensional
FFT, with an operation count that is best-possible up to logarithmic factors. More generally, if the evaluation
points happen to be well-structured in the sense of being all of Sm for some subset S ⊆ Fp, then by viewing
Fp[X1, X2, . . . , Xm] as Fp[X1, X2, . . . , Xm−1][Xm] and applying an algorithm for univariate multipoint
evaluation, and repeating m times, one can achieve an essentially optimal algorithm. But these are both
very special cases, and the general difficulty with MULTIVARIATE MULTIPOINT EVALUATION is contending
with highly unstructured sets of evaluation points in Fm

p .
Our main idea is to use multimodular reduction to transform an arbitrary set of evaluation points into

a “structured” one to which the FFT solution can be applied directly. We lift f and each evaluation point
αi to the integers by identifying the field Fp with the set {0, . . . , p − 1}. We can then compute the multi-
point evaluation by doing so over Z and reducing modulo p. To actually compute the evaluation over Z, we
reduce modulo several smaller primes p1, . . . , pk, producing separate instances of MULTIVARIATE MULTI-
POINT EVALUATION over Fpi for i = 1, . . . , k. After solving these instances, we reconstruct the original
evaluations using the Chinese Remainder Theorem.

This multimodular reduction can be applied recursively, with the primes in each round shrinking until
they reach p∗ ≈ (md) in the limit. By this last round, the evaluation points have been “packed” so tightly
into the domain Fm

p∗ that we can apply the FFT to obtain all evaluations in Fm
p∗ with little loss: dm operations

are required just to read the input polynomial, and the FFT part of our algorithm requires only about (dm)m

operations (and recall our requirement that m < do(1)).

2

To obtain our most general result, we may need to apply three rounds of multimodular reduction; for the
application to MODULAR COMPOSITION, only two rounds are needed, making the algorithm quite practical.

We remark that our algorithm can be used in the univariate (m = 1) case (via a simple transforma-
tion to the m À 1 case; see the proof of Corollary 3.5). The overall algorithm requires only elemen-
tary modular arithmetic in Z, and the FFT. Thus, our algorithm may be competitive, in simplicity and
speed, with the “classical” algorithm for univariate multipoint evaluation (see any standard textbook, e.g.,
[vzGG99]). One striking contrast with the classical algorithm is that after a preprocessing step we can
achieve poly(log n, log q) actual time for each evaluation (as opposed to amortized time); this can be inter-
preted as giving a powerful data structure supporting polynomial evaluation queries (see Section 4).

1.3 Why wasn’t this algorithm discovered earlier?

In retrospect, our approach is quite simple, and, we believe, natural. Certainly this is not the first algorithm
to employ multimodular reduction, or even recursive multimodular reduction. We point out three conceptual
barriers that (possibly) explain why the overall algorithm and approach may have been harder to find than it
appears with the benefit of hindsight.

First, there is a tendency to try to find algebraic algorithms for algebraic problems; our gains come from
allowing nonalgebraic operations.

Second, the original MODULAR COMPOSITION problem is not amenable to multimodular reduction,
because in the integers, the output of a lifted modular composition problem is longer than the input by a
factor of n, rather than a negligible factor of dm that appears after applying the reduction to MULTIVARIATE

MULTIPOINT EVALUATION. Thus the reduction to MULTIVARIATE MULTIPOINT EVALUATION (which only
appeared in the last year) is more than just a convenience; it is critical for the multimodular approach to
succeed.

Finally, we benefit from multimodular reduction for a quite different reason than other algorithms that
employ this technique. Typically, multimodular reduction is used to reduce the “word size”, when computing
with large word sizes would be prohibitive or spoil the target complexity. In our case we are perfectly happy
computing with word size log q, so the multimodular reduction provides no benefit there. What it does
do, however, is “pack” the evaluation points into a smaller and smaller space, and it does so extremely
efficiently (requiring only local computations on each point). Thus, we are benefitting from the aggregate
effect of applying multimodular reduction to an entire set, rather than directly from the reduced word size.

1.4 Application to polynomial factorization

As noted above, MODULAR COMPOSITION is used as a black box in a number of important algorithms for
polynomials over finite fields. The same is true for a related problem, MODULAR POWER PROJECTION, for
which we also obtain a near-optimal algorithm in Section 5.2. As merely one example, we recall the case of
factorization of degree n univariate polynomials1.

Kaltofen & Shoup [KS98] show that an algorithm for modular composition requiring f(n, q) bit opera-
tions gives rise to an algorithm for polynomial factorization requiring

n0.5+o(1)f(n, q) + n1+o(1) log2+o(1) q

1Because our algorithms are nonalgebraic, the running times in this paper count bit operations. Therefore, the reader familiar
with the accounting in previous work, which counts arithmetic operations in the field, should expect to see an “extra” log q factor.

3

bit operations (this dependence on f(n, q) is worked out explicitly in [Uma08]). Using our algorithm for
modular composition, we thus obtain an algorithm for polynomial factorization requiring

(n1.5+o(1) + n1+o(1) log q) log1+o(1) q

bit operations. By contrast, the best previous algorithms that work over arbitrary finite fields (von zur
Gathen & Shoup [vzGS92] and Kaltofen & Shoup [KS98]) require (n2+o(1) + n1+o(1) log q) log1+o(1) q
and n1.815+o(1) log2+o(1) q bit operations, respectively; we thus obtain an asymptotic improvement in the
range log q < n. (Again, this improvement had been obtained in [Uma08] under the additional restriction
p ≤ no(1), for p the characteristic of Fq.)

In Section 6.1 we discuss two additional fundamental algorithms for which our results lead to faster
algorithms: irreducibility testing, and computing minimal polynomials.

1.5 Structure of the paper

In Section 2, we give formal statements of the MODULAR COMPOSITION and MULTIVARIATE MULTIPOINT

EVALUATION problems, and recall from [Uma08] the reduction of the former to the latter. In Section 3, we
describe and analyze an algorithm for MULTIVARIATE MULTIPOINT EVALUATION, and in Section 4 we de-
scribe the data structure for polynomial evaluation arising from our algorithm. In Section 5, we analyze the
resulting algorithm for MODULAR COMPOSITION, as well as an algorithm for MODULAR POWER PROJEC-
TION obtained by a careful application of the transposition principle to the algebraic parts of our algorithm.
In Section 6, we discuss applications (including polynomial factorization) and mention some further open
problems.

2 Preliminaries

In this paper, R is an arbitrary commutative ring, unless otherwise specified. In our complexity estimates,
we will use standard facts about fast polynomial arithmetic (cf. [vzGG99]). For cleaner statements, we
sometimes omit floors and ceilings when dealing with them would be routine. We use o(1) frequently
in exponents. We will always write things so that the exponentiated quantity is an expression in a single
variable x, and it is then understood that the o(1) term is a quantity that goes to zero as x goes to infinity.

2.1 Problem statements

For ease of exposition, we restrict to the univariate version of MODULAR COMPOSITION, defined next,
which is the one used in all applications we are aware of. One can also define a version in which f is a
multivariate polynomial (as in [Uma08]), and our results extend easily to that problem.

Problem 2.1 (MODULAR COMPOSITION). Given f(X), g(X), h(X) in R[X], each with degree at most
n− 1, and with the leading coefficient of h a unit in R, output f(g(X)) mod h(X).

The main insight in [Uma08] is that MODULAR COMPOSITION is reducible to MULTIVARIATE MULTI-
POINT EVALUATION, defined next:

Problem 2.2 (MULTIVARIATE MULTIPOINT EVALUATION). Given f(X0, . . . , Xm−1) in R[X0, . . . , Xm−1]
with individual degrees at most d − 1, and evaluation points α0, . . . , αN−1 in Rm, output f(αi) for i =
0, 1, 2, . . . , N − 1.

4

Most of our effort in this paper is focused on obtaining a nearly-optimal algorithm for MULTIVARIATE

MULTIPOINT EVALUATION; namely, one that runs in time (dm + N)1+δ log1+o(1) |R| (for any constant
δ > 0 and sufficiently large d).

2.2 Useful facts

We will need the following number theory fact:

Lemma 2.3. For all integers N ≥ 2, the product of the primes less than or equal to 16 log N is greater than
N .

The constant 16 is not optimal; the Prime Number Theorem implies that any constant c > 1 can be used
for N above some bound depending on c.

Proof. The exponent of the prime p in the factorization of n! equals
∑∞

i=1b n
pi c since this counts multiples

of p, multiples of p2, etc., in {1, . . . , n}. This implies Kummer’s formula
(

n

m

)
=

∏

p≤n

pep , ep =
∞∑

i=1

(⌊
n

pi

⌋
−

⌊
m

pi

⌋
−

⌊
n−m

pi

⌋)
.

Note that ep ≤ 1 for
√

n < p ≤ n, and ep ≤ logp n for all p. From this, and the fact that
(

n
bn/2c

) ≥ (
n
m

)
for

all m, it follows that

2n

n + 1
≤

(
n

bn/2c
)
≤


 ∏
√

n<p≤n

p


n

√
n ≤


∏

p≤n

p


n

√
n.

For N ≥ 50, we have 2nn−
√

n/(n + 1) ≥ N for n = b16 log Nc, so the claim follows. For N < 50, the
claim may be checked by hand.

We repeat the following definition from [Uma08]:

Definition 2.4. The map ψh,` from R[X0, X1, . . . , Xm−1] to R[Y0,0, . . . , Ym−1,`−1] is defined as follows.
Given Xa, write a in base h: a =

∑
j≥0 ajh

j and define the monomial

Ma(Y0, . . . , Y`−1)
def= Y a0

0 Y a1
1 · · ·Y a`−1

`−1 .

The map ψh,` sends Xa
i to Ma(Yi,0, . . . , Yi,`−1) and extends multilinearly to R[X0, X1, . . . , Xm−1].

For a polynomial f ∈ R[X0, X1, . . . , Xm−1] with individual degrees at most h` − 1, we have:

f(X0, . . . , Xm−1) = ψh,`(f)(Xh0

0 , Xh1

0 , . . . , Xh`−1

0 , · · · , Xh0

m−1, X
h1

m−1, . . . , X
h`−1

m−1)

and in this sense the map ψ is the inverse of the Kronecker substitution. We will use this map to transform in-
stances of MULTIVARIATE MULTIPOINT EVALUATION with parameters d, m,N into instances with param-
eters d′ = d1/c,m′ = cm,N by applying ψd′,c and mapping each evaluation point α = (α0, . . . , αm−1) ∈
Rm to the evaluation point

α′ = (αd′0
0 , αd′1

0 , αd′2
0 , . . . , αd′c−1

0 , · · · , αd′0
m , αd′1

m , αd′2
m , . . . , αd′c−1

m)

in Rm′
.

5

2.3 The reduction

In Section 5.2 we consider the “transpose” of MODULAR COMPOSITION, which is used in particular in
[Sho99]. We argue that despite the fact that our algorithm for MULTIVARIATE MULTIPOINT EVALUATION

(and hence for MODULAR COMPOSITION via the reduction) is nonalgebraic, we can employ the transposi-
tion principle to obtain a similarly fast algorithm for the transpose problem. Doing so requires discussing
the individual steps of the reduction, so we repeat it here (specialized to the univariate version of MODULAR

COMPOSITION).

Theorem 2.5 ([Uma08]). Given f(X), g(X), h(X) in R[X] each with degree at most n − 1, and with the
leading coefficient of h a unit in R, there is, for every integer d > 0, an algorithm that outputs f(g(X)) mod
h(X) in time

O(nm2d2 log1+o(1) |R|) · poly log(n, m, d) + T (d,m, N)

(where m = dlogd ne, N = dmmd ≤ nmd2, and T (d,m, N) is the time to solve MULTIVARIATE MUL-
TIPOINT EVALUATION with parameters d,m, N), provided that the algorithm is supplied with N distinct
elements of R whose differences are units in R.

Proof. Set n′ = dm ≤ nd. We perform the following steps:

1. Compute f ′ = ψd,m(f).

2. Compute gi(X) def= g(X)di
mod h(X) for i = 0, 1, . . . , m− 1.

3. Select N = n′md distinct elements of R, β0, . . . , βN−1, whose differences are units in R. Compute
αi,j

def= gi(βj) for i = 0, 1, . . . , m− 1 and j = 0, 1, . . . , N − 1.

4. Compute f ′(α0,j , . . . , αm−1,j) for j = 0, 1, . . . , N − 1.

5. Interpolate to recover f ′(g0(X), . . . , gm−1(X)) (which is a univariate polynomial of degree less than
N) from these evaluations.

6. Output the result modulo h(X).

Correctness follows from the observation that

f ′(g0(X), . . . , gm−1(X)) ≡ f(g(X)) (mod h(X)).

Step 1 takes O(n′ log(|R|)) time. Using repeated squaring, Step 2 incurs complexity at most

O(n log n log1+o(1) |R|) · log(n′)

to compute each of the m polynomials gi. Step 3 incurs complexity O(mN log2 N log1+o(1) |R|) using fast
multipoint evaluation for univariate polynomials. Step 4 invokes an algorithm for MULTIVARIATE MULTI-
POINT EVALUATION at a cost of T (d,m, N). Step 5 incurs complexity O(N log2 N log1+o(1) |R|) using
fast univariate interpolation, and Step 6 incurs complexity O(N log N log1+o(1) |R|).

3 Fast multivariate multipoint evaluation

We describe our algorithm for MULTIVARIATE MULTIPOINT EVALUATION, first for prime fields, then for
rings Z/rZ, and then for extension rings (and in particular, all finite fields).

6

3.1 Prime fields

For prime fields, we have a straightforward algorithm that uses fast Fourier transforms. The dependence on
the field size p is quite poor, but we will remove that in our final algorithm using multimodular reductions.

Theorem 3.1. Given an m-variate polynomial f(X0, . . . , Xm−1) ∈ Fp[X0, . . . , Xm−1] (p prime) with
degree at most d− 1 in each variable, and α0, . . . , αN−1 ∈ Fm

p , there exists a deterministic algorithm that
outputs f(αi) for i = 0, . . . , N − 1 in

O(m(dm + pm + N) poly(log p))

bit operations.

Proof. We perform the following steps to compute f(αi) for i = 0, . . . , N − 1.

1. Compute the reduction f of f modulo Xp
j −Xj for j = 0, . . . , m− 1.

2. Use a fast Fourier transform2 to compute f(α) = f(α) for all α ∈ Fm
p .

3. Look up and return f(αi) for i = 0, . . . , N − 1.

In Step 1, the reductions modulo Xp
j −Xj may be performed using mdm arithmetic operations in Fp,

for a total complexity of O(mdm poly(log p)).
In Step 2, we may perform the FFTs one variable at a time for a total time of O(mpm poly(log p)).

The details follow: we will give a recursive procedure for computing evaluations of an m-variate poly-
nomial with individual degrees at most p − 1 over all of Fm

p , in time m · O(pm poly(log p)). When
m = 1, we apply fast (univariate) multipoint evaluation at a cost of O(ppoly(log p)). For m > 1, write
f(X0, X1, . . . , Xm−1) as

∑p−1
i=0 Xi

0fi(X1, . . . , Xm−1), and for each fi, recursively compute its evaluations
at all of Fm−1

p in time (m − 1) · O(pm−1 poly(log p)). Finally, for each β ∈ Fm−1
p evaluate the univariate

polynomial
∑p−1

i=0 Xi
0fi(β) at all of Fp at a cost of O(p poly(log p)), again using fast (univariate) multipoint

evaluation. The overall time is

(m− 1) ·O(pm−1 poly(log p)) · p + O(ppoly(log p)) · pm−1,

which equals m ·O(pm poly(log p)) as claimed.
In Step 3, we look up N entries from a table of length pm, for a total complexity of O(mN poly(log p)).

This gives the stated complexity.

3.2 Rings of the form Z/rZ

We now apply multimodular reduction recursively to remove the suboptimal dependence on p. Our main
algorithm for rings Z/rZ (r arbitrary) appears below. It accepts an additional parameter t which specifies
how many rounds of multimodular reduction should be applied.

2We need the finite field Fourier transform here, since we care about evaluations over Fp.

7

Algorithm MULTIMODULAR(f, α0, . . . , αN−1, r, t)

where f is a m-variate polynomial f(x0, . . . , xm−1) ∈ (Z/rZ)[x0, . . . , xm−1] with degree at most
d − 1 in each variable, α0, . . . , αN−1 are evaluation points in (Z/rZ)m, and t is the number of
rounds.

1. Construct the polynomial f̃(X0, . . . , Xm−1) ∈ Z[X0, . . . , Xm−1] from f by replacing each
coefficient with its lift in {0, . . . , r−1}. For i = 0, . . . , N−1, construct the m-tuple α̃i ∈ Zm

from αi by replacing each coordinate with its lift in {0, . . . , r − 1}.

2. Compute the primes p1, . . . , pk less than or equal to ` = 16 log(dm(r − 1)md), and note that
k ≤ `.

3. For h = 1, . . . , k, compute the reduction fh ∈ Fph
[X0, . . . , Xm−1] of f̃ modulo ph. For

h = 1, . . . , k and i = 0, . . . , N − 1, compute the reduction αh,i ∈ Fm
ph

of α̃i modulo ph.

4. If t = 1, then for h = 1, . . . , k, apply Theorem 3.1 to compute fh(αh,i) for i = 0, . . . , N −1;
otherwise if t > 1, then run MULTIMODULAR(fh, αh,0, . . . , αh,N−1, ph, t − 1) to compute
fh(αh,i) for i = 0, . . . , N − 1.

5. For i = 0, . . . , N − 1, compute the unique integer in {0, . . . , (p1p2 · · · pk)− 1} congruent to
fh(αh,i) modulo ph for h = 1, . . . , k, and return its reduction modulo r.

To bound the running time it will be convenient to define the function

λi(x) = x log x log log x log log log x · · · log(i−1)(x).

Note that λi(x) ≤ x(log x)log∗ x = x1+o(1) (where log∗ x denotes the least nonnegative integer i such that
log(i)(x) ≤ 1) and that λi(x) ≤ λj(x) for positive x and i < j ≤ log∗x.

Theorem 3.2. Algorithm MULTIMODULAR returns f(αi) for i = 0, 1, . . . , N − 1, and it runs in

O((λt(d)m + N)λt(log r)λt(d)tλt(m)m+t+1) ·O(log(t) r)m · poly log(md log r)

bit operations.

Proof. Correctness follows from the fact that 0 ≤ f̃(α̃i) ≤ dm(r − 1)md < p1 · · · pk by Lemma 2.3, and
Theorem 3.1.

Observe that in the i-th level of recursion, the primes ph have magnitude at most `i = O(λi(m)λi(d) log(i) r).
For convenience, set `0 = 1.

At the i-th level of the recursion tree, the algorithm is invoked at most `0`1`2 · · · `i−1 times. Each
invocation incurs the following costs from the steps before and after the recursive call in Step 4. Step 1 incurs
complexity at most O((dm +mN)`i). Step 2 incurs complexity O(`i log `i) using the Sieve of Eratosthenes
(cf. [Sho08, §5.4]). Step 3 incurs complexity O((dm + mN)`i poly(log `i)) by using remainder trees
to compute the reductions modulo p1, . . . , pk all at once [Ber, §18], [vzGG99, Theorem 10.24]. Step 5
incurs complexity O(N`i poly(log `i)) as in [Ber, §23] or [vzGG99, Theorem 10.25]. At the last level

8

(the t-th level) of the recursion tree when the FFT is invoked, Step 4 incurs complexity O((dm + `m
t +

N)m`t poly(log `t)).
Thus, using the fact that poly log(`i) ≤ poly log(md log r) for all i, each invocation at level i < t uses

O((dm + N)m`i) · poly log(md log r)

operations while each invocation at level t uses

O((dm + `m
t + N)m`t) · poly log(md log r)

operations. There are a total of `0`1`2 · · · `i−1 invocations at level i. The total number of operations is thus
(

`1`2 · · · `t ·O((dm + `m
t + N)m) +

t−1∑

i=1

`1`2 · · · `i ·O((dm + N)m)

)
· poly log(md log r)

which is at most

O(`1`2 · · · `t) ·O((dm + `m
t + N)m) · poly log(md log r)

≤ O(λt(m)tλt(d)tλt−1(log r)) ·O((dm + `m
t + N)m) · poly log(md log r)

≤ O((λt(d)m + N)λt−1(log r)λt(d)tλt(m)m+t+1) ·O(log(t) r)m · poly log(md log r)

operations over all t levels. The bound in the theorem statement follows.

Plugging in parameters, we find that this yields an algorithm whose running time is optimal up to lower
order terms, when m ≤ do(1).

Corollary 3.3. For every constant δ > 0 there is an algorithm for MULTIVARIATE MULTIPOINT EVALUA-
TION over Z/rZ with running time (dm + N)1+δ log1+o(1) r, for all d,m, N with d sufficiently large and
m ≤ do(1).

Proof. Let c be a sufficiently large constant (depending on δ). We may assume m > c by applying the
map from Definition 2.4, if necessary, to produce an equivalent instance of MULTIVARIATE MULTIPOINT

EVALUATION with more variables and smaller individual degrees. Now if log(3) r < m, then we choose
t = 3, which gives a running time of

O((d(1+o(1))m + N)d3mm(1+o(1))(1+4/c)(log r)1+o(1)) ·O(m)m · poly log(md log r),

which simplifies to the claimed bound using m ≤ do(1). Otherwise, log(3) r ≥ m, and we choose t = 2,
which gives a running time of

O((d(1+o(1))m + N)d2mm(1+o(1))(1+3/c)(log r)1+o(1)) ·O(log(2) r)log(3) r · poly log(md log r),

which simplifies to the claimed bound, using m ≤ do(1) and O(log(2) r)log(3) r ≤ O(logo(1) r).

9

3.3 Extension rings

Using algorithm MULTIMODULAR and some additional ideas, we can handle extension rings, and in par-
ticular, all finite fields. The strategy is to lift to Z[Z], then evaluate at Z = M and reduce modulo r′ for
suitably large integers M, r′. Our algorithm follows:

Algorithm MULTIMODULAR-FOR-EXTENSION-RING(f, α0, . . . , αN−1, t)

where R is a finite ring of cardinality q given as (Z/rZ)[Z]/(E(Z)) for some monic polynomial
E(Z) of degree e, f is an m-variate polynomial f(X0, . . . , Xm−1) ∈ R[X0, . . . , Xm−1] with de-
gree at most d − 1 in each variable, α0, . . . , αN−1 are evaluation points in Rm, and t > 0 is the
number of rounds.

Put M = dm(e(r − 1))(d−1)m+1 + 1 and r′ = M (e−1)dm+1.

1. Construct the polynomial f̃(X0, . . . , Xm−1) ∈ Z[Z][X0, . . . , Xm−1] from f by replacing
each coefficient with its lift which is a polynomial of degree at most e− 1 with coefficients in
{0, . . . , r−1}. For i = 0, . . . , N−1, construct the m-tuple α̃i ∈ Z[Z]m from αi by replacing
each coordinate with its lift which is a polynomial of degree at most e − 1 with coefficients
in {0, . . . , r − 1}.

2. Compute the reduction f ∈ (Z/r′Z)[X0, . . . , Xm−1] of f̃ modulo r′ and Z − M . For i =
0, . . . , N − 1, compute the reduction αi ∈ (Z/r′Z)m of α̃i modulo r′ and Z −M . Note that
the reductions modulo r′ don’t do anything computationally, but are formally needed to apply
Algorithm MULTIMODULAR, which only works over finite rings Z/rZ.

3. Run MULTIMODULAR(f, α0, α1, . . . , αN−1, r
′, t) to compute βi = f(αi) for i = 0, . . . , N−

1.

4. For i = 0, . . . , N − 1, compute the unique polynomial Qi[Z] ∈ Z[Z] of degree at most
(e − 1)dm with coefficients in {0, . . . , M − 1} for which Qi(M) has remainder βi modulo
r′ = M (e−1)dm+1, and return the reduction of Qi modulo r and E(Z).

Theorem 3.4. Algorithm MULTIMODULAR-FOR-EXTENSION-RING returns f(αi) for i = 0, 1, . . . , N − 1,
and it runs in

O((λt(d)m + N)λt(log q)λt(d)t+2λt(m)m+t+3) ·O(log(t−1)(d2m2 log q log log q))m · poly log(md log q)

bit operations.

Proof. To see that the algorithm outputs f(αi) for i = 0, . . . , N−1, note that f̃(α̃i) ∈ Z[Z] has nonnegative
coefficients and its degree is at most (e− 1)dm. Moreover, the value at Z = 1 of each coordinate of α̃i and
each coefficient of f̃ is at most e(r − 1), so f̃(α̃i)(1) ≤ dm(e(r − 1))(d−1)m+1 = M − 1. In particular,
each coefficient of f̃(α̃i) belongs to {0, . . . , M − 1}. We now see that the polynomials f̃(α̃i), Qi ∈ Z[Z]
both have degree at most (e − 1)dm and coefficients in {0, . . . , M − 1}, and their evaluations at Z = M

10

are congruent modulo r′ = M (e−1)dm+1. This implies that the polynomials coincide, so the reduction of Qi

modulo r and E(Z) agrees with the corresponding reduction of f̃(α̃i), which equals f(αi).
We expect a log q = log(re) term in the running time, and recall that Algorithm MULTIMODULAR is

invoked over a ring of cardinality r′ = M (e−1)(d−1)m+1. We have:

log r′ = log(M (e−1)(d−1)m+1) ≤ (e− 1)dm log(dm(e(r − 1))(d−1)m+1 + 1)

≤ O(ed2m2(log e + log r))

≤ O(log q log log q)d2m2. (1)

The dominant step is step 3, whose complexity is (by Theorem 3.2)

O((λt(d)m + N)λt(log r′)λt(d)tλt(m)m+t+1) ·O(log(t) r′)m · poly log(md log r′),

which, using (1) above, yields the stated complexity.

Similar to Corollary 3.3, we obtain:

Corollary 3.5. For every constant δ > 0 there is an algorithm for MULTIVARIATE MULTIPOINT EVALUA-
TION over any ring (Z/rZ)[Z]/(E(Z)) of cardinality q, with running time (dm +N)1+δ log1+o(1) r, for all
d,m, N with d sufficiently large and m ≤ do(1).

Proof. The proof is the same as the proof of Corollary 3.3, except the two cases depend on m in relation to
the quantity r′ appearing in the proof of Theorem 3.4. The argument in the proof of Corollary 3.3 yields the
claimed running time with r′ in place of q; we then use the inequality log r′ ≤ O(log q log log q)d2m2.

4 A data structure for polynomial evaluation

In this section we observe that it is possible to interpret our algorithm for MULTIVARIATE MULTIPOINT

EVALUATION as a data structure supporting rapid “polynomial evaluation” queries.
Consider a degree n univariate polynomial f(X) ∈ Fq[X] (and think of q as being significantly larger

than n). If we store f as a list of n coefficients, then to answer a single evaluation query α ∈ Fq (i.e. return
the evaluation f(α)), we need to look at all n coefficients, requiring O(n log q) bit operations. On the other
hand, a batch of n evaluation queries α1, . . . , αn ∈ Fq can be answered all at once using O(n log2 n) Fq-
operations, using fast algorithms for univariate multipoint evaluation (cf. [vzGG99]). This is often expressed
by saying that the amortized time for an evaluation query is O(log2 n) Fq-operations. Can such a result be
obtained in a non-amortized setting? Certainly, if we store f as a table of its evaluations in Fq, then a single
evaluation query α ∈ Fq can be trivially answered in O(log q) bit operations. However, the stored data is
highly redundant; it occupies space q log q, when information-theoretically n log q should suffice.

By properly interpreting our algorithm for MULTIVARIATE MULTIPOINT EVALUATION, we arrive at a
data structure that achieves “the best of both worlds”: we can preprocess the n coefficients describing f in
nearly-linear time, to produce a nearly-linear size data structure T from which we can answer evaluation
queries in time that is polynomial in log n and log q. This is a concrete benefit of our approach to multipoint
evaluation even for the univariate case, as it seems impossible to obtain anything similar by a suitable re-
interpretation of previously known algorithms for univariate multipoint evaluation.

11

Theorem 4.1. Let R = (Z/rZ)[Z]/(E(Z)) be a ring of cardinality q, and let f(X) ∈ R[X] be a degree n
polynomial. Choose any constant δ > 0. For sufficiently large n, one can compute from the coefficients of f
in time at most

T = n1+δ log1+o(1) q

a data structure of size at most T with the following property: there is an algorithm that given α ∈ Fq,
computes f(α), in time

poly log n · log1+o(1) q

with random access to the data structure.

Proof. We will choose parameters d,m such that dm = n, and apply map ψd,m from Definition 2.4 to f .
Then, given this m-variate polynomial f , algorithm MULTIMODULAR-FOR-EXTENSION-RING com-

putes f with coefficients in Z/r′Z. This is followed by t rounds of multimodular reduction which produce
reduced polynomials fp1,p2,...,pt ∈ Fpt [X] for certain sequences p1, p2, . . . , pt of primes (the pi are the mod-
uli in the t rounds of multimodular reduction). Each fp1,p2,...,pt is evaluated over its entire domain Fm

pt
using

the multidimensional FFT. The key observation is that these computations do not depend on the evaluation
points, and can thus comprise a preprocessing phase that produces the data structure consisting of tables of
evaluations of each fp1,p2,...,pt .

Using notation from the proof of Theorem 3.2, there are at most `1`2 · · · `t reduced polynomials, each pt

has magnitude at most `t, and it holds that `i = O(λi(m)λi(d) log(i) r′). Referring to the proof of Theorem
3.1, we see that the cost incurred to produce the required tables of evaluations is at most

T = `1`2 · · · `t ·O(m`m
t) · poly log(`t)

≤ O(λt(m)t+m+1λt(d)t+mλt−1(log r′)) · (log(t) r′)m · poly log(md log r′)

At this point, an evaluation query α ∈ R can be answered from the tables by first computing the point
(α, αd, . . . , αdm−1

) ∈ Rm, then (as in algorithm MULTIMODULAR-FOR-EXTENSION-RING) lifting each
coordinate to Z/r′Z and finally applying t rounds of multimodular reduction, to produce reduced evaluation
points αp1,p2,...,pt ∈ Fm

pt
. The desired evaluations fp1,p2,...,pt(αp1,p2,...,pt) can be found in the precomputed

tables, and then f(α) is reconstructed by t rounds of application of the Chinese Remainder Theorem. Again
adopting the notation from the proof of Theorem 3.2, this reconstruction is invoked `1`2 · · · `i−1 times at
level i, each time with cost O(`i poly log(`i)). The overall cost for an evaluation query is thus

t∑

i=1

`1`2 · · · `i−1 ·O(`i poly log(`i)) ≤
t∑

i=1

`1`2 · · · `i · poly log(md log r′)

≤ O(`1`2 · · · `t) · poly log(md log r′)
≤ O(λt(m)tλt(d)tλt−1(log r′)) · poly log(md log r′)

It remains to choose the parameters d,m and t. If r′ > 22n
, then we choose d = n,m = 1, t = 2; if

r′ ≤ 22n
, then choose d = logc n and m = (log n)/(c log log n) for a sufficiently large constant c, and

t = 4. These choices give the claimed running times for preprocessing and queries, with r′ in place of q. As
in the proof of Theorem 3.4, we have log r′ ≤ O(log q log log q)d2m2, which completes the proof.

Theorem 4.1 is surprising in light of a number of lower bounds for this problem under certain restric-
tions. For example, in the purely algebraic setting, and when the underlying field in R, Belaga [Bel61]
shows a lower bound on the query complexity of b3n

2 c + 1 (and Pan [Pan66] has given a nearly-matching

12

upper bound). Miltersen [Mil95] proves that the trivial algorithm (with query complexity n) is essentially
optimal when the field size is exponentially large and the data structure is limited to polynomial size, and
he conjectures that this lower bound holds for smaller fields as well (this is in an algebraic model that does
not permit the modular operations we employ). Finally, Gál and Miltersen [GM07] show a lower bound of
Ω(n/ log n) on the product of the additive redundancy (in the data structure size) and the query complexity,
thus exhibiting a tradeoff that rules out low query complexity when the data structure is required to be very
small (i.e., significantly smaller than 2n).

5 Fast modular composition, and its transpose

We now obtain fast algorithms for MODULAR COMPOSITION and MODULAR POWER PROJECTION via the
reduction of Theorem 2.5, and the transposition principle.

5.1 Modular composition

By applying the reduction in Theorem 2.5, we obtain a nearly-linear time algorithm for MODULAR COMPO-
SITION. We emphasize that to achieve this running time only requires invoking Algorithm MULTIMODULAR-
FOR-EXTENSION-RING with t = 2, which makes the overall algorithm (arguably) practical and imple-
mentable. Indeed, use of a single round of multimodular reduction is quite common in practice; for instance,
Shoup’s NTL library [Sho] uses multimodular reduction for most basic arithmetic involving multiprecision
integer polynomials.

Theorem 5.1. Let R be a finite ring of cardinality q given as (Z/rZ)[Z]/(E(Z)) for some monic polynomial
E(Z). For every δ > 0, if we have access to n1+O(δ) distinct elements of R whose differences are units in R,
then there is an algorithm for MODULAR COMPOSITION over R running in n1+δ log1+o(1) q bit operations,
for sufficiently large n.

Proof. Let c be a a sufficiently large constant (depending on δ), and set d = n1/c and m = c. Then applying
Theorem 2.5, we obtain an algorithm for MODULAR COMPOSITION with running time n1+2/c log1+o(1) q ·
poly log(n,m, d) + T (d, m,N), where N ≤ nmd2 ≤ cn1+2/c, and T (d,m, N) is the time for MULTI-
VARIATE MULTIPOINT EVALUATION with parameters d,m, N . We solve this instance via Theorem 3.4
with t = 2.

Corollary 5.2. For every δ > 0, there is an algorithm for MODULAR COMPOSITION over Fq running in
n1+δ log1+o(1) q bit operations, for sufficiently large n.

Proof. Construct an extension field Fq′ of Fq with cardinality at least n1+O(δ), then apply Theorem 5.1 with
R = Fq′ .

Remark. In the running times claimed in Corollaries 3.3, 3.5, 5.2, and Theorem 5.1, we have chosen to
present bounds that interpret “almost linear in x” as meaning “for all δ > 0, there is an algorithm running
in time x1+δ for sufficiently large x.” In all cases, it is possible to choose δ to be a sub-constant function of
the other parameters, giving stronger, but messier, bounds.

13

5.2 Fast modular power projection

In this section, we consider the “transpose” of MODULAR COMPOSITION, defined next:

Problem 5.3 (MODULAR POWER PROJECTION). Given a linear form π : Rn → R, and polynomials
g(X), h(X) in R[X], each with degree at most n − 1, and with the leading coefficient of h a unit in R,
output π(g(X)i mod h(X)) for i = 0, 1, . . . , n− 1.

One can view MODULAR COMPOSITION as multiplying the n × 1 column vector of coefficients of f
on the left by the n × n matrix Ag,h, whose columns are the coefficients of g(X)i mod h(X) for i =
0, 1, . . . , n − 1. Then MODULAR POWER PROJECTION is the problem of multiplying the column vector of
coefficients of π on the left by the transpose of Ag,h.

By a general argument (the “transposition principle”), linear straight-line programs computing a linear
map yield linear straight-line programs with essentially the same complexity for computing the transposed
map.

Theorem 5.4 ([BCS97, Thm. 13.20]). Let φ : Rn → Rm be a linear map that can be computed by a linear
straight-line program of length L and whose matrix in the canonical basis has z0 zero rows and z1 zero
columns. Then the transposed map φt : Rm → Rn can be computed by a linear straight-line program of
size L− n + m− z0 + z1.

If our algorithm for MODULAR COMPOSITION computed only linear forms in the coefficients of poly-
nomial f then we would have a similarly fast algorithm for MODULAR POWER PROJECTION via the above
theorem. Unfortunately, the lifting to characteristic 0 followed by modular reduction is not algebraic, and so
we cannot apply Theorem 5.4 directly. However, with some care, we can isolate the nonalgebraic parts of the
algorithm into preprocessing and postprocessing phases, and apply the transposition principle to algebraic
portions of the algorithm. Before considering MODULAR POWER PROJECTION, we consider the transpose
of MULTIVARIATE MULTIPOINT EVALUATION.

Theorem 5.5. Let R be a finite ring of cardinality q given as (Z/rZ)[Z]/(E(Z)) for some monic poly-
nomial E(Z). There is an algorithm for the transpose of MULTIVARIATE MULTIPOINT EVALUATION with
parameters satisfying N = dm, with running time at most that claimed in Theorem 3.4.

Proof. We view Algorithm MULTIMODULAR-FOR-EXTENSION-RING as computing the linear map φ :
Rdm → RN which computes the evaluations of f at evaluation points α0, α1, . . . , αN−1. This is computed
by a preprocessing phase (Steps 1 and 2), which produces f and α0, α1, . . . , αN−1, with the coefficients
of f and the coordinates of each αi in Z/r′Z. Algorithm MULTIMODULAR then computes in t successive
multimodular reductions a collection of instances of MULTIVARIATE MULTIPOINT EVALUATION over Fp,
for small primes p. Each of these is a map from φp : Fdm

p → FN
p , which is computed rapidly using Theorem

3.1. The transpose map φp can be computed in the same time bound, by Theorem 5.4, or directly by observ-
ing that the transpose of the DFT computed in Step 2 in the proof of Theorem 3.1 can again be computed
rapidly using the FFT.

In the original algorithm, a postprocessing phase (successive applications of Step 5 of Algorithm MUL-
TIMODULAR) we recover the evaluations of f in t successive rounds of reconstruction using the Chinese Re-
mainder Theorem. Finally the evaluations of f are reconstructed in Step 4 of Algorithm MULTIMODULAR-
FOR-EXTENSION-RING. In our algorithm for the transpose problem φt, we perform the same successive
rounds of reconstructions applied to the output from computing the various φt

p maps.

14

In the original problem, correctness in each round of reconstruction comes from choosing primes for
each multimodular reduction whose product exceeded the magnitude of any evaluation in Z. We argue cor-
rectness of these successive rounds of reconstruction in the transpose problem by noting that the magnitude
calculation is the same for the transpose problem, when N = dm. This is because the bound is calculated as
the product of the number of coefficients of the polynomial (dm) and the maximum magnitude of any matrix
entry in the matrix representation of the linear map. For the transpose problem, a valid bound is the product
of N times the maximum magnitude of any matrix entry of the transposed matrix, which is the same.

Theorem 5.6. Let R be a finite ring of cardinality q given as (Z/rZ)[Z]/(E(Z)) for some monic polynomial
E(Z). For every δ > 0, if we have access to n1+O(δ) distinct elements of R whose differences are units in
R, then there is an algorithm for MODULAR POWER PROJECTION over R running in n1+δ log1+o(1) q bit
operations, for sufficiently large n.

Proof. Consider first the reduction from MODULAR COMPOSITION to MULTIVARIATE MULTIPOINT EVAL-
UATION of Theorem 2.5. An instance of MODULAR COMPOSITION is specified by degree n polynomials
f(X), g(X), h(X). We describe the reduction as the product of linear maps applied to the vector of coeffi-
cients of f . Steps 2 and 3 do not involve f , and can be executed in a preprocessing phase.

Step 1 is given by φ1 : Rn → Rn′ which maps f to f ′ by permuting the coefficients and padding with
0’s. Step 4 is given by φ4 : Rn′ → RN which maps f ′ to its evaluations at the N evaluation points (the
α’s). Step 5 is given by φ5 : RN → RN which maps these evaluations to the coefficients of the univariate
polynomial having these values at the βs. Step 6 is given by φ6 : RN → Rn which maps the resulting
degree N − 1 univariate polynomial to its reduction modulo h(X). All of φ1, φ4, φ5, φ6 are linear maps,
and thus the overall algorithm for MODULAR COMPOSITION (after the preprocessing phase involving g(X)
and h(X)) can be described as the linear map φ6 ◦ φ5 ◦ φ4 ◦ φ1 : Rn → Rn.

We are interested in computing the transposed map φt
1 ◦ φt

4 ◦ φt
5 ◦ φt

6 : Rn → Rn. We argue that
transposed map can be computed in time comparable to the time required for the nontransposed map. In
Theorem 2.5, φ6 is computed rapidly using fast polynomial division with remainder. By the transposition
principle (Theorem 5.4), φt

6 can be computed in comparable time. In Theorem 2.5, φ5 is computed rapidly
using fast univariate polynomial interpolation. By the transposition principle (Theorem 5.4), φt

5 can be
computed in comparable time.

In Theorem 2.5, φ4 is computed rapidly by invoking a fast algorithm for MULTIVARIATE MULTIPOINT

EVALUATION. We claim that φt
4 can be computed in the time expended by Algorithm MULTIMODULAR-

FOR-EXTENSION-RING to compute φ4. We’d like to apply Theorem 5.5, but that requires N = dm, and
in our case N is larger by a factor of dm. But, just as we could have computed φ4 by invoking Algorithm
MULTIMODULAR-FOR-EXTENSION-RING dm times with dm evaluation points each time, we can compute
φt

4 by computing the transpose of a dm square instances (via Theorem 5.5) and summing the resulting
vectors.

Finally, φt
1 is just a projection followed by a permutation of the coordinates, which can trivially be

computed in time comparable to that required for computing φ1.

Remark. There are explicit algorithms known for φt
5 (transposed univariate interpolation) and φt

6 (trans-
posed univariate polynomial division with remainder) (see, e.g., [BLS03]), and our algorithm in Theorem
5.5 is also explicit. Thus we have an explicit algorithm for MODULAR POWER PROJECTION (whereas in
general, use of the transposition principle may produce an algorithm that can only be written down by
manipulating the linear straight-line program).

15

6 Conclusions

We conclude by outlining some applications of our new algorithms, and open problems.

6.1 Applications

Fast algorithms for MODULAR COMPOSITION and MODULAR POWER PROJECTION give rise to improve-
ments in various basic operations with polynomials over finite fields, as indicated already in [Uma08]. Here
is an incomplete but indicative list of such problems, with the dependence on the running times for MODU-
LAR COMPOSITION and MODULAR POWER PROJECTION made explicit. Below we use C(n, q) and P (n, q)
for the number of bit operations required for MODULAR COMPOSITION and MODULAR POWER PROJEC-
TION, respectively (operating on degree n polynomials, over Fq).

• Univariate polynomial factorization. We are given f(X) ∈ Fq[X] of degree n and we must output the
irreducible factors. Variants of the Cantor-Zassenhaus method break this problem into three stages:
square-free factorization, distinct-degree factorization, and equal-degree factorization. Yun’s algo-
rithm for the first stage takes n1+o(1) log2+o(1) q bit operations; Kaltofen & Shoup’s algorithm for the
second stage [KS98] takes n0.5+o(1)C(n, q) + n1+o(1) log2+o(1) q bit operations; von zur Gathen &
Shoup’s randomized algorithm for the third stage [vzGS92] takes O(C(n, q)) + n1+o(1) log2+o(1) q
bit operations. Thus with our algorithm for MODULAR COMPOSITION, we obtain a randomized algo-
rithm that takes

(n1.5+o(1) + n1+o(1) log q) log1+o(1) q

bit operations for the polynomial factorization problem.

• Irreducibility testing. We are given f(X) ∈ Fq[X] of degree n, and we want to determine whether or
not it is irreducible. Rabin’s algorithm [Rab80] can be implemented to take (n1+o(1)) log1+o(1) q +
C(n, q) log2 n bit operations, so we obtain a running time of n1+o(1) log1+o(1) q, which is best-
possible up to lower order terms.

• Computing minimal polynomials. We are given g(X), h(X) ∈ Fq[X], both of degree at most n, and
we must output the minimal polynomial of g(X) in the ring Fq[X]/(h(X)); i.e., the monic polynomial
f(X) of minimal degree for which f(g(X)) mod h(X) = 0. Shoup’s randomized algorithm [Sho99]
runs in expected time (n+C(n, q)+P (n, q))no(1), so we obtain a running time of n1+o(1) log1+o(1) q,
which is best possible up to lower order terms.

The fact that our algorithm applies to extension rings leads to some additional applications. For instance,
if P (X) ∈ (Z/pnZ)[X] is a monic polynomial whose reduction modulo p is monic (of the same degree) and
irreducible, then the ring R = (Z/pnZ)[X]/(P (X)) admits a unique Frobenius automorphism F : R → R
satisfying F (r) ≡ rp (mod p) for all r ∈ R. Once one has computed F (X), one can then evaluate F
efficiently using modular composition. Such rings R arise as quotients of unramified extensions of the ring
of p-adic integers; consequently, fast Frobenius evaluation leads to improvements in certain algorithms based
on p-adic numbers. An explicit example was suggested by Hendrik Hubrechts, in his use of deformations
in p-adic Dwork cohomology to compute zeta functions of hyperelliptic curves over finite fields; use of our
algorithms leads to a runtime improvement by substituting for our modular composition algorithm in [Hub,
§6.2].

16

6.2 Open problems

We briefly mention some open problems. Our algorithm for MULTIVARIATE MULTIPOINT EVALUATION

is only optimal up to lower order terms in case m ≤ do(1). It would be interesting to describe a near-
optimal algorithm in the remaining cases, or perhaps just the multilinear case to start. It would also be
satisfying to give a near-optimal algebraic algorithm for MULTIVARIATE MULTIPOINT EVALUATION in
arbitrary characteristic ([Uma08] does so for the case of small characteristic).

As noted earlier, the reduction from MODULAR COMPOSITION to MULTIVARIATE MULTIPOINT EVALU-
ATION plays an important role in our work because it is easier to control the growth of integers when solving
the lifted version of MULTIVARIATE MULTIPOINT EVALUATION. One wonders whether there are other prob-
lems involving polynomials that can exploit the combination of transforming the problem to a multivariate
version with smaller total degree, and then lifting to characteristic zero followed by multimodular reduction.

Finally, the reduction to MULTIVARIATE MULTIPOINT EVALUATION can be seen, loosely, as a gen-
eralization of the “baby steps/giant steps” approach of [BK78]. We wonder whether this generalization
can improve algorithms for other problems whose currently best algorithms use a “baby steps/giant steps”
technique, such as automorphism projection and automorphism evaluation as discussed in [KS98].

7 Acknowledgements

We thank Swastik Kopparty and Madhu Sudan for some references mentioned in Section 4, and Ronald de
Wolf and the FOCS 2008 referees for helpful comments.

References

[BCS97] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory, volume 315 of
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1997.

[Bel61] E. G. Belaga. Evaluation of polynomials of one variable with preliminary preprocessing of the
coefficients. Problemy Kibernet., 5:7–15, 1961.

[Ber] D. J. Bernstein. Fast multiplication and its applications (version of 7 Oct 2004). Preprint available
at http://cr.yp.to/papers.html#multapps.

[BK78] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. J. ACM,
25(4):581–595, 1978.

[BLS03] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In ISSAC ’03: Pro-
ceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pages
37–44, New York, NY, USA, 2003. ACM.

[GM07] A. Gál and P. B. Miltersen. The cell probe complexity of succinct data structures. Theor. Comput.
Sci., 379(3):405–417, 2007.

[HP98] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and applications. J. Complexity,
14(2):257–299, 1998.

[Hub] H. Hubrechts. Point counting in families of hyperelliptic curves (version of 31 Mar 2007).
Preprint available at http://wis.kuleuven.be/algebra/hubrechts/.

17

[KS98] E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite fields. Math-
ematics of Computation, 67(223):1179–1197, 1998.

[Mil95] P. B. Miltersen. On the cell probe complexity of polynomial evaluation. Theor. Comput. Sci.,
143(1):167–174, 1995.

[NZ04] M. Nüsken and M. Ziegler. Fast multipoint evaluation of bivariate polynomials. In Susanne
Albers and Tomasz Radzik, editors, ESA, volume 3221 of Lecture Notes in Computer Science,
pages 544–555. Springer, 2004.

[Pan66] V. Ya. Pan. Methods of computing values of polynomials. Russian Math. Surveys, 21(1):105–
136, 1966.

[Rab80] M. O. Rabin. Probabilistic algorithms in finite fields. SIAM J. Comput., 9(2):273–280, 1980.

[Sho] V. Shoup. NTL 5.4.2. Available at http://www.shoup.net/ntl/.

[Sho94] V. Shoup. Fast construction of irreducible polynomials over finite fields. J. Symb. Comput.,
17(5):371–391, 1994.

[Sho99] V. Shoup. Efficient computation of minimal polynomials in algebraic extensions of finite fields.
In ISSAC, pages 53–58, 1999.

[Sho08] V. Shoup. A Computational Introduction to Number Theory and Algebra (version 2.3). Cam-
bridge University Press, 2008. Available at http://www.shoup.net/ntb/.

[Uma08] C. Umans. Fast polynomial factorization and modular composition in small characteristic. In
Richard E. Ladner and Cynthia Dwork, editors, STOC, pages 481–490. ACM, 2008.

[vzGG99] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
1999.

[vzGS92] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials. Com-
putational Complexity, 2:187–224, 1992.

18

