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Abstract

We give an improved explicit construction of highly un-
balanced bipartite expander graphs with expansion arbi-
trarily close to the degree (which is polylogarithmic in
the number of vertices). Both the degree and the number
of right-hand vertices are polynomially close to optimal,
whereas the previous constructions of Ta-Shma, Umans,
and Zuckerman (STOC ‘01) required at least one of these
to be quasipolynomial in the optimal. Our expanders have
a short and self-contained description and analysis, based
on the ideas underlying the recent list-decodable error-
correcting codes of Parvaresh and Vardy (FOCS ‘05).

Our expanders can be interpreted as near-optimal “ran-
domness condensers,” that reduce the task of extracting ran-
domness from sources of arbitrary min-entropy rate to ex-
tracting randomness from sources of min-entropy rate arbi-
trarily close to 1, which is a much easier task. Using this
connection, we obtain a new construction of randomness
extractors that is optimal up to constant factors, while be-
ing much simpler than the previous construction of Lu et al.
(STOC ‘03) and improving upon it when the error parame-
ter is small (e.g. 1/poly(n)).
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1 Introduction

One of the exciting developments in the theory of pseu-
dorandomness has been the discovery of intimate connec-
tions between a number of fundamental and widely stud-
ied objects — expander graphs, randomness extractors, list-
decodable error-correcting codes, pseudorandom genera-
tors, and randomness-efficient samplers. Indeed, substantial
advances have been made in our understanding of each of
these objects by translating intuitions and techniques from
the study of one to the study of another. In this work, we
continue this in tradition. Specifically, we use ideas from
recent breakthrough constructions of list-decodable codes,
due to Parvaresh and Vardy [22], to give improved and sim-
plified constructions of both unbalanced bipartite expander
graphs and randomness extractors.

1.1 Unbalanced expander graphs

Expanders are graphs that are sparse yet very highly con-
nected. They have a wide variety of applications in theoret-
ical computer science, and there is a rich body of work on
constructions and properties of expanders. (See the survey
[11]). The classic measure of the connectivity of an ex-
pander is vertex expansion, which asks that every set .S of
vertices that is not too large has significantly more than |S|
neighbors. This property is formalized for bipartite graphs
through the following definitions.



Definition 1.1. A bipartite (multi)graph with N left-
vertices, M right-vertices, and left-degree D is specified by
afunctionT : [N] x [D] — [M], where T'(x, y) denotes the
y'th neighbor of x. For a set S C [N], we write T'(S) to
denote its set of neighbors {T'(x,y) : x € S,y € [D]}.

Definition 1.2. A bipartite graph T : [N] x [D] — [M] is
a (K, A) expander if for every set S C [N] of size K, we
have [T'(S)| > A- K. Itis a (<K 4z, A) expander if it is a
(K, A) expander for all K < K 44

The typical goals in constructing expanders are to max-
imize the expansion factor A and minimize the degree
D. In this work, we are also interested minimizing the
the size M of the right-hand side, so M < N and the
graph is highly unbalanced. Intuitively, this makes ex-
pansion harder to achieve because there is less room in
which to expand. Using the probabilistic method, it can
be shown that very good expanders exist — with expan-
sion A = (1 —¢)- D, degree D = O(log(N/M)/e), and
M = O(K ez D/e) = O(K oz A/€) right vertices. Thus,
if M < N¢ for some constant ¢ < 1, then the degree is log-
arithmic in N, and logarithmic degree is in fact necessary
if M = O(K 0z A).! However, applications of expanders
require explicit constructions — ones where the neighbor
function I" is computable in polynomial time (in its input
length, log N + log D) — and the best known explicit con-
structions still do not match the ones given by the proba-
bilistic method.

Most classic constructions of expanders, such as [19, 5,
18, 20], focus on the balanced (or non-bipartite) case (i.e.
M = N), and thus are able to achieve constant degree
D = O(1). The expansion properties of these construc-
tions are typically proven by bounding the second-largest
eigenvalue of the adjacency matrix of the graph. While such
‘spectral’ expansion implies various combinatorial forms
of expansion (e.g., vertex expansion) and many other use-
ful properties, it seems insufficient for deducing vertex ex-
pansion beyond D /2 [14] or for obtaining highly imbal-
anced expanders with polylogarithmic degree [38]. This
is unfortunate, because some applications of expanders re-
quire these require these properties. A beautiful example
of such an application was given by Buhrman et. al. [1].
They showed that a (< K44, A) expander with N left-
vertices, M right-vertices, and expansion A = (1 — ¢)D
yields a method for storing any set S C [N] of size at
most K p,q,/2 in an M-bit data structure so that member-
ship in .S can be probabilistically tested by reading only one
bit of the data structure. An optimal expander would give
M = O(K ez log N), only a constant factor more than
what is needed to represent an arbitrary set of size K44 /2

'More  generally, the degree must be at  least
Q(log(N/Kmaz )/ log(M/(KmazA))), as follows from the lower
bounds on the degree of dispersers [23].

(even without supporting efficient membership queries).?
Explicit constructions of expanders with expansion A =
(1 — &)D were obtained by Ta-Shma, Umans, and Zuck-
erman [33] for the highly imbalanced (and nonconstant-
degree) case and Capalbo et al. [2] for the balanced (and
constant-degree) case. The constructions of Ta-Shma et
al. [33] can make either one of the degree or right-hand side
polynomially larger than the nonconstructive bounds men-
tioned above, at the price of making the other quasipoly-

nomially larger. That is, one of their constructions gives

D = poly(log N) and M = quasipoly(K . D) ef

exp(poly(log(KmazD))), whereas the other gives D =
quasipoly(log N) and M = poly(KeD). The
quasipolynomial bounds were improved recently in [32],
but remained superpolynomial.

We are able to simultaneously achieve D = poly(log V)
and M = poly(K D), in fact with a good tradeoff between
the degrees of these two polynomials.

Theorem 1.1. For all constants o« > 0, every N € N,
Kiaw < N, and e > 0, there is an explicit (<Ko, (1 —
€)D) expander T' : [N] x [D] — [M] with degree D =
O((log N)(log K pmaz)/e)* 1/ and M < D? - KLte.
Moreover, D is a power of 2.

The construction of our expanders is based on the recent
list-decodable codes of Parvaresh and Vardy [22], and can
be described quite simply. The proof of the expansion prop-
erty is inspired by the list-decoding algorithm for the PV
codes, and is short and self-contained. An overview of this
‘list-decoding approach’ to proving expansion is provided
in Section 2.1.

1.2 Randomness extractors

One of the main motivations and applications of our
expander construction is the construction of randomness
extractors. These are functions that convert weak ran-
dom sources, which may have biases and correlations, into
almost-perfect random sources. For general models of weak
random sources, this is impossible, so the extractor is also
provided with a short ‘seed’ of truly random bits to help
with the extraction [21]. This seed can be so short (e.g. of
logarithmic length), that one can often eliminate the need
for any truly random bits by enumerating all choices for
the seed. For example, this allows extractors to be used for
efficiently simulating randomized algorithms using only a
weak random source [39, 21]. Extractors have also found a

2We note that to implement the data structure of [1], it is not sufficient
that the expander be explicit in terms of its neighbor function I" being effi-
ciently computable, but it is also necessary that the expander have efficient
‘decoding algorithms’. Such expanders were constructed by Ta-Shma [31].
Our expanders also have efficient decoding algorithms, but they only pro-
vide improvements over [1, 31] for this application when the set size is
relatively small, e.g. (log N)*(1) < K4 < exp((loglog N)3).



wide variety of other applications in theoretical computer
science beyond their original motivating application, and
thus a long body of work has been devoted to providing
efficient constructions of extractors. (See the survey of
Shaltiel [26].)

To formalize the notion of an extractor, we need a few
definitions. Following [3, 39], the randomness in a source
is measured by min-entropy: a random variable X has min-
entropy at least k iff Pr[X = x] < 27* for all x. A random
variable Z is e-close to a distribution D if for all events
A, Pr[Z € A] differs from the probability of A under the
distribution D by at most €. Then an extractor is defined as
follows:

Definition 1.3 ([21]). A function E : {0,1}" x {0, 1}d —
{0,1}™ is a (k, €) extractor if for every X with min-entropy
at least k, E(X,Y) is e-close to uniform, when Y is uni-
formly distributed on {0, l}d. An extractor is explicit if it is
computable in polynomial time.

The competing goals when constructing extractors are to
obtain a short seed length and to obtain a long output length.
Nonconstructively, it is possible to simultaneously have a
seed length d = logn + 2log(1/¢) + O(1) and an output
length of m = k + d — 2log(1/e) — O(1). It remains open
to match these parameters with an explicit construction.

Building on a long line of work, Lu et al. [17] achieved
seed length and output length that are within constant fac-
tors of optimal, provided that the error parameter ¢ is
not too small. More precisely, they achieve seed length
d = O(logn) and output length m = (1 — a)k for
e>n"Y log!®) ", where o and c are any two positive con-
stants. For general ¢, they pay with either a larger seed
length of d = O((log" n)?logn + log(1/¢)), or a smaller
output length of m = k/log'® n for any constant c.

In this work, we also achieve extractors that are optimal
up to constant factors, but are able to handle an error param-
eter ¢ that is even exponentially small:

Theorem 1.2 (extractor). For every constant o > 0, and
all positive integers n,k and all ¢ > exp(—n/2008" 7)),
there is an explicit construction of a (k,€) extractor E :
{0,1}" x{0,1}* — {0,1}™ with d = O(log n+log(1/¢))
andm > (1 — a)k.

Our extractor is also substantially simpler than that of
[17], which is a complex recursive construction involving
many tools. The key component in our construction is the
interpretation of our expander graph as a randomness con-
denser:

Definition 1.4. A function C : {0,1}"x{0,1}* — {0,1}™
is an k —. k' condenser if for every X with min-entropy
at least k, C(X,Y) is e-close to a distribution with min-

entropy k', when Y is uniformly distributed on {0, 1}d. A

condenser is explicit if it is computable in polynomial time.
A condenser is called lossless if k' = k + d.

Observe that a k —. k' condenser with output length
m = k’ is an extractor, because the unique distribution
on {0,1}" with min-entropy m is the uniform distribu-
tion. Condensers are a natural stepping-stone to construct-
ing extractors, as they can be used to increase the entropy
rate (the ratio of the min-entropy in a random variable to
the length of the strings over which it is distributed), and
it is often easier to construct extractors when the entropy
rate is high. Condensers have also been used extensively
in less obvious ways to build extractors, often as part of
complex recursive constructions (e.g., [12, 25, 17]). Non-
constructively, there exist lossless condensers with seed
length d = logn + log(1/e) + O(1), and output length
m=k+d+log(l/e) + O(1).

As shown by [33], lossless condensers are equivalent to
bipartite expanders with expansion close to the degree. Ap-
plying this connection to Theorem 1.1, we obtain the fol-
lowing condenser:

Theorem 1.3. For all constants o > 0, and every n € N,
k < n, and ¢ > 0, there is an explicit (k — k + d)
(lossless) condenser C : {0,1}" x {0,1}¢ — {0,1}™ with
d=(1+1/a)- (logn + logk + log(1/e)) + O(1) and
m < 2d+ (14 a)k.

Consider the case that « is a constant close to 0. Then
the condenser has seed length O(log(n/¢)) and output min-
entropy rate roughly 1/(1+ «). Thus, the task of construct-
ing extractors for arbitrary min-entropy is reduced to that
of constructing extractors for min-entropy rate close to 1,
which is a much easier task. Indeed, when ¢ is constant,
we can use a well-known and simple extractor based on ex-
pander walks. When ¢ is sub-constant, we use Zuckerman’s
extractor [40] to obtain the proper dependence on . Thus,
we obtain Theorem 1.2.

1.3 Organization

We begin in Section 2 with a high level overview of our
construction and proof method. In Section 3 we describe
and analyze our expander construction. This expander con-
struction implies a lossless condenser construction, which
is discussed in Section 4. By applying extractors for high
min-entropy to the output of this condenser, we obtain our
new extractors, also in Section 4. In Section 5, we analyze
a lossy version of our main construction, which allows us to
minimize the seed lengths of the resulting condensers and
extractors. In Section 6 we analyze a variant of the con-
struction that utilizes Reed-Solomon codes and is a univari-
ate analogue of [27], and whose analysis is based on [8].
Finally we conclude in Section 7 with some open problems.



1.4 Notation

Throughout this paper, we use boldface capital letters for
random variables (e.g., “X”), capital letters for indetermi-
nates, and lower case letters for elements of a set. Also
throughout the paper, Uy is the random variable uniformly
distributed on {0, 1}". The support of a random variable X
is supp(X) def {z : Pr[X = z] > 0}. The statistical dis-
tance between random variables (or distributions) X and Y
ismaxy |Pr(X € T] —Pr[Y € T]|. Wesay X and Y are
e-close if their statistical distance is at most €. All logs are
base 2.

2 Overview of our approach

In this section we give a high level overview of our con-
struction and the proof technique.

2.1 Expansion via list-decoding

Before explaining our approach, we briefly review the
basics of list-decodable codes. A code is mapping C :
[N] — [M]P, encoding messages of bit-length n = log, N
to D symbols over the alphabet [M]. (Contrary to the
usual convention in coding theory, we use different alpha-
bets for the message and the encoding.) The rate of such a
code is p = n/(Dlog, M). We say that C is (e, K) list-
decodable if for every r € [M]P, the set LIST(r,¢) %
{z : Pry[C(z), = ry] > €} is of size at most K. We
think of r as a received word obtained by corrupting all
but an ¢ fraction of symbols in some codeword. The list-
decodability property says that there are not too many mes-
sages x that could have led to the received word r. The
goal in constructing list-decodable codes is to optimize the
tradeoff between the agreement ¢ and the rate p, which are
typically constants independent of the message length n.
Both the alphabet size M and the list-size K should be rel-
atively small (e.g. constant or poly(n)). Computationally,
we would like efficient algorithms both for computing C(z)
given z and for enumerating the messages in LIST(r,¢)
given a received word 7.

The classic Reed-Solomon codes were shown to achieve
these properties with polynomial-time list-decoding in the
seminal work of Sudan [29]. The tradeoff between € and p
was improved by Guruswami and Sudan [9], and no better
result was known for a number of years.  Recently, Par-
varesh and Vardy [22] gave an ingenious variant of Reed-
Solomon codes for which the agreement-rate tradeoff is
even better, leading finally to the optimal tradeoff achieved
by Guruswami and Rudra [8] (namely, p = € — o(1)).

Our expanders are based on the Parvaresh-Vardy codes.
Specifically, for a left-vertex € [N] and y € [D], we

define the y’th neighbor of z to be I'(z,y) = (y,C(x),),
where C : [N] — [M]P is a Parvaresh-Vardy code with a
somewhat unusual setting of parameters. (Note that here
we take the right-hand vertex set to be [D] x [M].) To prove
that this graph is an expander, we adopt a ‘list-decoding’
view of expanders. Specifically, for a right-set T C [D] x
[M], we define

LIST(T) %' {z € [N] : T(z) C T}.

Then the property of T" being a (K, A) expander can be re-
formulated as follows:

for all right-sets T of size less than AK, we have
|LIST(T)| < K.

Let us compare this to the standard list-decodability
property for error-correcting codes. Notice that for a re-
ceived word r € [M]P,

LIST(r,e) = {z: lzlr[C(x)y =71yl > e}

= {z: P;r[r(x,y) eT,] > ¢},

where T,, = {(y,ry) : y € [D]}. Thus, the two list-
decoding problems are related, but have the following key
differences:

o In the coding setting, we only need to consider sets T’
of the form 7). In particular, these sets are all very
small — containing only D of the possible DM right
vertices.

e In the expander setting, we only need to bound the
number of left-vertices whose neighborhood is entirely
contained in 7', whereas in the coding setting we need
to consider left-vertices for which even an ¢ fraction of
neighbors are in 7.

e In the coding setting, it is desirable for the alphabet
size M to be small (constant or poly(n)), whereas our
expanders are most interesting and useful when M is
in the range between, say, n(!) and 2/2,

e In the coding setting, the exact size of LIST(r,¢) is
not important, and generally any poly(n/¢) bound is
considered sufficient. Here, however, the relation be-
tween the list size and the size of T is crucial. A factor
of 2 increase in the list size (for 1" of the same size)
would change our expansion factor A from (1 —¢)D
to (1 —e)D/2.

For these reasons, we cannot use the analysis of Parvaresh
and Vardy [22] as a black box. Indeed, in light of the last
item, it is somewhat of a surprise that we can optimize the
bound on list size to yield such a tight relationship between
|T| and [LIST(T")| and thereby provide near-optimal expan-
sion.



This list-decoding view of expanders is related to the list-
decoding view of randomness extractors that was implicit
in Trevisan’s breakthrough extractor construction [36] and
was crystallized by Ta-Shma and Zuckerman [34]. There
one considers all sets T C [D] x [M] (not just ones of
bounded size) and bounds the size of LIST(T, u(T) +¢) =
{z : Pry[I'(z,y) € T] > w(T) + €}, where u(T) o
|T|/(DM) is the density of T. Indeed, our work began
by observing a strong similarity between a natural ‘univari-
ate’ analog of the Shaltiel-Umans extractor [27] and the
Guruswami—Rudra codes [8], and by hoping that the list-
decoding algorithm for the Guruswami—Rudra codes could
be used to prove that the univariate analog of the Shaltiel-
Umans construction is indeed a good extractor (as conjec-
tured in [15]). However, we were only able to bound
|LIST (T, €)| for “small” sets 7', which led to constructions
of lossy condensers, as in the preliminary version of our
paper [10]. In this version, we instead bound the size of
LIST(T) = LIST(T,1), and this bound is strong enough
to yield expanders with expansion (1 — €) - D and thus di-
rectly implies lossless condensers, as discussed above. (We
still consider lossy condensers in Section 5 of this paper for
the purpose of getting improved bounds on some other pa-
rameters.)

It is also interesting to compare our construction and
analysis to recent constructions of extractors based on al-
gebraic error-correcting codes, namely those of Ta-Shma,
Zuckerman, and Safra [35] and Shaltiel and Umans [27].
Both of those constructions use multivariate polynomials
(Reed—Muller codes) as a starting point, and rely on the fact
that these codes are locally decodable, in the sense that any
bit of the message can be recovered by reading only a small
portion of the received word. While the advantage of lo-
cal decodability is clear in the computational setting (i.e.,
constructions of pseudorandom generators [30, 27, 37]),
where it enables efficient reductions, it is less clear why
it is needed in the information-theoretic setting of extrac-
tors, where the ‘decoding’ only occurs in the analysis. In-
deed, Trevisan’s extractor [36] corresponds to the pseudo-
random generator construction of [30], but with the locally
list-decodable code replaced by a standard list-decodable
code. However, the extractor analyses of [35] and [27]
seem to rely essentially on multivariate polynomials and lo-
cal (list-)decodability. Our construction works with univari-
ate polynomials and the analysis does not require any local
decoding — indeed, univariate polynomial codes are not lo-
cally decodable.

2.2 Parvaresh-Vardy codes and the proof
technique

Our constructions are based on Parvaresh-Vardy codes
[22], which in turn are based on Reed-Solomon codes. A

Reed-Solomon codeword is a univariate degree n — 1 poly-
nomial f € F,[Y], evaluated at all points in the field. A
Parvaresh-Vardy codeword is a bundle of several related de-
gree n—1 polynomials fy, f1, fo,- .., fm—1,each evaluated
at all points in the field. The evaluations of the various f; at
a given field element are packaged into a symbol from the
larger alphabet IF;. The purpose of this extra redundancy
is to enable a better list-decoding algorithm than is possible
for Reed-Solomon codes.

The main idea in [22] is to view degree n— 1 polynomials
as elements of the extension field F = F,[Y]/E(Y"), where
E is some irreducible polynomial of degree n. The f; (now
viewed as elements of IF) are chosen so that f; = f&" for
1 > 1, and a positive integer parameter h. As explained
in Section 2.1, our expander is constructed directly from
Parvaresh-Vardy codes as follows:

C(fo,y) = [y, foy), 1(¥)s -, frn—1(¥)]-

In the analysis, our task is to show that for any set 1" of
size L, the set LIST(T) = {fo : T'(fo) C T} is small. To
do this we follow the list-decoding analysis of [22], which
in turn has the same general structure as the list-decoding
algorithms for Reed—Solomon codes [29, 9]. We first pro-
duce a non-zero polynomial @ : Fé“" — [F, that vanishes
on T'. Now, for every fo € LIST(T), we have

Q(yva(y)’ LR fmfl(y)) =0 Vy € ]an

and by ensuring that ) has small degree (which is possi-
ble because T is not too large), we will be able to argue
that the univariate polynomial Q(Y, fo(Y),..., fm—1(Y))
is the zero polynomial. Recalling the definition of the
fi, and viewing the f; as elements of the extension field
F =F,[Y]/E(Y), we observe that f; is a root of the uni-
variate polynomial

Q(2) ¥ Q,2,2"2",... . Z

hm71) mod E(Y).
This is because when simplifying the formal polynomial
Q*(fo(Y)) mod E(Y), we can first take each fo(Y)"
term modulo E(Y), resulting in f;(Y"), and we have just
argued that Q(Y, fo(Y), ..., fm—1(Y)) is the zero polyno-
mial, so it is still the zero polynomial modulo E(Y"). This
argument holds for every fo € LIST(T'), and so we can
upper-bound |[LIST(7")| by the degree of Q*.

3 Expander Graphs

We first formally develop the list-decoding view of ex-
panders described in Section 2.1.

Definition 3.1. For a bipartite graph T : [N] x [D] — [M]
and a set T C [M], define

LIST(T) = {z € [N] : T'(z) C T}.



The proof of the next lemma follows from the defini-
tions:

Lemma 3.1. A graph T is a (K, A) expander iff for every
set T of size at most AK — 1, LIST(T) is of size at most
K -1

3.1 The construction

Fix the field F; and let E(Y") be an irreducible polyno-
mial of degree n over F,. We identify elements of Fy with
univariate polynomials over I, with degree at most n — 1.
Fix an integer parameter h.

Our expander is the bipartite graph I' : Fj x F, — IF‘;"Jrl
defined as:

T(fy) [y f(y), (f" mod E)(y), (f** mod E)(y),

(" mod B) (). (1)

For ease of notation, we will refer to ( f " mod E)as“f;”
Theorem 3.2. The graph I' : Fy x Fy, — IF;”‘H defined
in (1) is a (< Kpaz, A) expander for Kpqe = h™ and
A=q—(n-1)(h—1)m.

Proof. Let K be any integer less than or equal to K4, =
h™ andlet A =q— (n —1)(h — 1)m. By Lemma 3.1, it
suffices to show that for every set 7' C IF;”“ of size at most
AK — 1, we have |LIST(T')| < K — 1. Fix such a set 7.

Our first step is to find a nonzero “low-degree” polyno-
mial Q(Y,Y7,...,Y,,) that vanishes on T Specifically,
will only have nonzero coefficients on monomials of the
form Y'M;(Yi,...,Y,)for0 <i<A—1and0 < j <
K —1<h™—1,where M;(V1,...,Y,,) = Y{° ..y
and j = jo + j1h + -+ + jm_1h™ ! is the base-h repre-
sentation of j. (For simplicity, one may think of K = h™,
in which case we are simply requiring that () has degree at
most h — 1 in each variable Y;.) For each z € T, requiring
that Q(z) = 0 imposes a homogeneous linear constraint on
the AK coefficients of @). Since the number of constraints
is smaller than the number of unknowns, this linear sys-
tem has a nonzero solution. Moreover, we may assume that
among all such solutions, (@ is the one of smallest degree
in the variable Y. This implies that if we write @) in the
form Q(Y, V1,..., V) = S0 py (V) - My(Yi, ..., Vi)
for univariate polynomials po(Y),...,px—1(Y), then at
least one of the p;’s is not divisible by E(Y"). Otherwise
Q(Y,Y1,...,Y,,)/E(Y) would have smaller degree in Y’
and would still vanish on 1" (since F is irreducible and thus
has no roots in IF).

Consider any polynomial f(Y') € LIST(T). By the def-
inition of LIST(T") and our choice of @, it holds that

QU fow), [1(¥), -+ fm—1(y)) =0 Vy €T,

That is, the univariate polynomial R;(Y) def

Q(fo(Y),..., fm—-1(Y)) has g zeroes. Since the de-
gree of Ry(Y)isatmost (A—1)+ (n—1)(h—1)m < g,
it must be identically zero. So

Q(Y7 fO(Y)7 IR fm—l(Y)) =0

as a formal polynomial. Now recall that f;(Y) = f(Y)"'
(mod E(Y)). Thus,

QUYL F(Y). F)", . F)M )
= QY folY),..., fma(Y)) =
So if we interpret f(Y") as an element of the extension field

F = F,[Y]/E(Y), then f(Y) is a root of the univariate
polynomial Q* over F defined by

0 (mod B(Y)).

Q(2) ¥ QY,2,2", 2" ,....2" ") mod E(Y)
K-—1 .
= 3" (0 (Y) mod E(Y)) - My(2,2",..., 2" ")
7=0
K-—1

(p;(¥) mod E(Y)) - Z7.

o

j=C
Since this holds for every f(Y) € LIST(T), we deduce
that Q* has at least |LIST(T)| roots in F. On the other
hand, Q* is a non-zero polynomial, because at least one of
the p;(Y")’s is not divisible by E(Y). Thus, |LIST(T')| is
bounded by the degree of Q*, which is at most K — 1. [

3.2 Setting parameters

The following theorem differs from Theorem 1.1 only by
allowing « to be non-constant (and then making the depen-
dence of D on « explicit).

Theorem 3.3 (Thm. 1.1, generalized). For every N € N,
Kinax < N, ande, o > 0, there is an explicit (<K g0, (1—
€)D) expander T' : [N] x [D] — [M] with degree D =
22+ ((log N)(log K paz ) /€)' TV and M < D? - K}te.
Moreover, D is a power of 2.

Proof. Let n = logN and k£ = log Kiax. Let h =
[(nk/e)'/*] and let ¢ be the power of 2 in the interval
(h1+o¢’ 2h1+0‘].

Set m = [(log Kmax)/(logh)], so that k™=t <
Kpax < Rh™. Then, by Theorem 3.2, the graph T" :
F? x Fy — F"*! defined in (1) is a (<h™, A) expander
for A=q— (n—1)(h—1)m. Since Kyax < h™, itis also
a (<Kmax, A) expander.

Note that the number of left-vertices in I" is ¢ > N, and
the number of right-vertices is

M= qm+1 < q2 X h(1+a)~(m71) < q2 . Krlnzg



The degree is

D g < an1+0 < 2(2(nk/e) o)+ = 9240 (nk/e) H1 /0

< 2% ((log N)(log Kpmax) /€)' /e .

To see that the expansion factor A = ¢ — (n — 1)(h —
1)m > g — nhk is at least (1 — &) D = (1 — £)g, note that

nhk <e-hl'te < eq,

where the first inequality holds because h® > nk/e.
Finally, the construction is explicit because a represen-
tation of IF, for ¢ a power of 2 (i.e. an irreducible poly-
nomial of degree log g over Fs) as well as an irreducible
polynomial E(Y') of degree n over Fy can be found in time
poly(n,log q) = poly(log N, log D) [28]. O

Remark 1. In this proof we work in a field F ; of character-
istic 2, which has the advantage of yielding a polynomial-
time construction even when we need to take q to be super-
polynomially large (which occurs when e(n) = n—vM),
When ¢ > 1/poly(n), then we could use any prime power
q instead, with some minor adjustments to the construction
and the parameters claimed in the theorem.

4 Lossless condensers and extractors

We now interpret the expanders constructed in the previ-
ous section as lossless condensers (see Definition 1.4). This
connection, due to Ta-Shma, Umans, and Zuckerman [33],
is based on viewing a function C' : {0,1}" x {0,1}¢ —
{0,1}™ as the neighbor function of a bipartite graph with
2™ left-vertices, 2™ right-vertices, and left-degree A (1
turns out that this graph has expansion close to the degree if
and only if C' is a lossless condenser.

Lemma 4.1 ([33]). C : {0,1}" — {0,1}? — {0,1}™ isa
k —. k+d condenser iff the corresponding bipartite graph
isa (2%, (1 —¢) - 2%) expander.

Thus the following is an immediate consequence of The-
orem 3.3.

Theorem 4.2 (Theorem 1.3, generalized). For every n €
N, kpmae < n, and a, e > 0, there is an explicit function C' :
{0,1}" x {0,1}¢ — {0,1}™ withd = (1+1/a) - (logn +
log kimaz +log(1l/e) + a+2) and m < 2d+ (1 4+ &) kpmas
such that for all k < ka0, Cisa k —. k + d (lossless)
condenser.

Once we have condensed almost all of the entropy into
a source with entropy rate close to 1 (as in Theorem 4.2),
extracting (most of) that entropy is not that difficult. All
we need to do is to compose the condenser with an extrac-
tor that works for entropy rates close to 1. The following
standard fact makes the composition formal:

Proposition 4.3. Suppose C : {0,1}" x {0,1}% —
{0,1}™ is an k —., k' condenser, and E : {0,1}"™ x
{0,1}%  — {0,1}™ is a (K',e9)-extractor, then E o
C : {0,1}" x {0,1}1*2 — {0,1}™ defined by (E o
O)w,y1.92) & B(Cla,y1),y2) isa (k21 +ez)-extracior

For the best dependence on the error parameter ¢, the
extractor we will use is due to Zuckerman:

Theorem 4.4 ([40]). For all constants o, 6 > 0: for all pos-
itive integers n,k and all ¢ > exp(—n/2°0°8" ™)) there
is an explicit construction of a (k = dn,¢) extractor E :
{0,1}" x{0,1}* = {0,1}™ with d = O(log n+log(1/¢))
andm > (1 — a)k.

We now prove our main extractor theorem, restated here:

Theorem 4.5 (Thm. 1.2, restated). For every constant
a > 0, and all positive integers n,k and all ¢ >
exp(—n/200°8" ")) there is an explicit construction of a
(k,€) extractor E : {0,1}" x {0,1} — {0,1}™ with
d = O(logn +log(1/e)) and m > (1 — a)k.

Proof. Consider the condenser of Theorem 4.2, with its pa-
rameter € set to one half the present €, and its parameter o
set to 1. Its seed length is d; = O(log(n/¢)), and its out-
put length is n’ < 2d; + 2k, while its output min-entropy is
k' > k+d;. Applying Proposition 4.3 to this condenser and
the extractor of Theorem 4.4 (with its parameter ¢ set to half
the present €, and 6 = 1/2) gives the claimed extractor. [

In the fairly common case that € is a constant, we can use
the much simpler “expander-walk” extractor which extracts
almost all of the entropy for entropy rates close to 1 (in place
of the extractor of Theorem 4.4). Note that our condenser
from Theorem 4.2 achieves a constant entropy rate arbitrar-
ily close to 1, and so can be combined with any extrac-
tor for such high min-entropy rates. A standard construc-
tion achieving this is based on expander walks [6, 40, 41].
Specifically, such an extractor can be obtained by combin-
ing the equivalence between extractors and ‘averaging sam-
plers’ [40], and the fact that expander walks are an averag-
ing sampler, as established by the Chernoff bound for ex-
pander walks [6].3

Theorem 4.6. For all constants o,e > 0, there is a con-
stant § < 1 for which the following holds: for all posi-
tive integers n, there is an explicit construction of a (k =
on,e) extractor E = {0,1}" x {0,1}" — {0,1}™ with
t <log(an)andm > (1 — a)n.

For completeness, we present the short proof:

3The papers [13, 4] prove hitting properties of expander walks, and
observe that these imply objects related to (but weaker than) extractors,
known as dispersers.



Proof. Let m = [(1 — a)n], and for some absolute con-
stants ¢ > 1 and A < 1, let G be an explicit 2°-regular
expander on 2™ vertices (identified with {0,1}™) and sec-
ond eigenvalue A\ = A\(G) < 1. Let L be the largest power
of 2 at most (n — m)/c (so L > (n —m)/(2c)), and let
t = logL < log(an). The extractor F is constructed as
follows. Its first argument x is used to describe a walk
V1, Vg, ...,vr, of length L in G by picking v; based on the
first m bits of x, and each further step of the walk from the
next ¢ bits of x — so in all, L must satisfy n = m+(L—1)c.
The seed y is used to pick one of the vertices of the walk at
random. The output E(x,y) of the extractor is the m-bit
label of the chosen vertex.

Let X be a random variable with min-entropy k& = n.
We wish to prove that for any S C {0, 1}", the probability
that £/(X, Uy) is a vertex in S is in the range p &+ ¢ where
p = |S|/2™. Fix any such subset S. Call an z € {0,1}"
“bad” if

’I—;r[E(%y) €S| —pul>¢e/2
The known Chernoff bounds for random walks on ex-
panders [6] imply that the number of bad x’s is at most

2n_e—Q(82(1—/\)L) _ 271_6—9(82(1—/\)(171/0) _ 2n_2—Q(62an)
(since ¢, A are absolute constants). Therefore the probability
that X is bad is at most 2= . 27 . 2=%ean)  which is

exponentially small for large enough § < 1. Therefore
|Pr[E(X, Uy) € S] — p| < /24279 <,
implying that E is a (k, £)-extractor. O

Combining Theorem 4.2 with Theorem 4.6 via Propo-
sition 4.3, as in the proof of Theorem 4.5, we obtain the
following extractor, which has the advantage that its proof
is short and self-contained (except for the Chernoff bound
for expander walks [6]):

Theorem 4.7. For every constant o > 0, for all positive
integers n, k, and all constant ¢ > 0, there is an explicit
construction of a (k, ) extractor E : {0,1}" x {0,1}* —
{0,1}™ with d = O(logn + log(1/¢)) and m > (1 — a)k.

S Lossy condensers

In this section we show how minor modifications to the
proof allow us to optimize the seed length or the output en-
tropy. We also show that a small modification to the con-
struction yields condensers from Reed-Solomon codes. The
price for both of these modifications is that the resulting ob-
jects are no longer lossless condensers, but instead just or-
dinary (lossy) condensers.

5.1 The list-decoding viewpoint

First, we record some standard facts about min-entropy:

Proposition 5.1. For K € N, a distribution D has min-
entropy at least log K iff D is a convex combination of flat
distributions on sets of size exactly K.

Proposition 5.2. For any k > 0, the distance from a dis-
tribution D to a closest distribution with min-entropy k is

exactly 3. p(qy>2-+(D(a) — 27H).

Proposition 5.3. A distribution D with min-entropy
log(K — ¢) is ¢/K-close to some distribution with min-
entropy log K.

Proof. By Proposition 5.2, the distance from D to the clos-
est distribution with min-entropy log K is

> (D(a)-1/K)<1—(K—-c)-1/K =¢/K.
a:D(a)>1/K

O

The next lemma gives a useful sufficient condition for a
distribution to be close to having large min-entropy:

Lemma 5.4. Let Z be a random variable. If for all sets
T of size K, Pr[Z € T| < e then Z is e-close to having
min-entropy at least log(K /¢).

Proof. Let T be a set of the K heaviest elements = (under
the distribution of Z). Let 27¢ be the average probability
mass of the elements in 7. Then ¢ > Pr[Z € T] = 27'K,
so £ > log(K/e). But every element outside T" has weight
at most 2¢, and with all but probability €, Z hits elements
outside 7. O

Now we can develop a ‘list-decoding’ view of lossy con-
densers, analogous to the one we have used for expanders
(Lemma 3.1) and the one known for extractors [34]. The
following definition should be compared to Definition 3.1:

Definition 5.1. For a function C : {0,1}" x {0,1}¢ —
{0,1}™ and a set T C {0,1}™, define

LIST(T,e) &' {:c Pr{C(a,y) € T) > s} .

Similar to the situation with expanders, if we can bound
the size of LIST(T', ) for all sets T that are not too large,
then we have a condenser:

Lemma 5.5. Fix a function C' : {0,1}" x {0,1}¢ —
{0,1}™. If for every set T C {0,1}™ of size at most L,
we have |LIST(T,¢)| < H, then C is a

log(H/e) —9 log(L/e) — 1

condenser.



Proof. We have a random variable X with min-entropy
log(H/e). For a fixed T of size at most L, the probability
that X is in LIST(T', €) is at most ¢; if that does not happen,
then the probability C(X, Uy) lands in T is at most €. Al-
together the probability C'(X, Uy) falls in T is at most 2¢.
Now apply Lemma 5.4. U

5.2 An analysis for minimizing the seed
length

The condenser of Theorem 4.2 is lossless and achieves
an entropy rate of 1/(1 + «) for any desired « > 0, but its
seed length is (1 + 1/a)(log(n/e) + logk + O(1)). By
picking « to be large, say & = 1/ for a small constant
v > 0, we can reduce the seed length to (1++)(log(n/e)+
log k+ O(1)), at the expense of a worse output entropy rate
of Q(v).

We now show how one can improve the seed length fur-
ther, to (1 4+ v)(log(n/e) + O(1)) — that is, save the log k
term. The new condenser, while not lossless, still retains a
fraction (1 — O(1/log(n/e))) of the input entropy, and the
entropy rate is (7).

The improved analysis that permits us to optimize the
seed length is in the following theorem, which exploits the
“multiple-roots” idea in [9] (compare to Theorem 3.2):

Theorem 5.6. Define I : iy x F, — Fi*+! as in (1) and
define LIST(T, ) with respect to T as in Definition 5.1. Fix
positive integer parameters s > 1, H < h™. Then for every
setT C FTH of size at most

AH -1
L= |22 "2,
\‘ (sjl) J
we have |LIST(T,e)| < H — 1, where A = esq — (n —
1)(h —1)m.

Some intuition about the parameters above may be in or-
der. In Theorem 3.2, the lower bound on ¢ (implicit in the
demand that A > 0) needed in order to ensure expansion by
a (1 — €)q factor was ¢ > nmh/e. In the above theorem,
the lower bound requirement is weaker by a factor s, and
this turns into an improvement in the seed length (which is
log g). When viewed as a condenser, the price we pay is
that the input entropy is larger by about log (Tj‘f ) (which
is ©(m) when we pick s = m) than the output entropy, and
thus the condenser incurs an entropy loss.

Proof. Let T C IE‘;”+1 be an arbitrary set of size at most
L = [(AH —1)/((""*?))]. The proof follows along the

lines of the proof of Theorem 3.2, with the main change
being that we make sure that the interpolated polynomial

Q(Y,Y1,Ys,...,Y,,) has a root of multiplicity at least s at

each element o = (o, a1, g, . .., ) € S. By a “root of
multiplicity at least s,” we mean that that the polynomial

def

QOA(Y)Y:l?"')Ym) = Q(a0+Y;a1+Y17"'7am+Ym)

has no monomials of degree s — 1 or smaller with nonzero
coefficients, which amounts to (") homogeneous lin-
ear constraints on the coefficients of (). The polynomial
@ will only have nonzero coefficients on AH monomials
of the form Y*M;(Y1,...,Y,,) for 0 < i < A—1 and
0<j<H-—1,where Mj(Yy,...,Y,) =Y/ .y
and j = jo + jih + -+ + jm_1h™ ! is the base-h repre-
sentation of j. Since AH > |T|("""7), we have more un-
knowns than the number of homogeneous linear constraints
and such a nonzero polynomial @ exists. In the following,
we fix ) to be any such nonzero polynomial, and if several
such polynomials exist, we choose the one with smallest Y -
degree.

Suppose f(Y) € LIST(T,¢). Let y € [, be such that
I'(f,y) € T. Then, by the choice of Q,

Q(ya fO(y)vfl(y)a (R fm—l(y)) = Q(F(f’ y)) =0.

In fact, since T'( f, y) is a root of multiplicity s, we can show
that the the polynomial

def

Rf(Y) = Q(K fO(Y)vfl(Y)v .- 'afm—l(Y))

has a root of multiplicity s at y. To see this, note that

Rf(y ""Y) = Q(y+ KfO(y+Y)a .- 'afer—l(y+Y))
=Q+Y, foly) +Ygo(Y), ..., frn-1(y) + Ygm-1(Y))
=QrisyY,Y - go(Y),Y - 91 (Y),...,Y - gm_1(Y))

for some polynomials gg,...,g,—1. Since every mono-
mial in Qr(y,,) has degree at least s, when we substitute
Y - g;(Y) for the variables we get a univariate polynomial
divisible by Y*. Thus Y*|Rs(y + Y), i.e. Ry has a root
of multiplicity s at y. Equivalently, (Y — y)°|Rs(Y). We
conclude that if f(Y") € LIST(T),¢), i.e., if

Izr[Q(y7fo(y),f1(y)7 s fme1(y) = 0] > €,

then R;(Y") has more than esq roots counting multiplicities.
On the other hand the degree of R¢(Y") is at most (A—1)+
(n —1)(h — 1)m. Therefore, since £sq exceeds this degree,
we must have R;(Y) = 0.

From this point on, the proof proceeds identically to that
of Theorem 3.2 (with H playing the role of K), leading to
the desired conclusion |LIST(T,¢)| < H — 1. O

5.3 Setting parameters

Picking parameters suitably we obtain the following con-
denser:



Theorem 5.7. For every n € N, { < n such that 2° is

an integer, and o, > 0, there is an explicit function C' :
{0,1}" x {0,1}? — {0,1}" thatisa

(k = £t +log(1/e)) —ae k +d — (20 +log(1/<) + O(1))

condenser withd < (14+1/a)tandn’ < (1+1/a)k + d,
where t = [alog(4n/e)], provided £(t — 2) > log(2/e).

Proof. Set h = 2! and note that h'/* > 4n/e. Let q be the
power of 2 in (h!*1/®/2 h1*1/®] Setm = s = {. Note
that

A esq— (n—1)(h—1)m > esq — nhm > esq/2,

because ¢ > h'*1/® /2 > 2hn /e, and s = m.
Consider the function T' : F} x F;, — F;"*! defined in
(1). By Theorem 5.6, for every T' C IF;”“ of size at most

AR™ — 1
L= {WJ :
m—+1
we have |LIST(T,¢)| < h™ — 1. Applying Lemma 5.5, we
find thatI'is a

log((h™ —1)/e) —ac log(L/e) — 1

condenser. Now

Lo AN -1 AR

— 22m - 922m o
By Proposition 5.3, the output distribution of the condenser
T is within statistical distance
22m+1 22€+1
<
Apm — otL

<e ()

of a distribution with min-entropy at least
log(AR™ /22m+1) 4 log(1/¢), where we used the hy-
pothesis £(t —2) > log(2/¢) to conclude the last inequality
in (2). Together with the lower bound A > efq/2, we can
conclude that I' is a

t+log(1/e) —3: logq +log €+ bt — 2¢ — 2

condenser. This is the claimed condenser; the upper bounds
on d and n’ follow from the fact that ¢ < 2(1+1/)t,
Finally, the construction is explicit because a represen-
tation of F, for ¢ a power of 2 as well as an irreducible
polynomial E(Y) of degree n over F, can be found in time
poly(n, log q) [28]. O

In the previous theorem, o may be subconstant, and in
the following corollary we show that it can be set to pro-
duce a seed length of d = logn + O(1) (for constant ¢),
which would be optimal up to an additive constant if our

condenser produced an output that is almost perfectly con-
densed (i.e., if the output length exceeded the output min-
entropy by only an additive O(1) bits). We can achieve
such a short seed at the expense of an output entropy rate of
Q(1/log(n/e)), which is subconstant, but still quite good.

Corollary 5.8. For every constant integer ¢ > 2, and for
everyn € N, k < n, and e > 27%%3, there is an explicit
construction of a

k —3. (1 —2/c)k +d—log(l/e) —O(1)

condenser C' : {0,1}" x {0,1}% — {0,1}" with d =
log(n/e) + O(1) and n' = (1 + M) k+d.

c

Proof. Set oo = ¢/log(4n/e) in Theorem 5.7. O
5.4 Extractors with short seed length

We now combine the condenser of Theorem 5.7 with
Zuckerman’s recent extractor. (This extractor in turn starts
by applying a condenser due to Raz [24] that has constant
seed length and can increase the entropy rate from d to 1 — o
for any constant § > 0, while retaining a constant fraction
of the min-entropy.)

Theorem 5.9 ([41]). For all constants o, 6, > 0: for all
positive integers n, there is an explicit construction of a
(k = dn,e) extractor E : {0,1}" x {0,1}* — {0,1}™
with seed length d = logn + O(1) and output length
m > (1 — a)k.

Combining Theorem 5.7 with Theorem 5.9 via Propo-
sition 4.3, as in the proof of Theorem 4.5, we obtain the
following extractor, which has a near-optimal seed length:

Theorem 5.10. For all constants c,v,e > 0: for all posi-
tive integers n, k, there is an explicit construction of a (k, €)
extractor E : {0,1}" x {0,1}* — {0,1}™ with seed
length d = (1 + ~)logn + logk + O(1) and output length
m > (1 — a)k, provided k > cd /o for a universal constant
c.

6 Reed-Solomon version

We use one of the main ideas from [8] to argue that a
small modification to our construction gives a good con-
denser from Reed-Solomon codes, answering a question
raised in [15].

Let g be an arbitrary prime power, and let { € IF, be a
generator of the multiplicative group Fy. Then the polyno-
mial E(Y) = Y9~ —( is irreducible over F, [16, Chap. 3,
Sec. 5]. The following identity holds for all f(Y") € F,[Y]:

FY)T = fY) = fYY) = f(CY)  (mod E(Y)).



seed length d output length output entropy Thm.
(14+1/7) (log(n/e) +logk)+O1) | (1 +~)k+2d k+d 4.2
(1+7) (log(n/e) +logk) + O(1) | (1+1/v)k+2d k+d 42
(14 ~v)log(n/e) + O(1) (I+1/v)k+d (1-0(1/1og(n/e)) k+d 5.7
log(n/e) + O(1) (1+~log(dn/e))k+d | (1 —2v)k+d—O(og(1/e)) | 5.7

Figure 1. Condensers in this paper for k£ min-entropy. Above, v > 0 is an arbitrarily small constant.
Note that the first two constructions condense all entropy thresholds less than i simultaneously.

In this case, if we modify our basic function I' (see (1))
slightly so that we raise f to successive powers of ¢ rather
than h, we obtain the function C' : F' xF, — ]F;”Jrl defined
by:

def

Clf.y) = [y f(y), (f mod E)(y), (f* mod E)(y),

o (f7" mod E)(y)]

In other words, our function interprets its first argument
as describing a univariate polynomial over I, of degree at
most n—1 (i.e., a Reed-Solomon codeword), it uses the seed
to select a random location in the codeword, and it outputs
m successive symbols of the codeword, together with the
seed. This is precisely the analog of the Shaltiel-Umans ¢-
ary extractor construction [27], for univariate polynomials
rather than multivariate polynomials.

With a minor modification to the proof of Theorem 3.2,
we show that this is good condenser:

Theorem 6.1. Define C' as in (3) and LIST (T, €) with re-
spect to C' as in Definition 5.1. Then for every T C IFZ]"‘H
of size at most L = Ah™ — 1, we have

LIST(T,e)| < (h— 1)

where A =¢eq — (n—1)(h — 1)m.

Proof. Let T C F;"*! with |T| < Ah™ — 1. The proof
follows along the lines of Theorem 3.2. We interpolate a
nonzero polynomial Q(Y,Y1,Ys,...,Y,,) that vanishes on
T, and and has degree at most A—1in Y and at most (h—1)
in each Y;. The number of coefficients of such a ) equals
AR™ which exceeds |T'|, and therefore such a nonzero poly-
nomial @) indeed exists. We can also ensure that £(Y") does
not divide @). For every f(Y) € LIST(T,¢), the poly-

. def m—

nomial R;(Y) < Q(Y, £(Y), F(CY), .., F(C™1Y)) has
more than £q roots, and degree at most (A—1)+(n—1)(h—
1)m, and therefore must be the zero polynomial. We define

Q* slightly differently:

Q(2) ¥ Qv,z,29,27,...,2 ) mod E(Y).

As before, Q* is a nonzero polynomial over the exten-
sion field F = F,[Y]/(E(Y)). Further, every f(Y) €
LIST(T,¢), viewed as an element of the extension field F,
is a root of Q*. Tt follows that [LIST(T,¢)| < deg(Q*).
The degree of Q* is at most

(h=1)(1+q+¢*+--+¢" ") =

and this proves the claimed bound. O

By picking parameters suitably in the above construc-
tion, we obtain the following condenser. Unlike our basic
condenser (Theorem 4.2), this condenser is no longer loss-
less. Instead, the ratio of the input and output min-entropies
is roughly d/t ~ (1 + 1/«), which means that we retain
only a /(14 «) fraction of the min-entropy (compare with
Theorem 5.7).

Theorem 6.2 (Reed-Solomon condenser). For every n €
N, ¢ < n such that 2% is an integer, and o, € > 0, there is an
explicit function C : {0,1}" x {0,1}% — {0,1}"" defined
in (3) that is a

(14+1/a)lt +1og(1l/e) —ge bt +d —2

condenser withd < (1+1/a)tandn’ < (14 1/a)lt +d,
where t = [alog(4nt/e)], provided ¢t > log(1/e).

Proof. Set h = 2! and note that h'/®* > 4n/e. Let ¢ be the
power of 2 in (h'*T1/® /2 h1+1/<] Set m = (. Note that

AL eq—(n—1)(h—1)m >eq—nhm > eq/2,
because ¢ > h'T1/*/2 > 2nhl/e, and m = (.

Consider the function C' : Fjj x Fy — ]F;"+1 defined in
(3). By Theorem 6.1, for every T' C FZ”H of size at most
L = AW™ — 1 we have |LIST(T,¢)| < ¢™ — 1. Applying
Lemma 5.5, we find that C' is a

qm—1 Ah™ —1
log —9 log | ———
e 2e

condenser. By Proposition 5.3, the output distribution of the
condenser C' is within statistical distance ﬁ <927l < ¢




of a distribution with min-entropy at least
AR™
log <2—) >logq+lt—2=0t+d—2.
€

We can thus conclude that C' is a
(1+1/a)lt +log(l/e) —3. bt +d —2

condenser. This is the claimed condenser; the upper bounds
on d and n’ follow from the fact that ¢ = 2¢ < 2(1+1/a)t,
Finally, the construction is explicit because a representa-
tion of Fy for g a power of 2 as well as a generator of Fy
can be found in time poly(log q) [28]. O

6.1 Limitation of the Reed-Solomon con-
denser

For the Reed-Solomon-based construction, a relatively
simple argument shows that the entropy rate must in general
be a constant less than 1. The example below comes from
[7, 34]:

Lemma 6.3. Define C as in (3). For every positive inte-
ger p < n such that p|(q — 1), there is a source X with
minentropy at least |n/p| - log q for which the support of
C(X, Uieg q) is entirely contained within a set of size w™,
where w = (¢ — 1)/p + 1.

Proof. Take the source to be p-th powers of all degree
[(n — 1)/p| polynomials. Every output symbol of C is
an evaluation of such a polynomial, and therefore must be
a p-th power, or 0. There are thus only w = (¢ — 1)/p+ 1
possible output symbols, so the output is contained within a
set of size w™. O

For such a source X, the output minentropy of C' is at
most mlogw and the output length is mlogg. Thus the
entropy rate is at most

logw

1 logp
logq

logq’

So for example, for a source obtained when p =~ \/n, the
Reed-Solomon condenser C' has a constant entropy rate less
than 1 unless the seed length log ¢ is w(logn).

This implies that the entropy rate obtained in Theorem
6.2 is not an artifact of the analysis. That is, it is not possible
to improve the entropy rate (e.g., to 1) simply by giving a
different, improved analysis for the generic Reed-Solomon
construction.

7 Conclusions

The “list-decoding” view of expanders and condensers
used in this paper seems to be quite powerful, leading to

constructions that are more direct, achieve improved param-
eters. It is thus natural to ask how far this approach can
be pushed. Constructing unbalanced expanders with expan-
sion close to the degree where the degree and/or size of the
right-hand side are within constant factors of optimal is a
natural next goal. This is closely related to question of con-
structing truly optimal extractors, ones that are optimal up
to additive constants in the seed length and/or output length.
Towards this end, we wonder if there is some variant of our
construction with a better entropy rate — the next natural
threshold is to have entropy deficiency only k°(Y). Another
interesting question is whether some variant of these con-
structions can give a block-wise source directly. Depending
on the actual parameters, either of these two improvements
have the potential to lead to extractors with optimal output
length (i.e. ones extract all the min-entropy). Alternatively,
if we can find an extractor with optimal output length for
high min-entropy (say .99n), then, by composing it with
our condenser, we would get one for arbitrary min-entropy.

We also wonder whether these new techniques can help
in other settings. For example, can we use them to argue
about computational analogues of the objects in this pa-
per — pseudorandom generators and pseudoentropy gener-
ators? Or, can variants of our constructions yield so-called
“2-source” objects, in which both the source and the seed
are only weakly random?
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