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Abstract

Given a set of observed economic choices, can one infernprefes and/or utility functions for the
players that are consistent with the data? Questions ofythis are calledationalizationor revealed
preferencgroblems in the economic literature, and are the subjectichebody of work.

From the computer science perspective, it is natural toystuelcomplexity of rationalization in var-
ious scenarios. We consider a class of rationalizationlpradin which the economic data is expressed
by a collection of matchings, and the question is whetheetkgist preference orderings for the nodes
under which all the matchings aseable

We show that the rationalization problem for one-one maighis NP-complete. We propose two
natural notions of approximation, and show that the prohfehard to approximate to within a constant
factor, under both. On the positive side, we describe a gralglorithm that achieves34 approxima-
tion ratio for one of these approximation notions. We alsavprsimilar results for a version of many-one
matching.
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1 Introduction

Given a set of consumption choices in a market, it is nataraiyt to infer information about the players’
preferences or utility functions. This branch of consumeamend theory is known asvealed preference
theorybecause consumers, by dint of the choices they make, “ratedl preferences for various outcomes
[Afr67] Die73,[Sam48, Ech06, FST(04, Var82, Spr00]. It casds a major tool in econometric analysis
used to estimate aggregate consumer demand [Afr67, VaF@éin the Computer Science perspective, this
is a learning problem, and recent work initiated a studyoPAC-learnability[[BVO8].

Some classes of data cannot always be explainetationalizedby simple (say, linear) utility func-
tions, or even any reasonable utility function. Such sg#tiare interesting to economists, because it be-
comes possible, in principle, to “test” various assummi¢mg. that the players are maximizing a simple
utility function). Several (classical and recent) res{igg67] Var82,[FST04, Ech06] in the economic lit-
erature establish criteria for when dataals/aysrationalizable, thus delineating the limits of the “testab
implications” of such data.

There is an important role for Computer Science in thesetmunss as the feasibility of performing such
tests depends on being able to answer the rationalizaqili#gtiorefficiently In other words, given atype of
economic data, and a target form for an “explanation” (pefee profile, a class of utility functions, etc...),
we wish to understand trmmplexityof deciding whether the data can be rationalized by an eafitam of
the prescribed form. To our knowledge these sort of probleave not been studied before.

Among rationalization problems, one can identify at least broad classes of problems. Some, such as
inferring utility functions from consumption data, arefrat easily solved efficiently using linear program-
ming [Afr67|,[Var82]. Others are more combinatorial in natuand their complexity is not at all obvious.
One recent example is the problem of inferring costs froneoladions of spanning trees being formed to
distribute some service, say pow&Zs06].

Among the combinatorial-type rationalization problemse @f the most natural is the matchings prob-
lem that we study in this paper. Here we are given a set of fitipamatchings, and we wish to determine if
there are preferences for the nodes under which all of thengivatchings are stable. Matchings, or more
precisely “two-sided matching markets,” are a centralrals§on in economics, investigated in relation to
the similar “marriage models” in auction and labor mark&S90] Fle03, EO04, EY07] and from the point
of view of mechanism desigin [S6n96] and related strategguas([STTO1]. They are also a fundamental
combinatorial abstraction from the computational pertspec

1.1 Our results

Given two sets of noded/ (“men”) andW (“women”), together with preferences for each node, theofasn
algorithm of Gale and Shapley [GS62] obtainstable matching We will be interested in the “reverse”
guestion: given a set of matchings, are there preferenasr wvhich they are simultaneously stable? One
may wonder why we should be given a collection of matchingseid of a single instance of a matching
between the set of men and women. Indeed, we think of the rmehwyamen) as representing instances
of different typesor populations that are matched differently in each matglind we are interested in
determining the preference profiles that define these tyassdoon the observed set of matchings. Before
stating our results, we formalize the problem and introdkarae terminology.

Definition 1.1. Let M, W be disjoint sets of equal cardinality. @ne-one matchingu is a bijectiony :
MUW — M UW, such that for allm € M, p(m) € W, forall w € W, u(w) € M, and for all
me M,weW, u(m)=w < pu(w) =m.



In the problems we consider, we will be seeking preferencethe elements ol and W, which are
expressed as follows:

Definition 1.2. A preference orderfor m € M (resp.w € W) is a linear ordering ofi¥ (resp. M). We
write m : w > w’ to mean thatv occurs beforeu’ in the preference order fam. A preference profileis a
collection of preference orders for eaehh € M andw € W.

The “stability” of a matching with respect to a preferencefipe depends on the crucial notion labck-
ing pair:

Definition 1.3. A blocking pair with respect to a matching and a preference profil® is a pair (m, w) :
m € M,w € W such thatu(m) # w and

m:w > p(m) andw : m > p(w).
Matchingy is stablewith respect tdP if there is no blocking pair with respect fpand P.

In other words, in a blocking pa{rm, w) with respect tq: andP, both people are “unhappy” with their
current partner i, and would instead prefer to be matched to each other.
Our first result is that rationalizing matchings is hard.

Theorem 1.4. Given a collection of one-one matchings on the sets\M and W, it is NP-complete to
determine if there exists a preference profilesuch that every, € H is stable with respect t®.

We call such a preference profilaaionalizationof the matchings{. The main gadget we use in the
reduction is distilled from some fairly involved necessand sufficient conditions for a preference profile
to be a rationalization, discovered by Echenique [Ech06].déakcribe the full conditions in Sectibh 2. Our
gadget is a configuration across two matchings, that loékstfiis:

m/\w/ m/
z [ 34

A preference profilé® rationalizes the matchings containing this configuratioly & eitherm : w > w’
andm’ : z > w,orm : w' > wandm’ : w > 2. Conversely, if these conditions hold (together with
additional conditions concerning the remainder of the matgs) thenP rationalizes the set of matchings.
We use this gadget fundamentally as a Boolean choice gae€igjetr(m prefersw overw’ or w’ overw),
and as part of a scheme to ensure consistency (since thedfoicis tied to the choice of’).

Having ascertained that rationalizing a collection of rhatgs is NP-complete, we would next want to
know how hard it is to solve the problem approximately. Iistontext, we first need to decide what exactly
we mean by ‘approximate’ rationalization. Two notions af@articular interest: on the one hand, we can
think of identifying a preference profile that rationalizee maximum number of matchings.



Problem 1 (MAX -STABLE-MATCHINGS). Given a collection of matching¥ on setsM, W, find a prefer-
ence profileP that maximizes the number of matchinggdrihat are simultaneously rationalized 13

This problem is hard to approximate to within some constactiofr:

Theorem 1.5. There is a constard > 0 for which it is NP-hard to approximat®AX -STABLE-MATCHINGS
to within a factor of(1 — ¢).

A second natural notion of approximation attempts to mazariistability” among the given set of
matchings at a more fine-grained level, by maximizing the lmemof non-blocking pairs across all match-
ings.

Some effort is required to make this notion of approximatieaningful. In a typical instance there will
be many pairgm, w) for which m is not matched tav in any of the given matchings. We say such a pair
is non-activeand pairs that are matched in some matchingpative It is easy to ensure that all non-active
pairs are non-blocking pairs with respect to any matchiggeluiring the preference profile to balid:

Definition 1.6. A preference profiléP is valid with respect to a collection of matchings if for every
m € M, m:w > w'if (m,w) is active and(m,w’) is not active, and for every € W, w : m > m/’ if
(m,w) is active and'm’, w) is not active.

In other words, each mam prefers women that he is matched to in some matching over wahae
he is never matched to, and similarly for each womenWe argue that to have a meaningful notion of
maximizing non-blocking pairs, one should consider onlijdvareference profiles, and therefore attempt
to maximize the number of non-blocking pamsnong the active pairgsince a valid preference profile
automatically takes care of all of the non-active pairs). ke led to define the following optimization
problem:

Problem 2 (MAX -STABILITY ). Given a collection of matchingd on setsM, W, find a valid preference
profile P for M, W that maximizes:

{(m,w, 1) : (m,w) is active
and is not a blocking pair with respect fa P}|.
This problem is also hard to approximate to within some aotdiactor:

Theorem 1.7. There is a constant > 0 for which it is NP-hard to approximateAX -STABILITY to within
a factor of(1 — ¢).

Our proof uses the overall structure of the reduction usgudee Theorerh 114 together with an explicit
constant-degree expander to make aspects of the reducbastrenough to be gap-preserving.

An approximation o3 /4 is achievable (in expectation) for this problem by a simpledomized assign-
ment of preferences. Derandomizing via the method of cmdit expectations yields:

Theorem 1.8. There is a deterministic, polynomial-time approximatidgoaithm for MAX -STABILITY that
achieves an approximation factor of 3/4.

Finally, we turn to a generalization of the one-one matchiwg have been considering:



Definition 1.9. Let F, W be disjoint sets. Ane-many matchingis a pair of functiongy, 7) with i : F —
oW andr : W — F for which

Vw € p(f), 7(w) = f andvVw € W,w € p(r(w)).

Typically in economics literature, one-to-many matchiags spoken of in reference to firms and work-
ers (or, similarly, hospitals and interns) and hence thatrst of F, W is more prevalent. However, since
this problem is so closely tied in with our discussion of aaene matchings we will continue to use the
notation of “men”M and “women”W when we mention one-to-many matchings in the rest of therpape
One-many matching models have been widely studied [R0tBB5}

In a one-many matching, preference order and preferendéepane defined in the same way as for
one-one matchings, except that eacthas a linear ordering & instead of jusfi’’. Also analogous to
the blocking pair for one-to-one matchings, we can defibmeking setand a notion of stability [EQ04] for
one-to-many matchings:

Definition 1.10. A blocking setwith respect to a one-many matchi(yg, 7) and a preference profil® is a
pair (m, B) : m € M, B C W such thatu(m) N B = () and

JA C p(m) such that

m:AUB > pu(m)andVw € B w:m > 7(w).
Matching(u, 7) is stable® with respect tdP if there is no blocking set with respect (o, ) andP.

The rationalization problem for one-many matchings is ik@ly to even ban NP, because a withess
(preference profile) entails listing preference o28r, which is exponentially large. We are then led to
consider a restricted version of the problem in which we allpw m € M to be matched to a set of
cardinality at most some constant paramétaie call such matchingsne+ matchings.

The resulting rationalization problem is in NP and, we shid®;complete:

Theorem 1.11. For every fixed, given a collection of oné-matchingsH on the sets\/ and W, it is NP-
complete to determine if there exists a preference prgfieich that every: € H is stableé with respect to
P.

We can define the notion of an active pgit, B) for one4 matchings in analogy with active pairs, and
also valid preference profiles as in Definitlon]1.6.

The two approximation problems arising with respect to émeatchings are hard to approximate to
within some constant factor, just as in the one-one case:

Theorem 1.12. There is a constant > 0 for which it is NP-hard to approximat®AX -STABLE-ONE-/{-
MATCHINGS to within a factor of(1 — ¢).

Theorem 1.13. There is a constart > 0 for which it is NP-hard to approximat®AX -ONE-/-STABILITY
to within a factor of(1 — ¢).

2 Preliminaries
In this section, we encapsulate the working of the resulbfe-one matchings due to Echenique [Ech06]

and provide the necessary and sufficient conditions forxtistence of a preference profile that rationalizes
a given collection of matchings. We start with some defingiand notations.
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Definition 2.1. For any two matchings, 1 € H, a (u, i/)-pivot is aw € W such that there exist some
myg, mg € M such thatu(my) = p/(my) = w.

The key to proving Theoreim 1.4 is a result due to EchenigubQElwhich we encapsulate in Lemma
[2.3 which sets down necessary and sufficient conditionshioekistence of a preference profile that ratio-
nalizes a given collection of matchings. We first introducme notation that will be necessary to describe
Lemmd2.8. Consider the directed gra@fy with M as vertex set andl;; as edge-set whefen, m') € E;;
if ui(m) = pj(m’). Let C(u;, ;) denote the set of all connected component&’gf We will denote the
analogous graph obtained by considering as verteXisets I;;. The following proposition now follows
from our notation and establishes a correspondence bet@gend H;;.

Proposition 2.2. (Echeniquel[Ech06]Y" is a connected component@f; iff 1;(C') is a connected compo-
nent of ;. Furthermore,u;(C') = p;(C).

Echeniquel[Ech(06] showed the following lemma to be true.

Lemma 2.3. (Echeniquel[EchQ6]) Let! = {u1, ..., ue} be rationalized by preference profife. Consider,
for all p;, 11; € H the graphG;; and allC € C;;. Then, exactly one dfl(1) drl(2) must be true:

m : pi(m) > pj(m) forall m € C and

w : p(w) > pi(w) forall w e p;(C) 1)
m : pi(m) < pj(m) forallm € C and
w : pj(w) < pi(w) forall w e p;(C) 2

Conversely, ifP is a preference profile such that for al}, 1; € H andC € C(u;, 115), exactly one of (1)
or (2) holds, therP rationalizesH.

3 Hardness of rationalizability of matchings

We are given two setd/, W with |M| = |[W| = N and a set{ of s matchingsu1,...,us : M — W.
We show that the problem of determining whether there edgtseference profile that rationalizés is
NP-complete by reducing fromAE-3SAT.

3.1 Proof outline

We give below a broad overview of the reduction used to praeaing 3.2. Our objective is to start with a
set of clauses and construct matchings corresponding noitheuch a way that the all-equal assignment to
variables in a clause would lead to a conflicting prefereetaion for some element in the set of matchings.
With this in mind, we build ‘matching gadgets’ corresporglio a given Boolean formula.

By way of example, consider a single clause= (1 V Z3 V Z3). We associate with each variabig
the elementsny; € My, wy;, w); € W1. We will subsequently pad/; with dummy elements to ensure that
|My| = |Wh|. For such a clause, we look up Table 4 (in Appen®@® to constructlO partial matchings
M1y .oy 10 involving M; = {m1Z|’L = 1,2,3} U {ul} andW; = {wh,w’hh = 1,2,3} U {yl,zl}. Our
encoding of the truth assignment to a variabljen clauseC; will then correspond ton,; preferringwy;
overwy;, i.e.my; : wy, > wy; iff z; = 1. The claim below gives a flavor of how the entire reductionksor

Claim 3.1. There exists a rationalizable preference profile My, 17/, for the matchings described in Table
[4 iff there exists a not-all-equal satisfying assignmento.
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Proof. (Sketch) Suppose there exists a not-all-equal satisfiable assignimér,. Then, in order to show
that the corresponding preference profile obtained ismalipable, we will show that it satisfies the condi-
tions in Lemmd 2.13. We fix the preference for eaah betweenw;; andw), based on the assignment to
x; fori =1,2,3. We setmy; : wj; > wy; if z; = 1 andmy; : wy; > w); otherwise. Note that since an
assignment0, 1, 1) or (1,0,0) to (z1,x2, z3) is ruled out, the matchings in Taklé 4 ensure that there will
be no “cycles” in the preference ordersqef1, m12, m13. Furthermore, an assignment:g, xs, 3 only
fixes a preference order for all € M; and so we can fix a preference order #oe W, so that there is no
conflict in the preference orders for all, w and that the conditions in Lemrha R.3 are satisfied.

The converse is immediate because for a rationalizablegnece profile forn € My, w € Wy, Lemma
[2.3 holds and hence an all-equal assignmertttds not allowed. For instance, suppase , x2, 3) were
assigned0, 1, 1) then using Lemm@a 2.3 to draw up all the preference relationsvauld obtain a conflict,
i.e.mq1 : wig > why (@pplying LemmazZi3 teuy, ..., w1g) andmyy : wiz < wi, (@pplying Lemma?2]3 to
119, 4110)- Therefore, setting each of the to the values obtained depending on the preference relfmion
my; betweenw;; andwj; as delineated above is a not-all-equal satisfying assighme O

In a Boolean formula withn clauses, we repeat the exercise above but use disjoiniVetd/, for
each clause”, to avoid conflicting preference ordeegrossclauses. This makes it necessary for us to
enforce consistency between the preference relations:fprand wy;, wy, for all ¢ = 1,...,m and the
assignment ta;. To this end, we use additional matching gadgets from Talalecban auxiliary element
v;. Again applying Lemma 213, we see that for occurring in clauseg’;, Cs say, we must have that
miq :’LU/H > w1l < Moy : w’21 > wo1.

Note that in the manner our construction of matching gadgetst up, it is necessary for our purposes
to reduce fromNAE-3SAT as opposed to AT because, if an all-false assignment to a clause were to lead
to a conflict in preference relation for some w, w’, then by symmetry an all-true assignment would also
lead to a contradictory preference relation.

3.2 Proof of TheoremL.4.

The proof for Theorem 114 automatically follows from Lemima ®&hich we formally state and prove below.

Lemma 3.2. Let Z be an instance aflAE-3SAT overn variableszy, ..., x, andm clause<y, ..., Cy,_1.
Then, there exists an instange of O (m) matchings between set$ andW, [M| = |W| = O(m+mn) such
that there exists a rationalizable preference profile fdrral € M,w € W iff there exists a not-all-equal
satisfiable assignment tg, . . . , z,,. Furthermore, these matchings can be constructed in paiyaldime.

Proof. Consider a claus€ involving z;, z;, z;. ForCy, we consider the following sets of men and women:
My =M,UM;UB,UU UV, UT;, Wy = W,UW,UG,UY,UV/U Z,. Each ofM,, W, comprises3 men
and women{my;, m¢j, me } and{wy;, wy;, we } respectively. The remaining sets are similarly constulicte
with each containing elements. We then look up the corresponding table from $é&blérougH ¥ and
constructl0 partial matchings. In addition, we consider the singletementy, which is used in matchings
in Table[5. Note that each € M, corresponds to a variable occurring@f. We will usevy; to match, say,
my; € M, for consistency in the assignment made to the variableccurring in the first claus€’,., r > /.
This gives rise tat matchings for each clause. L&f = U2 M, W = UL, W,. Furthermore, we will
denoteR (Cy) to be the set of all matchingsassociated with clausg, as described above.

We now describe in detail the complete set of matchings baivwid, and)V,. The idea is to make sure
that every element: € M, not already matched according to the tables is matched te som W,. We
use the following rules:



Table 1: ForC;, = (x; + xj + xx), (Z; + Tj + Zy):
pers | (mg,wi) (my, w;)
pe2s | (mi,wi) (my, ye)
pest | (my,wy) (mug, wy)
preat | (myj, wy) (my, 2¢)
Hhese (mk7w;c )
st | ( )
per: | (g, wy) (Mg, w;)
fes: ( ;)
pegt | (Mg, 2¢) (Mg, w;)
preto: | (my, w;) (my, w;)

Table 2:Cy = (z; + x; + Zx), (Ti + T + =)
et | (mg,w;) (my, w;)
preat | (mg,wi) (my, ye)
)
)

fe3: (mjﬂw; (mkﬂwj)
peat | (myj, wy) (my, 2¢)
Hhese (m/ww;c) )
st | (my, wi)
ez (

prest | (ug,wy) (m, wy)
oo | (M, ze) (M, wy)
preto: | (my, w;) (my, w;)

1. Formy;, u(my;) = ¢, we matchmy; to go; € Gy andwy; 1o by; € By.

2. Formy;, ¢’ # ¢ matchmy, to gp; € Gp andwy; t0 by; € By. Matchm),, € M), to w),, € W,.
Matchwg; t0 ygr;, vpr; 1O UZ,Z- andity; to zp;.

3. LetB) = {be|p(ber) = ¢}, Gy = {ger|1(ger) = ¢}. Note that by the structure of our matching rules
in Tabled1 throughl4] < |By| < |G}| < 2. For eachb,, € B, we match tag,. € G, in ascending
order ofk, r.

4. If after (3), there is somey, € Gy, 1i(ger) = ¢ match the firsin), € M, u(mj,) = ¢ to g

5. For allmy, € My, u(my;) = ¢, matchmy, to the firstw;,, u(wy;) = ¢. Similarly with ug;, t,; and
Z0is Yei-

6. Finally, for allvg;, p(ve;) = ¢ matchuy; to vy,.

This specifies a complete matchipg: M — W. We havel0 such matchings for each clause, and at

most4 matchings for each variable in a clause to ensure consistEnassignment. Therefore, the total
number of matchings is at mo&2m. The claims below demonstrate how our reduction works.



Table 3: ForC, = (332 + 2+ :L'k), (3_32 +x; + i’k)
per: | (mg,wj) (my, w;)
pe2s | (mg,wi) (my, ye)
o3 (mjij) (Mg, w;)
preat | (myj, wy) (my, 2¢)
pes: | (mg, wy,) )
pest | (my, wg) )
pers | (ue, wy) (mg, wy)
pest | ( )
peo’ | (M, 2e) )
preto: | (Mg, wy) (my, wy)

Table 4: ForC, = (:L'Z +x;+ ﬂ_ik) (:f'z +x; + {L'k)i
pers | (mg,w ) (myj, w;)
He2: (muwz) (mjvyﬁ)
He3: (mjij)

peat | (myj, wy) (my, 2¢)
st | ( )
st | ( )
pers | (ue, wg) (mg, wy)
Hes: ( )
peo: | (M, ze) (M, wy)
pretos | (Mg, wy) (my, wy)

Table 5: Consistency matching foy, occurring in clauses€’;, C;:

| (Mip, W) (Vip, wlp)

ot | (Mip, wip) (Vip, W)

fpst | (Vip, wip) (Myp, W)
! . /

Hpg- (U2p7wjp) (mypawjp)




Claim 3.3. Suppose there exists a not-all-equal satisfying assightoem instance imn clause<’, ..., Cy,
andn variableszq, ..., z,. Then, there exists a rationalizing preference profilgor the corresponding
instance of matchings betweén and V.

Proof. We construct a valid preference profile and hence will onlysider active pairs. Note that by the
structure of our reduction setting up the matchings, each M,, w € W, has at most five elements that it
is matched to. In order to satisfy conditions in Lenimd 2.3 vileamnstruct these preference orders so that
for every active pair, one ofl(1) drl(2) holds.

Note that the only connected components possible in anyhgtgp,,, constructed from matchings
11, 1o are either a cycle or a self-loop (when an elemeris matched to the same in both 1; andus).

Consider the variable; and the set of matchings n’ wherem,; is matched tav,; andwj,; respectively.
Note that by consequence of our construction of the matshifog any elemenin € M, (resp.w € W)

m (resp.w) occurs in a cycle in only those graphs involving at least@ine, ;/. For all other such pairs of
matchingsyn occurs in a self-loop becauseis connected to the same element in both such matchings. We
look at the grapttx,,,./.

For a cycleC in G, involving my;, the preference order is dictated bys assignmentz; = 1 <
My wy,; > wey. To satisfy Lemma2I3, we will ensure in the preference ofaeall elementsn occurring
in C thatm : 4/(m) > p(m) and similarly, for all elements occurring inu(C) in the graphH . that
w: p(w) > p'(w).

A preference order constructed as above will lead to a coiilivo possible ways. Firstly, there may
exist a blocking paifm, w) for someu. Since our preference profile is a valid preference profilerg must
exist someu’ such thatu'(m) = w. Then,w is a(u, u’)-pivot for m andu(w) = m’ say. But we ensured
that for such a pair of matchindg, i) eitherm : w > p(m) andw : pu/(w) > m orm : p(m) > w and
w :m > p/(w) and hencém, w) cannot be a blocking pair.

Secondly, there may exist some € M, (resp.w € W) for which some preference is contradictory,
i.e. for instance whem : w > w’ andm : w’ > w. For a not-all-equal satisfiable assignment to any clause
C, containingz;, it is easy to check given Tablg$ 1 throdgh 5 exhaustivelyraysiballw thatm can be
matched to that this is not the case. Furthermore, since@aakeC, has a different set aM,, W, from
which the matchings are constructed, no contradictoryepeeice order exis&crossany two clauses.

Finally, we remark since we wish to construct a valid prafeeeprofile, for all elements) for which
(m,w) is not active, our preference order farwill have m : w’ > w for all w’ such thai{m, w’) is active.
This completes the proof of the claim.

O

Claim 3.4. Let H be a rationalizing preference profile for the above instafeanatchings. Then, the
assignment

1 Y my s wp > we
" ]l0 otherwise

for all 7 is a not-all-equal satisfying assignment.

Proof. We first point out that the consistency matchings involvingand my;,i = 1,...,n ensure that
any rationalizing preference profilé must satisfy eithetmy; : wj, > wy;) or (mg; = we > w),) for all
¢=1,...,m. This means that a truth assignmentio. . ., x,, will be consistent in all clauses;, ..., Cy,.

Consider an arbitrary clausé,. We show that ifH is a rationalizing preference profile, then it is not
possible to have an all-equal assignment made to variatblesmeC,. Suppose, by way of contradiction
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that there existed such an assignment. Depending on theawdenumber of variables that appear negated
in Cy, we look up one of Tabldg 1 throu@h 4. Then, as illustrated@nd3.1, we would obtain a conflict in
preference orders for some thereby giving a contradiction. O

This completes the proof of the Lemma. O

4 Hardness of approximate rationalizability of matchings

Our next step in exploring the computational aspects obmatizability of matchings will be to look at the
complexity of ‘approximate’ rationalizability.

4.1 Maximizing the number of rationalizable matchings

In the first setting, we wish to maximize the number of matghithat can be completely rationalized as
stable by a preference profile. Theorem 1.5 states thatsthiard to approximate within a constant factor.

Theorem[15 (restated). There is a constant > 0 for which it is NP-hard to approximat®AX -STABLE-
MATCHINGS to within a factor of(1 — ).

To prove the theorem we show that it is NP-hard to rationaizgfixed set of matchings as captured in
the lemma below.

Lemma 4.1. Given a collection of matching® = {u1, ..., u;} betweenM and W wherek is some fixed
constant, it is NP-hard to determine if there exists prafees form € M, w € W for which each of. € H
is a stable matching.

In order to prove Lemnia4.1 we proceed as before by reducimgfine-3SAT but we will use a special
variant of theNAE-3SAT problem:NAE-3sAT(K") which has the property that every variable in the Boolean
formula occurs in exactly’ clauses wher&’ > 29 is a constant. Lemnia 4.2 below captures this reduction.

Lemma4.2. Let Z be an instance ofAE-3SAT(k") overn variablesz, . .., z,, andm clause<y, . .., Cy,—1
wherek’ is some fixed constant. Then, there exists an insta&hoé (104 ') matchings between set$ and
W, |M| = |W| = O(m+n) such that there exists a rationalizable preference profitafl m € M,w € W

iff there exists a not-all-equal satisfiable assignmentio.. ., z,. Furthermore, these matchings can be
constructed in polynomial time.

The following claim is key to proving Lemma4.2.

Claim 4.3. Let My, ..., My; W1, ..., Wy be respectively: disjoint sets of men and women aad . . ., i

a collection of matchings with; : M;UW; — M;UW;. There exists a set of preference ord@réor M;, W;
fori =1,...,k that rationalizesus, . . ., i, iff there exists a set of preference ordétsthat rationalizesu,
wherey : MqU... My UWiU... W, — My U... M, UW; U... W, is the matching obtained by setting
u(m) = pi(m) forallm e M;; i =1,... k.

Proof. Suppose there exists a preference prdfi®r pq, . .., ux. Then, fory we construct?’ by assigning
for m € M; as sub-ordering oveél;, the corresponding preference order forin . We complete the
preference order fom by ranking all otherw € Wy U ... W;_1 U W, ... W) below the sub-ordering
for w € W;. Conversely, for every preference order correspondingpinesn € M; in a rationalizing
preference profileP’ for u, we obtain a preference order # for u; by restricting the order over only
Wi. O
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Proof. (Of Lemma4.2) The proof essentially follows the same tegimias that of Lemnia 3.2 except that
we need to be careful in our reduction to maintain the numberaichings at a constant. To this end, we
revisit the matchings shown in Table11-4. Note that in oevimus reduction, we required disjoint sets
of M,, W, to correspond with each claugsg&. Furthermore, each clause correspondsOtonatchings (not

counting those required to ensure consistency). The foligywroposition allows us to maintain the overall

number of matchings at a constant by merging each dfameatchingsacrossall the clause€’, ..., Cp,_1.
Claim[4.3 tells us that we can merge alh, p21, - - . , 1m1 iNtO ONE single matching). We repeat this
for all matchingsu;, ¢ = 1,...,m;i = 2,...,10 to obtain10 new matchingsg, . . ., uj,-

We now focus on the consistency matchings. We will explatfdct that each variable; in Z occurs
in at mostk’ clauses. Therefore, eaah will correspond to at mostk’ matchings. Appealing once again
to Claim[4.3, we can merge each of these matchings into actiolieof 2k’ matchings because each
is associated to a disjoint set of ‘linking’ elements, . .., v;,». Claims[3.8 and 314 go through with their
proofs unchanged. This completes the proof for Lerhma 4@cansequently Lemma4.1. O

From Lemma&4.1 it follows that it is NP-hard to approximeit@x -STABLE-MATCHINGS for H to within
a factor of(1 — €) wheree = 1/(k + 1).

Note that given a collectioft{ of any two matchings, it is trivial to construct a (valid) feeence pro-
file that rationalizegH by arbitrarily assigning a preference for each element/inmatched tolV in one
matching over the other and correspondingly assigningabherse preference for elementdin

4.2 Maximizing the number of non-blocking pairs

We look at theMAX -STABILITY problem. The motivation in considering this problem as aomobf approx-
imate rationalizability is that we are now striving to erestitat given a collection of matchings between two
setsM andW, there are optimally many different paifs:, w) for which at least one of them is happy with
their current partner and has no incentive to be matchecetottier.

As a preliminary exercise, we ask how well would a simple camized assignment of preferences to
m € M,w € W perform. It turns out that this would achieve3g4-approximate solution. This is the
content of Theorern 11.8.

Theorem[1.8 (restated). There is a deterministic, polynomial-time approximatidgagithm for MAX -
STABILITY that achieves an approximation factor of 3/4.

Proof. Note that since we are only interested in finding valid prgfiee profiles, we will automatically
accord the least preference for all € W thatm € M is not matched with in any of the matchings.
Subsequently, each su¢m,w) is by default a stable pair and is excluded from our estimatibet P
denote the total number of all remaining pairs for which nefg@rence has been allocated as yet.

We start with an equivalent formulation of the problem. Wegiven sets//, W such thatM | = |[WW| =
n, and a collectior{ of ¢ matchingsuy, . . ., ue. For somem (similarly, w), we associate a ‘rank’ function
Tm @ W — [n] (similarly, v, : M — [n]) which would completely describe’s (similarly w’s) preference
order withr,, (w) < r,,(w’) implying thatm : w > w’. A pair (m,w) then is stable for somg if either
Tm(w) > oy (p(m)) or ry(m) > ry(pu(w)) is true. LetS = {(m,w, u)|(m,w) is a stable pair for.}. Our
objective then is to maximizgs|.

Consider the following scheme: for eaghe M,w € W we construct the rank function by assigning
ranks uniformly at random to all’ € W andm’ € W respectively. The probability that a pdin, w) is
stable foru is 3/4 and hence, the expected number of stable pairs denotéd|byj is 3P/4. Furthermore,
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we can easily derandomize this scheme by the method of ¢comalitexpectations. At every step when a
value is to be assigned ig,(w), we can efficiently calculate the conditional expectatibthe number of
non-blocking pairs given the previous values assigned t@ & W and all other rank functions,,, (there
are only a polynomial number af € 1 and rank functions,,,» to consider) and fix,, (w) to be the value
that maximizes the conditional expectation. O

It suffices to mention here that a simple randomized preéerender for alin € M, w € W achieves the
3/4-approximation factor in expectation and can subsequémtigerandomized. How much better can we
do than just a random assignment of preferences? Théoréiell$.ds that a constant-factor approximation
is all we can hope for.

Theorem[1.7 (restated). There is a constant > 0 for which itis NP-hard to approximat@AXx -STABILITY
to within a factor of(1 — ¢).

To prove the theorem, we once again construct matchingesymnding to each clause MAX -NAE-
3sAT instanceZ. Recall that in proving Lemma 3.2 we needed to constructlianximatchings to ensure
consistency of assignment to the variables in accordantetié preferences of the corresponding elements
in the matchings. To prove hardness of approximation, wene#éd to establish a gap-preserving reduction
by boosting theobustnes®f these consistency gadgets. We do so by augmenting theamwhimatchings
corresponding to the consistency and argue subsequeatly there exists a preference profile that achieves
atleast g1 — ¢') fraction of stable pairs, then there exists an assignmentthuld satisfy at least@ — ¢)
fraction of the clauses. Theorém 1.7 then follows from tH®¥ang Lemma:

Lemma4.4. LetZ be aninstance afiAX -NAE-3SAT overn variableszq, . . ., x, andm clausesy, ..., Cp_1
wherek’ is some fixed constant. Then, there exists<a 1 and a polynomial time reduction to an instance
Z'" of MAX -STABILITY of matchings between set$ andW, |M| = |W| = O(m) such that the following
is true:

opt(Z) =1 = opt(Z')=1 (3)
opt(Z) <1l—e¢ = opt(Z')<1—¢ 4)

Proof. The reduction is similar to what we used to prove Lenima 3.2. s&feup matchings correspond-
ing to the clause€, ..., C,,_1 as before, but now we need to work harder to boost the rolasiiethe
consistency gadgets. Previously, we used Thble 5 to catnsidditional matchings using auxiliary ele-
ments to ‘link’ different copies ofnj;;j = 1,...,m corresponding to a single variabte. It will help to
conceptualize this as a graph.

For a variabler; which occurs in someclauses’; , . .., C},, we associate elements frabh, m 4, ..., m;,;
and define the consistency graph for G; to comprise vertex sét; = {m;,;,...,m;,;}. An edge exists
between any two vertice@n;,;, m;, ;) if they are ‘linked’ together by an auxiliary element.

Then, the consistency matchings described above in LdmZhao®espond to a path ifi;. In order to
boost the robustness, we will now replace the paif¥,jy a constant-degree expander graplt gartices.
We make use of the edge expansion notion to define an exparaj#r: gan(n, d, \) expander graph is a
d-regular graph om vertices with the property th&®(Y)|/|Y| > d(1 — A)/2 whereY C V;,|Y| < |Vi|/2,
0(Y) is the set of all edges with exactly one end-pointimnd is the spectral expansion parameter of the
graph. In particular, the following lemma will be useful étproof can be found in [DHO5]):
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Lemma 4.5. For a (¢, d, \) expander grapitz and all§ < (1 — \)/12, upon removin@dt vertices fromG,
there exists a connected component of size at least

46
1— —
(=)

Note that the total number of occurrences of variables ithalklauses is at mo8tn, and further, that in
each clause a variable corresponds to an elemematched to at most af(1) elements iV Therefore,
the total number of pairs for which a matching exists is attmisn). Since we only consider valid prefer-
ence profiles, this means that the number of active pairsruatesideration is als®@(m) say. Additionally,
the total number of auxiliary elements required to constiiie expander graphs in the consistency gadgets
is also at mos©(m) and henceM | = O(m).

Claim[3.3 from earlier goes through unchanged since ourctaxtuis unchanged in how a satisfying
assignment will correspond to a rationalizing preferenc#ile (and hence, all stable pairs). It remains to
show that[(#) holds.

We shall show that if there is a valid preference profile Z6isuch that there are at most drfraction
of blocking pairs, then there exists an assignment that faisatisfy at most fraction of clauses if.

Suppose that there is a valid preference profile that alléwsoate’m blocking pairs. Note that if a pair
(m,w) is a blocking pair for some matching then Lemma& 2]3 breaks down for Since each matching in
Z' can be identified with a clause, a blocking pair could resuthe clause being unsatisfied.

For a blocking painm,w) for some matching: in our reduction, we evaluate how many clauses are
affected. Supposg corresponds to one of the matchings for clauge If m € M, thenm must be
associated with some varialig occurring inCy, and we will labelC, unsatisfiable. Otherwiséyn, w) has
no effect on the satisfiability af,.

Suppose: corresponds to a matching constructed to ensure consysténe € M, for some clausé€’
andz;, then we delete the node,; in GG; and as before labe&l, as unsatisfiable. However, now we also
need to argue thdin, w) does not cause too many other clauses to be labeled unsgisfia

From Lemmd 455 we know that deleting at most a constant fnaaif vertices fromG; will result
in a connected component of size at le@ist- %)t. Taking the aggregate for every variahle and
after deleting at mostm vertices from all the consistency grapfis together, the total sum of the largest
connected components amongst@JIwill be some(1 — ¢)m wheree is determined by’, A and the total
number of occurrences of all variables in all the clauseserdfore, at mostm of these occurrences in
clauses will be discarded and the correspondingclauses labeled as unsatisfiable.

O

MAX -NAE-3SAT is known to beapx-complete[[PY91] and not approximable to within 0.917 [Z8}i9

5 Rationalizing one-many matchings

For the generalized instance of rationalizing one-manychiags, the problem seems considerably harder.
To begin with, since the preference order for amy= M is over2", given sets of length, expressing the
preference order alone takes exponential time.

However, for a specific restriction of the problem where wevalm € M to be matched with at mosgt
elementaw € W the problem is in NP and, in fact, NP-complete.
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Theorem[1.11 (restated). For every fixed, given a collection of oné-matchingsH on the setd\/ and W,
it is NP-complete to determine if there exists a preferemoéile P such that every, € H is stablé with
respect toP.

Proof. Let Z be an instance of a collectioid; = {u, ..., u,} of one-to-one matchings betweé#; and
W. We need to construct an instangeof many-to-one matchings such that a stable preferencdepfofi
Z exists iff a stable* preference profile exists fot. Indeed, we show that’ = Z is itself such an instance.
In other words My = My, Wy = Wy Hy = Hy.

Claim 5.1. Suppose there exists a stable preference profileZfothen there exists a stable* preference
profile for Z’.

Proof. A stable preference profile fdf gives preference orders for all € My (w € W) overw € Wy

(m € Mjy). Consider the following preference profile fgf: for eachm € M/, we construct a preference
order over allB C W, where|B| < ¢ as follows: we look at all singleton sefs C W, and affix
preferences identical to the preference ordemfoe M, overw € W. Therefore, forn € 2/, m : wy >

wy < form e Z,m: {w} > {wa}. We fix preference for all other subsdisC W below the singleton
sets and in some consistent order (say lexicographic) ntitiiard to see that by virtue of our construction,
the preference profile outlined above far € My is stable* if the corresponding preference profile for
m € My is stable. O

Claim 5.2. If there exists a stable* preference profile 6f, then there exists a stable preference profile for
Z.

Proof. We construct the preference order far € M, as follows: we look at the preference order of
the correspondingn € Mz and extract the partial order comprisings preference for alfw} C Wy.
Suppose that there is a blocking p@it’, ') in Z. Then, this would imply thatm’, {w’}) is a blocking set
in Z" which is a contradiction. O

Claimg5.1 and5]2 give us Theorém 1.11. O

Given how the two problems of rationalizability are so naliyr related, it is not surprising then to
observe that the onématchings problem would have a similar hardness of appraam performance
with respect to both analogs of the optimization problenhimdase of the one-one matchings.

Theorem[1.12 (restated). There is a constant > 0 for which it is NP-hard to approximateAX -STABLE-
ONE-/(-MATCHINGS to within a factor of(1 — ¢).

The proof follows immediately by combining Leminhal4.1 and diteen[1.11.

Theorem[1.13 (restated). There is a constant > 0 for which it is NP-hard to approximat®AXx -ONE-/-
STABILITY to within a factor of(1 — ¢).

The theorem follows from the lemma below.

Lemma 5.3. Let Z be an instance of th®AX -STABILITY problem for a collection of matchings. Then,
there exists am < 1 and a polynomial-time reduction to an instanZéof MAX -ONE-/-STABILITY of one{
matchings such that the following is true:

opt(Z)=1 = opt(Z)=1
opt(Z)<l—e = opt(Z')<1—¢
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Proof. As in proving Theorerh 1.11, we will use exactfiyas our instance for th@AX -ONE-£-STABILITY
problem. This means automatically that

opt(Z) =1= opt(Z') =1

Note that we are looking at valid preference profiles. Sidtenatches alln € M exclusively to singleton
elements irR", these singleton elements are assigned preference osatsBoC 1, |B| > 2. Hence, our
estimate of the optimal number of stable sets will only ideldhe pairgm, {w}) which is the same as the
optimal number of stable pairs .

Suppose there exists a valid preference profilefofor which there are at mostfraction of blocking
sets. Then, each of these blocking sets also correspondsyetgea blocking pair inZ and there cannot be
any blocking pair inZ that does not have an equivalent blocking sef'iior the same reasons as mentioned
above in proving Theorein 1.111. Therefore, there are at efoattion of blocking pairs inZ hence giving
us a contradiction and completing the proof to the lemma hadHeorem. O

6 Conclusions and Future work

There are many interesting opportunities for extensionsuowork on the rationalization problem for
matchings. It would be interesting to tighten the constaatdr in Lemma 4l1: is it hard even to rationalize
three matchings? It would also be satisfying to tighten thelhess of approximation result in Theorem
[1.74. We can additionally look at other (restricted) varsaat the matchings problem such as many-many
matchings and pose the related complexity questions.

On a more general note, the question of rationalizabilityseds very tantalizing because of the mutually
interesting perspectives it offers within both economicd theoretical computer science.

Acknowledgments. We are indebted to Federico Echenique for numerous inviwdibcussions and
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