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ABSTRACT
The hybrid argument allows one to relate the distinguisha-
bility of a distribution (from uniform) to the predictability
of individual bits given a prefix. The argument incurs a
loss of a factor k equal to the bit-length of the distribu-
tions: ε-distinguishability implies ε/k-predictability. This
paper studies the consequences of avoiding this loss – what
we call “beating the hybrid argument” – and develops new
proof techniques that circumvent the loss in certain natural
settings. Specifically, we obtain the following results:

1. We give an instantiation of the Nisan-Wigderson gen-
erator (JCSS ’94) that can be broken by quantum com-
puters, and that is o(1)-unpredictable against AC0.
We conjecture that this generator indeed fools AC0.
Our conjecture implies the existence of an oracle rel-
ative to which BQP is not in the PH, a longstanding
open problem.

2. We show that the “INW” generator by Impagli-
azzo, Nisan, and Wigderson (STOC ’94) with seed
length O(log n log log n) produces a distribution that is
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1/ log n-unpredictable against poly-logarithmic width
(general) read-once oblivious branching programs. Ob-
taining such generators where the output is indistin-
guishable from uniform is a longstanding open prob-
lem.

3. We identify a property of functions f , “resamplabil-
ity,” that allows us to beat the hybrid argument when
arguing indistinguishability of

G⊗k
f (x1, . . . , xk)

= (x1, f(x1), x2, f(x2), . . . , xk, f(xk))

from uniform. This gives new pseudorandom genera-
tors for classes such as AC0[p] with a stretch that, de-
spite being sub-linear, is the largest known. We view
this as a first step towards beating the hybrid argu-
ment in the analysis of the Nisan-Wigderson genera-
tor (which applies G⊗k

f on correlated x1, . . . , xk) and
proving the conjecture in the first item.

Categories and Subject Descriptors
F.1.3. [Theory of Computation]: Computation by ab-
stract devices—Complexity measures and classes

General Terms
Theory

Keywords
Hybrid argument, Quantum computing, Pseudorandomness,
Small space, branching program, Constant depth circuits

1. INTRODUCTION
The hybrid argument [GM84] (see also [Yao82, BM84]

and [Gol01] for an exposition) is a powerful proof tech-
nique that has widespread applications in cryptography and
complexity theory. Suppose we have a random variable



Z = (Z1, Z2, . . . , Zk) ∈ {0, 1}k that can be distinguished
from the uniform distribution on k bits, U , by a function D,
i.e.,

|Pr[D(Z) = 1] − Pr[D(U) = 1]| ≥ ε.

We are interested in predicting Zi from a prefix Z1,...,i−1

with some advantage over random guessing. The hybrid
argument (in its most basic form) reasons about this via
hybrid distributions

Hi
def
= (Z1, Z2, . . . , Zi, Ui+1, Ui+2, . . . , Uk).

Since H0 = U and Hk = Z, using the triangle inequality we
get

ε ≤ |Pr[D(Z) = 1] − Pr[D(U) = 1]|

≤
k∑

i=1

|Pr[D(Hi−1) = 1] − Pr[D(Hi) = 1|,

which means that D distinguishes two adjacent hybrids,
Hi−1 and Hi, with gap at least ε/k. From here, it is easy
to convert D into a closely related function that predicts Zi

from the prefix with advantage ε/k over random guessing.
The contrapositive is that unpredictability implies indistin-
guishability. The canonical application of this argument is
to the construction of pseudorandom generators, where it is
often easier to design an unpredictable Z (e.g., from a hard
or one-way function) than to argue directly about indistin-
guishability [BM84, Yao82, GL89, HILL99, Nis91, NW94].
The hybrid argument also plays an important role in the
inductive arguments underlying pseudorandom generators
against space-bounded computation [Nis92, INW94].

The power of the hybrid argument lies in its generality: it
is a generic tool, making no assumptions about the random
variable Z or the complexity of D. But this generality comes
with a price: the factor k multiplicative loss in passing from
the distinguishability of Z from U , to the distinguishabil-
ity of two adjacent hybrids. This loss is negligible when
k ¿ 1/ε, which is a common setting for constructions of
pseudorandom generators under super-polynomial hardness
assumptions. But the loss is a major stumbling block when
k is comparable to, or much larger than, 1/ε. In this case
(for example) the loss prevents us from obtaining small-seed
generators against various low-level circuit classes for which
known lower bounds are not strong enough to withstand the
loss (see [SV10]).

It is reasonable to guess that if one imposes restrictions
on the type of Z’s distribution, or on the complexity of D,
this loss might be lessened or avoided entirely – what we call
“beating the hybrid argument.”1

In this paper we show that two longstanding open prob-
lems in complexity would be resolved by beating the hybrid
argument. The first concerns the problem of constructing
an oracle relative to which BQP is not in the Polynomial-
time Hierarchy (PH), and the second concerns the problem
of constructing pseudorandom generators for space. In each
setting, the fact that the hybrid argument is the bottleneck

1Barak, Shaltiel, and Wigderson [BSW03] were the first to
show that this is possible, if D is a small PH-circuit or obliv-
ious bounded-width branching program, and additionally D
is a particular strong, “nearly-one-sided” distinguisher.

is not obvious; to show that it is a bottleneck, we construct
a non-standard instantiation of the Nisan-Wigderson (NW)
generator [NW94] that can be broken by quantum comput-
ers in the first setting, and we modify the standard anal-
ysis of the Impagliazzo-Nisan-Wigderson (INW) generator
[INW94] in the second. These two settings are discussed in
more detail in §1.1.

We then pursue a program of determining when the hy-
brid loss can be avoided, by imposing natural restrictions
on the distribution Z, and on the complexity of the distin-
guisher D. The complexity classes we consider are certain
“low” complexity classes between AC0 and L. We show that
the hybrid loss can indeed be avoided entirely when Z is ob-
tained by repeated sampling from the distribution (U, f(U)),
for hard functions f that enjoy a special type of random
self-reducibility we dub resamplability. We then show that a
variety of natural functions f are resamplable, such as parity
and majority, the latter corresponding to a special case of
our central conjecture (Conjecture 2.6) concerning the BQP
vs. PH problem.

Even though we are only studying a relatively simple
class of distributions Z, our techniques are already powerful
enough to obtain new, best-known pseudorandom generators
for AC0[p] and other classes. Although our generators have
sublinear stretch, they improve on the folklore generators
one can obtain by using known hardness results and apply-
ing the hybrid argument – as we later summarize in Table
1. These results demonstrate that the hybrid argument can
be beaten in settings close to what is needed for the two
applications, and develop techniques that may be useful in
tackling the distributions that arise in those applications.

1.1 Two consequences of beating the hybrid
argument

We now describe two longstanding open problems in com-
plexity that would be resolved by beating the hybrid argu-
ment. We also outline the main ideas in the technical de-
velopment needed to establish the hybrid argument as the
bottleneck.

1.1.1 An oracle relative to which BQP is not in the
PH

The quest for an oracle relative to which BQP is not in
the PH dates to the foundational papers of the field; the
question was first asked by Bernstein and Vazirani [BV97]
in the early 1990’s. Currently, oracles are known relative to
which BQP is not in MA [Wat00], but no relativized worlds
are known in which BQP is not in AM. Obtaining an ora-
cle relative to which BQP is not in the PH thus represents
a stubborn, longstanding and fundamental problem whose
resolution would help clarify the relationship between BQP
and classical complexity classes. In recent progress, Aaron-
son [Aar10b] devised a relation oracle problem that lies in
the function version of BQP but not in the function version
of the PH, but this still leaves the original problem open.2

In this paper we will speak almost exclusively about the
“scaled down” version of the problem, which is equivalent
via the well-known connection between PH and AC0. In it,

2Aaronson [Aar10b] also proposed the “Generalized Linial-
Nisan Conjecture” as a possible route to obtaining the de-
sired oracle; this conjecture turned out to be false in general
[Aar10a]. The viability of our approach is unaffected by this
development.



the goal is to design a promise problem (rather than an ora-
cle) that lies in (promise)-BQLOGTIME but not (promise)-
AC0. The class BQLOGTIME is the class of languages de-
cidable by quantum computers that have random access to
an N -bit input, and use only O(log N) steps (see §2 for the
formal definition). As in [Aar10b], our goal will be to de-
sign, for each input length N , a distribution on N -bit strings
that can be distinguished from the uniform distribution by
a BQLOGTIME predicate, but not by a (quasipolynomial-
size) AC0 circuit. As described in Appendix B, such a dis-
tribution can be easily converted to a proper oracle O for
which BQP O 6⊆ PHO. To obtain such a distribution, we
prove two main statements:

1. we generalize the setting of [Aar10b] to a simple frame-
work in which any efficiently quantumly computable
unitary U gives rise to a distribution that can be distin-
guished from uniform by a quantum computer (Aaron-
son’s setup is recovered by choosing U to be a DFT
matrix), and

2. we give an explicit construction of unitary matrices
whose row-supports form a Nisan-Wigderson design,
and we show how to realize these matrices with small
quantum circuits in §2.3. This is the technical core of
the quantum section.

In our framework, these unitaries give rise to a distribu-
tion that is an instantiation of the NW PRG, with major-
ity as its hard function, and we conjecture (Conjecture 2.6)
that this distribution is indeed pseudorandom for AC0. The
quantitative loss in the hybrid argument is the only thing
standing in the way of proving this conjecture, and thus re-
solving the oracle BQP vs. PH problem. In §4 we make a
step towards resolving our conjecture, by showing that it is
true for the simpler case in which the sets in the design for
the NW generator are disjoint.

1.1.2 Pseudorandom generators for branching pro-
grams of small width

A longstanding open problem is to design log-space pseu-
dorandom generators that stretch a seed of O(log n) bits
into n pseudorandom bits that are indistinguishable from
uniform by polynomial-width (read-once oblivious) branch-
ing programs. Such generators would yield RL = L, set-
tling a major open problem in complexity theory. Existing
constructions of pseudorandom generators [Nis92, INW94]
fail to reach this goal because they use seeds of length
O(log2 n). Despite significant effort, no improvement in the
seed length has been achieved even when restricting atten-
tion to constant-width branching programs, although a re-
cent, exciting line of works makes progress if the branching
programs are constrained further [BRRY10, KNP10, BV10].

In this work we show that the INW generator [INW94] can
be adapted to use seed length O(log n · log log n) and pro-
duce an n bit distribution in which each position cannot be
predicted with advantage 1/ log n (given the previous posi-
tions) by poly-logarithmic width branching programs. Thus,
bypassing the loss of the hybrid argument would yield a
breakthrough in pseudorandom generators for small-width
branching programs. In §3 we elaborate on this approach.

1.2 New pseudorandom generators by beat-
ing the hybrid argument

Following the seminal work of [Nis91] a long line of re-
search is concerned with pseudorandom generators against
various classes of circuits. We say that a distribution Z on
t bits is ε-pseudorandom for a class of circuits C if for every
circuit C in C,

|Pr[C(Z) = 1] − Pr[C(Ut) = 1]| ≤ ε.

A function G : {0, 1}d → {0, 1}t is ε-pseudorandom for C if
G(Ud) is ε-pseudorandom.

We will be mostly interested in classes of constant-depth
circuits for various choices of allowed gates. For many of
these classes there are known circuit lower bounds which
can be used to construct pseudorandom generators. More
precisely, let f : {0, 1}n → {0, 1} be a function with hardness
δ against some class C (meaning that every circuit in the
class errs on at least (1/2− δ) · 2n inputs). It is immediate
that the function Gf (x) = (x, f(x)) is a δ-pseudorandom
generator for C. Its stretch (which we measure additively) is
1. One way to improve it is by repeated sampling, namely:

G⊗k
f (x1, . . . , xk) :=

(
(x1, f(x1)), (x2, f(x2)), . . . , (xk, f(xk))

)
.

The pseudorandomness of G⊗k
f follows by the hybrid ar-

gument as long as k ≤ 1/δ and it stretches a seed of length
nk into nk + k bits.3 The repeated sampling generator can
be viewed as a special case of the NW generator in which
the sets of the design are all disjoint. The NW generator
reduces the seed length of the generator from nk to ≈ n2

which is beneficial whenever k À n. However, for k À n the
analysis of the NW generator relies on the hybrid argument
on n bits, which in turn requires hardness δ ≤ 1/n to get a
meaningful result.

For some constant-depth circuit classes (that we mention
below) the best-known lower bounds only achieve hardness

δ ≥
√

1/n. In such cases repeated sampling produces the
best-known generators (and there is no gain from using the
NW generator). Repeated sampling extends the seed by k
bits, and by the previous discussion, using the hybrid argu-
ment k is bounded by 1/δ. In §4 we observe that this loss is
inherent in black-box proofs.

Our main technical contribution in this direction is devel-
oping new proof techniques that breaks this barrier and al-
lows us to show that G⊗k

f is pseudorandom even for k > 1/δ.
As a consequence we obtain improved pseudorandom gen-
erators for several circuit classes. These are summarized in
Table 1 which also includes a comparison to the best pre-
vious results. Let us make a couple of remarks. First, as
we mentioned before, the best previous results are obtained
by analyzing the repeated-sampling generator via the hybrid
argument. Second, in our pseudorandom generators we also
exploit the fact that the hardness results hold for circuits of
almost exponential size. This allows choosing k to be almost
exponential in the input length of the function, maximizing
the stretch obtained by repeated sampling. The functions
and circuit classes we consider are:

3Note that not only does the hybrid argument loss over-
whelm when k À 1/δ, but a complexity class powerful
enough to compute majority can break the “repeated sam-
pling” generator by aggregating (weak) predictions of f(xi)
from xi over all i. This demonstrates that we must critically
use limitations on the power of the class, which we do.



Table 1: Pseudorandom generators fooling circuits of size poly(n) on n bits.
Seed length of generators fooling poly(n)-size circuits on n bits.

Type of circuits Hybrid argument This work

AC0[p], p prime n− n1/3 n− n/poly log n (Cor. 4.6,4.14)

AC0 with no(1) majority gates n− n1/3 n− nβ , ∀β < 1 (Cor. 4.18)

AC0[6] n− poly log n n− nβ , ∀β < 1 (Cor. 4.16)
(under L 6⊆ AC0[6]) (under L 6⊆ AC0[6])

Majority. The n-bit majority function has hardness
Õ(1/

√
n) for AC0 [H̊as87] (the notation Õ hides polylog-

arithmic factors), and this is tight as shown by the simple
circuit that just outputs a bit of the input. We prove that, in
fact, the pseudorandomness of G⊗k

majority does not decay with

k: AC0 circuits cannot distinguish k independent copies of
(Un, majority(Un)) from uniform with any constant advan-
tage, for any k = poly(n). This is the special case of Con-
jecture 2.6 we mentioned in §1.1.1.
Parity. The n-bit parity function is known to have hard-
ness ≤ Õ(1/

√
n) for the class AC0[p] for every prime p 6= 2

[Raz87, Smo87, Smo93]. Here AC0[p] stands for AC0 cir-
cuits augmented with mod p gates. Whether this bound
can be improved is a major, twenty-year-old open problem.
Using the hybrid argument, one can only stretch

√
n ·n bits

to
√

n · (n + 1) bits, corresponding to a seed length n−n1/3

for n output bits. We are not aware of any better results.
Similarly to the case of majority, we prove that G⊗k

parity

remains Õ(1/
√

n)-pseudorandom for any k ≤ 2no(1)
. This

translates into an improved seed length of n − n/poly log n
for n output bits.

We obtain similar result for the class of AC0 circuits with
few (a small polynomial number of) majority gates using the
fact that parity is hard for this class [ABFR94, Bei94], and
for AC0[2] using the determinant function over GF(2) for a
certain distribution M of input matrices due to Ishai and
Kushilevitz [IK00, IK02]. The determinant function also
yields conditional results for the class ACC0 := ∪mAC0[m].
A recent breakthrough by Williams [Wil10, Wil11] shows
that NEXP 6⊆ AC0[m], but does not seem to imply pseudo-
random generators. Here our contribution is to show that,
under a hardness assumption, one can get generators with
n output bits and seed length n − nΩ(1), whereas previous
techniques would only give n− poly lg n.

An important open problem is whether our approach
can be strengthened to handle the NW generator with
even slightly non-disjoint sets. This would reduce the seed
length and give improved stretch. Also, as mentioned
earlier, achieving this goal in the case of majority and
quasipolynomial-size AC0 suffices to obtain an oracle rel-
ative to which BQP is not in PH.

1.3 The role of resamplability.
We are interested in analyzing the pseudorandomness of

the repeated sampling generator while avoiding the loss of
the hybrid argument. As mentioned briefly in §1.2, we can-
not hope to beat the hybrid argument unless we use spe-
cific (non-black-box) properties of the function f . In this
work we identify one such property, the ability to resample
the function. Informally, we say that a function f is resam-
plable if there is a (randomized) procedure R that on (fixed)

input (x, b) produces a distribution R(x) over pairs (x′, b′)
such that x′ is uniformly distributed over the domain of f ,
and the event {b = f(x) ⇔ b′ = f(x′)} holds with probabil-
ity one. We stress that we are interested in procedures R
that use less resources than those required to compute f .
This notion of resamplability is thus a special type of ran-
dom self-reducibility, a well-studied concept in complexity
theory (see, e.g., [FF93] and the references therein). In par-
ticular, it is easy to see that resamplability allows us to relate
the average-case hardness of f to its worst-case hardness.

Our approach using resamplability yields the following:
Let f be a function that is resamplable in a class C and
has hardness δ > 0 against C. We show that the repeated
sampling generator G⊗k

f remains δ-pseudorandom for C as
long as k is smaller than the size bound of circuits in C.
This analysis beats the hybrid argument as it allows choos-
ing k À 1/δ. The results in §4 are obtained by identifying
hard functions that have (known) efficient resamplers, and
then applying arguments that rely on them being resam-
plable. We comment that in §4 we use more general notions
of resamplability than the one described here (and some of
our results make use of these generalizations).

1.4 Organization of this paper.
In §2 we state our conjecture about a certain instantiation

of the Nisan-Wigderson generator fooling AC0, and we prove
that this conjecture would yield an oracle separating BQP
from PH. In §3 we discuss our results about pseudorandom
generators for space-bounded computation. In §4 we show
how to beat the hybrid argument for certain repeated sam-
pling generators, proving along the way a special case of the
conjecture mentioned above.

2. TOWARD AN ORACLE RELATIVE TO
WHICH BQP IS NOT IN THE PH

In this section we discuss our results regarding BQP vs.
PH problem. We start with some standard preliminaries.

2.1 Preliminaries
A unitary matrix is a square matrix U with complex en-

tries such that UU∗ = I, where U∗ is the conjugate trans-
pose. Equivalently, its rows (and columns) form an or-
thonormal basis. We name the standard basis vectors of
the N = 2n-dimensional vectorspace underlying an n-qubit
system by |v〉 for v ∈ {0, 1}n. A local unitary is a unitary
that operates only on b = O(1) qubits; i.e. after a suitable
renaming of the standard basis by reordering qubits, it is
the matrix U ⊗ I2n−b , where U is a 2b × 2b unitary U . A
local unitary can be applied in a single step of a quantum
computer. A local decomposition of a unitary is a factor-
ization into local unitaries. We say an N × N unitary is



efficiently quantumly computable if this factorization has at
most poly(n) factors.

A quantum circuit applies a sequence of local unitaries
(“gates”) where each gate is drawn from a fixed, finite set of
gates. There are universal finite gate sets for which any
efficiently quantumly computable unitary can be realized
(up to exponentially small error) by a poly(n)-size quantum
circuit [KSV02].

Definition 2.1 (BQLOGTIME). A language L is in
BQLOGTIME if it can be decided by a LOGTIME-uniform
family of circuits {Cn}, where each Cn is a quantum cir-
cuit on n qubits. On an (N = 2n)-bit input x, circuit Cn

applies O(log N) gates, with each gate being either a query
gate which applies the map |i〉|z〉 7→ |i〉|z ⊕ xi〉, or a stan-
dard quantum gate (from a fixed, finite basis). It is equiva-
lent, by polynomially padding the number of qubits, to allow
poly log(N) gates.

In this paper, the only manner in which our BQLOGTIME
algorithm will access the input string x is the following oper-
ation, which “multiplies x into the phases”. There are three
steps: (1) query with the query register clean, which applies
the map |i〉|0〉 7→ |i〉|0⊕xi〉 (note each xi is in {0, 1}); (2) ap-
ply to the last qubit the map |0〉 7→ −|0〉, |1〉 7→ |1〉; (3) query
again to uncompute the last qubit. When we speak of “mul-
tiplying x into the phase” it will be linguistically convenient
to speak about x as a vector with entries from {+1,−1},
even though one can see from this procedure that the actual
input is a 0/1 vector.

The following lemma will be useful repeatedly. It states
(essentially) that a block diagonal matrix, all of whose blocks
are efficiently quantumly computable, is itself efficiently
quantumly computable. This is trivial when all of the blocks
are identical, but not entirely obvious in general.

Lemma 2.2. Fix N = 2n and M = 2m. Let U be
an N × N block diagonal matrix composed of the blocks
U1, U2, . . . , UM , where each Ui is a N/M×N/M matrix that
has a poly(n)-size quantum circuit, a description of which is
generated by a uniform poly(n) time procedure, given input
i. Then given three registers of m qubits, n−m qubits, and
poly(n) qubits, respectively, with the third register initialized
to |000 · · · 0〉, there is a poly(n) size uniform quantum cir-
cuit that applies U to the first two registers and leaves the
third unchanged.

Proof. Fix a finite universal set of quantum gates, of
cardinality d, each of which operates on at most b qubits.
A convenient notion will be that of an oblivious circuit, in
which we fix an ordering (say, lexicographic) on [n]b, and
the steps of the circuit are identified with poly(n) cycles
through this list: when we are on step (a1, a2, . . . , ab) ∈ [n]b

in one of these cycles, we operate on qubits a1, a2, . . . , ab.
Clearly, any (uniform) quantum circuit can be converted to
a (uniform) “oblivious” circuit with at most an nb blowup
by inserting dummy identity gates.

Let nk be an upper bound on the size of the oblivious
circuits obtained in this way for the various Ui. The circuit
for each Ui is now a sequence

j(i) =
(
j
(i)
1 , j

(i)
2 , j

(i)
3 , . . . , j

(i)

nk

)
,

with each j
(i)
` ∈ [d] specifying which gate to apply at step

` in the oblivious circuit for Ui (and because the circuit is

oblivious, the qubits to which this gate should be applied

are easily determined from `). Let f : [M ] → [d]n
k

be the

function that maps i to the vector j(i).
Now we describe the promised efficient quantum proce-

dure:

1. Apply the map derived from f that takes |i〉|z〉 to
|i〉|z ⊕ f(i)〉, to the first and third register. We view

the contents of the third register as a vector in [d]n
k

.

2. Repeat for ` = 1, 2, 3, . . . , nk: apply the “controlled
unitary” that consults the `-th component of the third
register, and applies the specified gate to qubits
(a1, a2, . . . , ab) of the second register (again,
(a1, a2, . . . , ab) are easily determined from ` because
the circuit is oblivious). The important observation
is that this “controlled unitary” operates on only con-
stantly many qubits.

3. Repeat step 1 to uncompute the auxiliary information
in the third register.

2.2 The quantum algorithm
We give a general framework allowing one to turn any

efficiently quantumly computable unitary into a distribution
that can be distinguished from uniform by a BQLOGTIME
machine. Our framework generalizes the setup in [Aar10b].

Let A be any N × N matrix with entries4 in {0, 1,−1}
and pairwise orthogonal rows, and define S(A, i) to be the
support of the i-th row of matrix A. Define A to be the
matrix A with entries in row i scaled by 1/

√
|S(A, i)|, and

observe that A is a unitary matrix.
Define the random variable DA,M = (x, z) distributed

on {+1,−1}2N by picking x ∈ {+1,−1}N uniformly, and
setting the next N bits to be z ∈ {+1,−1}N defined by
zi = sgn((Ax)i) = sgn((Ax)i) for i ≤ M and zi indepen-
dently and uniformly random in {+1,−1} for i > M .

It will be convenient to think of M = N initially; we
analyze the general case because we will eventually need to
handle M = N/2. Below, we use U2N to denote the random
variable uniformly distributed on {+1,−1}2N .

Theorem 2.3. Let N = 2n for an integer n > 0, and
let M = Ω(N). For every matrix A ∈ {0, 1,−1}N×N with
pairwise orthogonal rows, there is a BQLOGTIME algorithm
QA that distinguishes DA,M from U2N ; i.e., there is some
constant ε > 0 for which

|Pr[QA(DA,M ) = 1] − Pr[QA(U2N ) = 1]| > ε.

The algorithm is uniform if A comes from a uniform family
of matrices.

Proof. The input to the algorithm is a pair of strings
x, z ∈ {+1,−1}N .

The algorithm performs the following steps:

1. Enter a uniform superposition 1√
N

∑
i∈{0,1}n |i〉 and

multiply x into the phase to obtain 1√
N

∑
i∈{0,1}n xi|i〉.

4We could extend this framework to matrices with general
entries, but we choose to present this restriction since it is
all we need.



2. Apply A to obtain 1√
N

∑
i∈{0,1}n(Ax)i|i〉.

3. Multiply z into the phase to obtain
1√
N

∑
i∈{0,1}n zi(Ax)i|i〉.

4. Define vector w by wi = 1√
N

zi(Ax)i. Apply the N ×
N Hadamard5 H to obtain

∑
i∈{0,1}n(Hw)i|i〉, and

measure in the computational basis. Accept iff the
outcome is 0n.

We first argue that the acceptance probability is small in
case (x, z) is distributed as U2N . This follows from a sym-
metry argument: for fixed x, and w as defined in Step 4
above, the vector Hw above has every entry identically dis-
tributed, because z is independently chosen uniformly from
{−1, +1}N and every row of H is a vector in {−1, +1}N .
In particular this implies that the random variable (Hw)2i is
identically distributed for all i. Together with the fact that∑

i(Hw)2i = 1, we conclude that E[(Hw)2i ] = 1/N . Then

by Markov, with probability at least 1 − 1/
√

N we accept

with probability at most
√

N/N , for an overall acceptance

probability of at most 2/
√

N .
Next, we argue that the acceptance probability is large in

case (x, z) is distributed as DA,M . Here we observe that for
i ≤ M , wi = 1√

N
|(Ax)i| and hence

E[wi] = 1√
N·|S(A,i)|Ω(

√
|S(A, i)|) = Ω(1/

√
N) (since before

scaling, wi is just the distance from the origin of a random
walk on the line, with |S(A, i)| steps). For i > M , we simply

have E[wi] = 0. Then E[
∑

i wi] = M ·Ω(1/
√

N) = Ω(
√

N),
so E[(Hw)0n ] = Ω(1). Since the random variable (Hw)0n

is always bounded above by 1, we can apply Markov to its
negation to conclude that with constant probability, it is at
least a constant ε (and in such cases the acceptance proba-
bility is at least ε2). Overall, the acceptance probability is
Ω(1).

The BQLOGTIME algorithm for what Aaronson calls
fourier checking in [Aar10b] is recovered from the above
framework by taking A to be a DFT matrix (and M = N).

2.3 Unitary matrix with large, nearly-disjoint
row supports

In light of Theorem 2.3, our task is now to construct a
unitary A for which the associated distribution fools AC0.
A natural source for distributions that fool AC0 is the NW
pseudorandom generator. In this section, we show how to
“realize” an instantiation of the NW generator as an effi-
ciently quantumly computable unitary. We need the follow-
ing standard definitions:

Definition 2.4 ([NW94]). A set family
D = {S1, S2, . . . , Sm} is an (`, p) design if every set in the
family has cardinality `, and for all i 6= j, |Si ∩ Sj | ≤ p.

Definition 2.5 ([NW94]). Given a function
f : {0, 1}` → {0, 1} and an (`, p) design D =

{S1, S2, . . . , Sm} in a universe of size t, the function NW f
D :

{0, 1}t → {0, 1}m is given by

NW f
D(x) =(

f1(x|S1), f2(x|S2), f3(x|S3), . . . , fm(x|Sm)
)
,

5This is the matrix H whose rows and columns are indexed
by {0, 1}n, with entry (i, j) equal to −1〈i,j〉/

√
N .

where each fi is the function f with a fixed set of its inputs
negated6, and x|S denotes the projection of x to the coordi-
nates in the set S.

Generally speaking, the function NW f
D is a PRG against a

class of distinguishers as long as f is hard on average for
that class of distinguishers.

Below we construct unitary matrices A with the prop-
erty that all or “almost all” of the row supports S(A, i)
are large and have bounded intersections. We also show
that these unitaries are efficiently quantumly computable;
this is the technical core of this section. The distribution
DA,M (it will turn out that M will be half the underlying
dimension) can then easily be seen to be the distribution
(UN , NWmajority

D ), and we would like to argue that this
distribution fools quasipolynomial-size AC0. majority is
indeed hard for (exponential-size) AC0, but the quantita-
tive loss in the hybrid argument stands in the way of proving
such a statement by known techniques. This is because ma-
jority on ` bits is only Õ(1/

√
`) hard, and we output many

more than
√

` bits.
Nevertheless, we conjecture that the distribution DA,M

fools constant-depth circuits. Since we aim for an oracle
separation, and there is a quasi-polynomial relationship be-
tween oracle PH machines and AC0 circuits, we consider
AC0 circuits of quasipolynomial size.

Conjecture 2.6. Let D = {S1, S2, . . . , Sm} be an
(`, O(1))-design in a universe of size t ≤ poly(`), with
m ≤ poly(`). Then for every constant-depth circuit of size
at most exp(poly log m),

|Pr[C(Ut+m) = 1]− Pr[C(Ut, NWmajority
D (Ut)) = 1]|

≤ o(1).

Using the hybrid argument, a distinguishing circuit C with
gap ε can be converted to a predictor with advantage ε/m
and then (via the standard arguments in [Nis91, NW94])
into a slightly larger circuit that computes majority with
success rate 1/2 + ε/m. Thus the above statement is true

for m ≤ o(
√

`); if the 1/m loss from the hybrid argument
can be avoided (or reduced), it would be true for m as large
as poly(`) (and even larger) as we conjecture is true.

2.3.1 The paired-lines construction
We describe a collection of q2/2 pairwise-orthogonal rows,

each of which is a vector in {0, +1,−1}q2
. We identify q2

with the affine plane Fq × Fq, where q = 2n for an integer
n > 0. Let B1, B2 be an equipartition of Fq, and let φ :
B1 → B2 be an arbitrary bijection. Our vectors are indexed
by a pair (a, b) ∈ Fq×B1, and their coordinates are naturally
identified with Fq × Fq:

va,b[x, y] =

{ −1 y = ax + b
+1 y = ax + φ(b)

(1)

Notice that v(a, b) is −1 on exactly the points of Fq × Fq

corresponding to the line with slope a and y-intercept b,
and +1 on exactly the points of Fq × Fq corresponding to
the line with slope a and y-intercept φ(b). So each v(a, b) is

6The standard setup has each fi = f ; we need the additional
freedom in this paper for technical reasons. We know of no
settings in which this alteration affects the analysis of the
NW generator.



supported on exactly a pair of parallel lines. Orthogonality
will follow from the fact that every two non-parallel line-
pairs intersect in exactly one point, as argued in the proof
of the next lemma.

Lemma 2.7. The vectors defined in Eq. (1) are pairwise
orthogonal, and their supports form a (2q, 4) design.

Proof Proof of Lemma 2.7. Consider (a, b) 6= (a′, b′).
If a = a′ then the supports of v(a, b) and v(a, b′) are disjoint.
Otherwise a 6= a′ and there are exactly four intersection
points (obtained by solving linear equations over Fq):

• (x = (b′− b)/(a− a′), y = ax + b) = (x = (b′− b)/(a−
a′), y = a′x + b′), which contributes (−1) · (−1) = 1 to
the inner product, and

• (x = (b′ − φ(b))/(a − a′), y = ax + φ(b)) = (x = (b′ −
φ(b))/(a − a′), y = a′x + b′), which contributes (+1) ·
(−1) = −1 to the inner product, and

• (x = (φ(b′)− b)/(a − a′), y = ax + b) = (x = (φ(b′)−
b)/(a − a′), y = a′x + φ(b′)), which contributes (−1) ·
(+1) = −1 to the inner product, and

• (x = (φ(b′) − φ(b))/(a − a′), y = ax + φ(b)) = (x =
(φ(b′) − φ(b))/(a − a′), y = a′x + φ(b′)), which con-
tributes (+1) · (+1) = 1 to the inner product.

The sum of the contributions to the inner product from these
four points is zero. The computation of the support size is
straightforward.

In Appendix A, we give another construction (which is not
needed for our main result) in which the number of vectors
is exactly equal to the dimension of the underlying space
(giving rise to a unitary in which “all rows participate” in-
stead of only half of the rows). However, we leave as an open
problem obtaining a local decomposition of the associated
unitary.

2.3.2 A local decomposition
We new describe an q2 × q2 unitary matrix that is ef-

ficiently quantumly computable and has the (normalized)
vectors v(a, b) from Eq. (1) as q2/2 of its q2 rows. We recall
that q = 2n for an integer n > 0.

Proposition 2.8. The following q × q unitary matrices
are efficiently quantumly computable: (1) the DFT matrix
F with respect to the additive group of Fq and its inverse,
and (2) the q × q unitary matrix B with 1√

2
(Iq/2| − Iq/2) as

its first q/2 rows, 1√
4
(Iq/4|−Iq/4|Iq/4|−Iq/4) as its next q/4

rows, 1√
8
(Iq/8|−Iq/8|Iq/8|−Iq/8|Iq/8|−Iq/8|Iq/8|−Iq/8) as its

next q/8 rows, etc... and whose last row is 1√
N

(1, 1, 1, . . . , 1).

Proof Proof of Proposition 2.8. The DFT matrices
are well-known to be efficiently quantumly computable. For
the second one we make use of the Hadamard matrix

H =
1√
2

(
1 −1
1 1

)
.

Let Bi be the q × q identity matrix with its lower right
2i × 2i submatrix replaced by the matrix H ⊗ I2i−1 . Each
Bi is efficiently quantumly computable by Lemma 2.2. It is
then easy to verify that B = B1B2B3 · · ·Bn.

Lemma 2.9. Let α be a generator of the multiplicative
group of Fq. For c ∈ Fq, let Dc denote the q × q diago-
nal matrix
1√
q
· diag

(√
q, (−1)Tr (α1·c), (−1)Tr (α2·c), (−1)Tr (α3·c), . . .

, (−1)Tr (αq−1·c)
)

, and let D′
c denote the q× q diagonal ma-

trix 1√
q
·diag

(
0, (−1)Tr (α1·c), (−1)Tr (α2·c), (−1)Tr (α3·c), . . .

, (−1)Tr (αq−1·c)
)

. Then the q2 × q2 matrix D whose (i, j)

block (with i, j ∈ Fq) equals Dij if i = j and D′
ij otherwise,

is efficiently quantumly computable.

Proof Proof of Lemma 2.9. Consider the q2 × q2

block-diagonal matrix that has as its (k, k) block the matrix

whose (i, j) entry is (−1)Tr (ijαk) for k ∈ {1, 2, . . . , q − 1}
and whose (0, 0) block is Iq. Each such block except the
(0, 0) block is the DFT matrix F with its rows (or equiv-
alently, columns) renamed according to the map j 7→ jαk.
The F matrix is efficiently quantumly computable and the
map j 7→ jαk is classically and reversibly (and thus quan-
tumly) efficiently computable. Thus each q× q block on the
diagonal is efficiently quantumly computable. By Lemma
2.2 the entire matrix is efficiently quantumly computable.

If we index columns by (i, i′) ∈ (Fq)
2 and rows by (j, j′) ∈

(Fq)
2, then the desired matrix D is the above block-diagonal

matrix with the order of the two indexing coordinates for the
rows transposed, and the order of the two indexing coordi-
nates for the columns transposed.

Our main theorem follows:

Theorem 2.10. The q2 × q2 matrix (Iq ⊗ B) · (Iq ⊗ F ) ·
D · (Iq ⊗ F−1), which is efficiently quantumly computable,
has the vectors v(a, b) from Eq. (1) as q2/2 of its rows7.

Proof Proof of Theorem 2.10. Let Sc be the q × q
permutation matrix Sc that (when multiplied on the right)
shifts columns, identified with Fq, by the map x 7→ x + c.
Let J be the all-ones matrix. The main observation is that

FDcF
−1 =

1√
q
Sc −

√
q − 1

q
J,

and that

FD′
cF

−1 =
1√
q
Sc − 1√

q
J.

Thus the final matrix has in its (i, j) block (with i, j ∈ Fq)
the matrix

B ·
(

1√
q
Sij −

√
q − 1

q
J

)

if i = j, and

B ·
(

1√
q
Sij − 1√

q
J

)

otherwise. Observe that BJ has all zero entries except for
the last row, so in particular, the first q/2 rows of the (i, j)
block are (1/

√
2q)(Iq/2| − Iq/2)Sij . Therefore the q/2 rows

of the entire q2 × q2 matrix corresponding to the top halves
of blocks (i, j) as j varies, give the vectors v(i, b) for b ∈ B1,
if we identify columns with Fq × Fq as follows: columns of

7To be precise, these are the v(a, b) with respect to some
equipartition B1, B2 and some bijection φ.



the j-th block are identified with {j} × Fq, and within the
j-th block, B1 is the first q/2 columns and B2 is the next q/2
columns (and the bijection φ maps the element associated
with the b-th column to the element associated with the
(b + q/2)-th column).

Then, as i varies over Fq, we find all of the vectors from
Eq. (1) as the “top-halves” of each successive set of q rows
of the large matrix.

2.4 Putting it all together

Theorem 2.11. Assuming Conjecture 2.6, for every N
there is a distribution DN on N bits such that: (1) there is
a BQLOGTIME algorithm that distinguishes DN from the
uniform distribution on N bits with probability ≥ Ω(1); and
(2) for every d, any depth-d AC0 circuit of size exp(logd N)
has vanishing (o(1)) advantage in distinguishing DN from
uniform.

Proof Proof of Theorem 2.11. We only construct
DN for certain lengths – one can extend the construction
to work for every length by padding.

Let A be the matrix of Theorem 2.10, and set N = q2

and M = N/2. By Theorem 2.3, there is a BQLOGTIME
algorithm that distinguishes DA,M from the the uniform dis-
tribution U2N .

By Lemma 2.7, the first M rows of A have supports form-
ing a (2

√
N, 4)-design D. It is also clear that for i ≤ M ,

the (N + i)-th bit of DA,M computes majority (with a
fixed pattern of inputs negated) on those among the first
N bits that lie in S(A, i). Thus DA,M is exactly the distri-
bution (UN , NWmajority

D (UN )) followed by N/2 additional
independent random bits (which can have no impact on the
distinguishability of the distribution from uniform). Thus
by Conjecture 2.6, no constant-depth, quasipolynomial-size
circuit can distinguish DA,M from U2N . This concludes the
proof.

The proof of the next corollary is in Appendix B.

Corollary 2.12. Assuming Conjecture 2.6, there is an
oracle O such that BQP O 6⊆ PHO.

3. TOWARD PSEUDORANDOM GENERA-
TORS WITH SHORT SEED FOR SMALL
SPACE

In this section we prove that the pseudorandom generator
construction of [INW94] with seed length O(log n log log n)
yields distributions that are unpredictable by poly log n-
width branching programs. We start by reviewing the con-
struction [INW94] as presented in [RR99]. This requires the
standard notions of “width S read-once oblivious branch-
ing programs” (abbreviated ROBPs) and“(k, η)-extractors”.
Both these notions are defined next.

Width S read-once oblivious branching programs
(ROBPs). These are directed graphs where the node set V
is partitioned into n+1 layers V0, . . . , Vn each of size at most
S. Each node v in layer i < n has two outgoing edges (one
labelled by “0” and one labelled by “1”) that go to nodes in
layer i+1. On input x ∈ {0, 1}n, such a graph defines a path
from the first node in the first layer (which we think of as
the starting node) to a node in layer n + 1 by following the

edges labelled by x one by one. The output is the number
of arrived node in layer n + 1.

(k, η)-extractors. These were introduced in [NZ96] and are
functions E : {0, 1}r × {0, 1}d → {0, 1}m with the property
that for every distribution X over {0, 1}r that is uniform
over a set of size ≥ 2k, the distribution E(X, Ud) is η-close
to uniform.

The INW generator. Let S = 2s be the width of the
ROBPs that we aim to fool. Let η > 0 be a parameter that
we determine later. Let r0 = C · (s + log(1/η)) where C ≥ 1
is a constant to be determined later. The construction will
rely on (r−s−log(1/η), η)-extractors E : {0, 1}r×{0, 1}d →
{0, 1}r for r ≥ r0 and d = O(s + log(1/η)). We stress that
there are explicit constructions with these parameters for a
sufficiently large universal constant C [GW97], and that the
dependence of d on both s and η is optimal up to constant
factors.

For 0 ≤ j ≤ log n we define functions Gj : {0, 1}r0+jd →
{0, 1}2j

iteratively as follows: G0(x) is defined to be the
first bit of x. For j > 0, we think of the input of G as
a concatenation of two strings: x ∈ {0, 1}r0+(j−1)d, y ∈
{0, 1}d and set Gj(x, y) := Gj−1(x) ◦ Gj−1(E(x, y)). The
final generator is given by G := Glog n and has seed length
O(log n(s + log(1/η)) and output length n

The analysis and the log2 n barrier. The analysis of
[INW94] shows that for every j, if Gj is a pseudorandom
generator with error εj then Gj+1 is a pseudorandom gen-
erator with error 2εj + η. Summing up, this gives that the
error of G = Glog n is bounded by O(nη), which forces set-
ting η < 1/n to get a meaningful result. This setting im-
plies in turn that the seed length is at least Ω(log2 n) even
for constant s. Recent work by [BRRY10, BV10, KNP10]
shows that for restricted classes of small width ROBPs the
INW generator described above yields pseudorandom gen-
erators with seed length Õ(log n). The key is that for re-
stricted classes of branching programs (like regular branch-
ing programs) a tighter connection between the error of Gj

and Gj+1 can be made, improving the bound on the distin-
guishing error of the final generator. However, [BV10] show
that these constructions cannot achieve seed length o(log2 n)
for general branching programs, in the sense that there are
choices of extractors E for which the INW generator cannot
be pseudorandom even for constant-width ROBPs if we set
η much larger than 1/n so as to obtain seed length o(log2 n).

The main technical contribution of this section is to show
that if the goal is unpredictability instead of indistinguisha-
bility, then INW can be shown to work with seed length
Õ(log n).

3.1 Shooting for an unpredictable distribution
We now consider the goal of showing that the output of

G is “unpredictable” meaning that no width S = 2s ROBP
can predict the i’th bit with advantage larger than some
parameter δ. This is stated in the theorem below.

Theorem 3.1. Fix η > 0 and let Z = (Z1, . . . , Zn) de-
note the output distribution of G defined above on a uni-
formly chosen seed. Then, for every width S = 2s ROBP P
and every 0 ≤ i ≤ n,
Pr[P (Z1, . . . , Zi−1) = Zi] ≤ 1

2
+ δ, for δ = O(η log n).

The high level idea of the proof is to show that if Gj is
unpredictable with advantage δ then Gj+1 is unpredictable



with advantage δ + O(η). Comparing to the analysis show-
ing pseudorandomness, the advantage is that we don’t dou-
ble the error when going from level j to level j + 1. Loosely
speaking, this is because the analysis showing unpredictabil-
ity of Gj+1 only pays for one of the two instantiations of Gj .
This allows us to get meaningful results even for relatively
large η À 1/n. For example, let s = O(log log n) (which

gives S = (log n)O(1)) and let η = 1/ log2 n. For these set-
tings, G uses a seed of length O(log n·log log n) and produces
a distribution which is unpredictable for δ = O(1/ log n).

The doubling loss mentioned above arises from a use of
the hybrid argument (with k = 2) in the proof [INW94].
Thus our result can be viewed as avoiding this loss when
one imposes the restriction that the distinguisher branching
program is a predictor.

Proof Proof of Theorem 3.1. Let P be a width S =
2s ROBP. We say that P predicts Gj with advantage δ if
there exists an i such that Pr[P (Z1, . . . , Zi−1) = Zi] > 1

2
+δ

where Z1, . . . , Zn are sampled by applying Gj on a uniformly
chosen seed. We show that:

Claim 3.2. For j > 1 if P predicts Gj with advantage
δ then there exists a width S ROBP P ′ that predicts Gj−1

with advantage δ − 2η.

Theorem 3.1 follows from Claim 3.2 by noting that if P
predicts G = Glog n with advantage δ then by iteratively ap-
plying Claim 3.2 there exists a branching program P ′ which
predicts G0 with advantage δ − 2η log n. This is a contra-
diction if the latter quantity is greater than zero.

We now proceed with the proof of Claim 3.2. We have
that P predicts position i in the output of Gj from the
previous i − 1 positions. Recall that the output of Gj is
obtained by setting r = r0 + (j − 1)d, uniformly sampling
X ∈ {0, 1}r, Y ∈ {0, 1}d and then

Gj(X, Y ) = Gj−1(X) ◦ Gj−1(E(X, Y )).

If position i appears in the first half of the output then
P also predicts Gj−1 with the same advantage and we are
done.

Otherwise, let i′ = 2j − 1 denote the last position in the
first application of Gj−1 and we have that i > i′. Let W
denote the random variable defined by considering the node
that P arrives to after reading bits 1, . . . , i′. We say that a
node w at layer i′+1 is light if Pr[W = w] ≤ 2−(s+log(1/η)) =
η/S. Note that:

Pr[W is light] =
∑

light w∈Vi′+1

Pr[W = w] ≤

∑
w∈Vi′+1

η/S ≤ η.

It follows by an averaging argument that there exists w′ ∈
Vi′+1 which is not light such that P predicts Gj(X, Y ) with
advantage δ− η even conditioned on event {W = w′}. Note
that positions 1, . . . , i′ in the output of Gj(X, Y ) depend on
X but not on Y . Thus, conditioning on {W = w′} amounts
to conditioning X to be in some subset T . We have that

Pr[W = w′] ≥ 2−(s+log(1/η))

which gives that T ⊆ {0, 1}r is of this weight. Therefore,
conditioned on {W = w′}, X is uniformly distributed in a

set of size ≥ 2r−(s−log(1/η)) which by the properties of ex-
tractors gives that E(X, Y ) is η-close to uniform conditioned
on {W = w′}.

Let P ′ denote the graph obtained by taking only layers
i′, . . . , i from P . In P ′ we set w′ as the starting node (by
renaming the nodes in the relevant layer). Note that P ′

is a width S ROBP defined for inputs of length i − i′ −
1. Furthermore, P ′ predicts Gj−1(E(X, Y )) with advantage
δ−η when conditioned on {W = w′}. As E(X, Y ) is η-close
to uniform conditioned on {W = w′}, we conclude that P ′

predicts Gj−1 with advantage at least δ−2η when the input
to Gj−1 is chosen at random. This concludes the proof.

Following Theorem 3.1, an alternative route to pseudo-
random generators for small width ROBPs is to convert un-
predictability to indistinguishability while avoiding the cost
of the hybrid argument. A concrete question is whether
the following construction, which applies an extractor to
the output of the INW construction, is pseudorandom: let
G = Glog n be the generator from Theorem 3.1 instantiated

with η = 1/ logΘ(1) n and let E′ : {0, 1}n × {0, 1}O(log n) →
{0, 1}m be a (k, 1/n)-extractor for k, m = nΘ(1) [Zuc97,
GUV07]; the final construction is G′(x, z) = E′(G(x), z),
which has seed length O(log n · log log n). The intuition is
that an unpredictable distribution has high entropy from the
point of view of small width ROBPs and therefore apply-
ing an extractor may produce a pseudorandom distribution.
(See [BSW03] for a study on using extractors to produce
pseudorandom distributions.) This approach is inspired by
a pseudorandom generator construction of [STV01] in the
setup of small circuits. More precisely, [STV01] instantiate
the NW generator with a function that is only mildly hard
on average giving a distribution which is unpredictable, but
for δ which is too large to apply the hybrid argument. They
are able to show that applying an extractor on their un-
predictable distribution produces a pseudorandom distribu-
tion.8

4. BEATING THE HYBRID ARGUMENT
In this section we show how to beat the hybrid argument

for the “repeated sampling generator” in the context of sev-
eral low-level circuit classes. First we note that even for this
goal, it is necessary to use non-black-box techniques. For a
distribution D, we denote by D⊗k the concatenation of k
independent samples of D.

Fact 4.1. There is c > 0 such that for any n and ε ≥
1/2n/c such that log 1/ε is an integer: there exists a (non-
explicit) function f : {0, 1}n → {0, 1} such that (1) for

any circuit C of size s ≤ 2n/c, Prx∈{0,1}n [C(x) 6= f(x)] ≥
1/2−ε, and (2) there is a poly(n/ε)-size DNF distinguishing

(X, f(X))⊗c/ε from uniform with probability ≥ 0.9.

Proof. Let x = (y, z) where |y| = log(1/ε) + 1, and

|z| = n− |y| ≥ n/2 (for c large enough). Let h : {0, 1}|z| →
{0, 1} be a function such that for a universal constant d, any

circuit D of size ≤ 2n/d satisfies Prx∈{0,1}n [D(x) 6= f(x)] ≥
8For context, we remark that this result in [STV01] is not
known to hold for restricted circuit classes such as AC0[p].
The specific proof in [STV01] fails because at its heart lies
hardness amplification (specifically the hard-core set lemma
[Imp95]) which in these restricted classes is either not known
to hold or false [SV10, LTW07].



1/2 − 1/2n/d. The existence of such a function h follows
from a counting argument.

Now define f(y, z) as h(z) if y 6= 0, and 0 otherwise.

To see (1), note that for any circuit C of size ≤ 2n/d, if
Prx∈{0,1}n [C(x) = f(x)] ≥ 1/2 + ε then

1/2 + ε ≤ Pr[C(x) = f(x)]

≤ Pr[C(y, z) = f(y, z)|y 6= 0] + Pr[y = 0]

= Pr[C(y, z) = h(z)|y 6= 0] + ε/2,

and so there exists a fixed y so that, denoting by Cy the
circuit of size ≤ 2n/d obtained by hardwiring y into C,

Pr[Cy(z) = h(z)] ≥ 1/2 + ε/2 ≥ 1/2 + 1/2n/c+1.

This contradicts the hardness of h (which is 2n/d) for any
c > d and n large enough.

To see (2), consider the distributions

©i≤c/ε(y
i, zi, f(yi, zi)) (?)

and

©i≤c/ε(y
i, zi, bi) (U)

where bi is a uniform random bit, and © denotes concate-
nation.

In either distribution, we expect c/ε · ε/2 = c/2 values yi

to be 0. Increasing c, we can guarantee that with probability
arbitrarily close to 1 we will see an arbitrarily large number
of yi = 0. The CNF T defined as ∀i, yi = 0 ⇒ bi = 0
accepts (?) with probability 1, by definition. On the other
hand, T accepts (U) with probability less than 0.01, for a
sufficiently large c, because every clause where yi = 0 has
only probability 1/2 of being true.

4.1 Using resamplability
We identify a property of functions that allows us to avoid

this loss, resamplability. For exposition, it is convenient to
work with problems rather than functions:

Definition 4.2. A problem Π = ΠY

⋃
ΠN is resamplable

with resources T (e.g., T = circuits of size n2) if there
are functions Rr(·) such that: (1) for any x ∈ ΠY (resp.,
x ∈ ΠN ), the distribution Rr(x) for uniform r is uniform in
ΠY (resp., ΠN ); and (2) for any fixed r, the function Rr(·)
is computable with resources T .

Let f : {0, 1}n → {0, 1} be a function. A natural way
to view f as a promise problem (which we denote Π(f))
is to define Π(f)Y = {(x, f(x)) : x ∈ {0, 1}n} and Π(f)N =
{(x, 1− f(x)) : x ∈ {0, 1}n}. This gives the notion of resam-
plability described in the introduction.

The next lemma uses resamplability to prove that the re-
peated sampling generator suffers no loss in the distinguish-
ing parameter.

Lemma 4.3. Suppose a problem Π = ΠY

⋃
ΠN

(ΠY

⋂
ΠN = ∅) has a resampler Rr(·). If a function

C distinguishes k independent samples of ΠY from k
independent samples of Π with probability ε, i.e.

∣∣∣Pr[C(Π⊗k
Y ) = 1]− Pr[C(Π⊗k) = 1]

∣∣∣ ≥ ε,

then there is a function function C′ of the form C′(x) :=
C(R̄1(x), . . . , R̄k(x)) where each R̄i is either the resampler

Rri(x) for a fixed string ri, or is just a constant function
πi ∈ ΠY , such that C′ distinguishes ΠY from ΠN with the
same probability ε, i.e.

∣∣Pr[C′(ΠY ) = 1]− Pr[C′(ΠN ) = 1]
∣∣ ≥ ε.

Note that resamplability naturally gives rise to a reduction
strategy that would show that distinguishing Π⊗k

Y from Π⊗k
N

is as hard as distinguishing ΠY from ΠN ; the innovation in
the proof below is that it is able to replace Π⊗k

N with Π⊗k.

Proof. (of Lemma 4.3) Let B1, . . . , Bk ∈ {Y, N} be in-
dependent bits coming up Y with probability |ΠY |/|Π|. Note
that the distribution Π1, Π2, . . . , Πk equals the distribution
Π1

B1 , Π2
B2 , . . . , Πk

Bk . By averaging, there exists a way to fix

each variable Bi to a value bi such that
∣∣∣ Pr[C

(
Π1

Y , Π2
Y , . . . , Πk

Y

)
= 1]

− Pr[C
(
Π1

b1 , Π2
b2 , . . . , Πk

bk

)
= 1]

∣∣∣ ≥ ε.

In both distributions in the above equation, the coordinates
where bi = Y are the same, and the others are different.
Consider the randomized map F (x) := (R1(x), . . . , Rk(x))
where Ri(x) is a uniform element of ΠY if bi = Y , and is
the resampler Rri(x) for a uniform ri if bi = N . Then the
previous equation implies

∣∣∣ Pr[C(F (ΠY )) = 1] − Pr[C(F (ΠN )) = 1]
∣∣∣ ≥ ε.

Fixing the internal randomness of F we obtain the desired
conclusion for C′(·) := C(F (·)).

To demonstrate the usefulness of Lemma 4.3 let us elab-
orate on its consequences for the promise problem Π(f) de-
fined above: For Π = Π(f) we get that Π⊗k

Y is the k · (n+1)

bit long output of the repeated sampling generator G⊗k
f

while Π⊗k is the uniform distribution on k·(n+1) bit strings.
Consequently, Lemma 4.3 establishes the pseudorandomness
of G⊗k

f assuming f is hard on average (with no quantitative
loss in the distinguishing parameter).

In the next sections we discuss cases in which resampla-
bility yields new results.

We start with the simplest setting, that of the parity func-
tion. We also and then we move to majority. We also discuss
the use of a problem hard for logarithmic space introduced
by Ishai and Kushilevitz [IK00, IK02] that allows for results
for AC0[2] and (under assumptions) ACC0; then we consider
AC0 circuits with few majority gates. (We mention a pos-
sible alternative approach to get generators with the same
seed length we get against AC0[p], p prime). Finally we also
observe that resamplability implies a worst-case vs. average-
case connection.

4.2 A generator based on parity
First we note the efficient resamplability of parity.

Fact 4.4. The problem Π(parity) is resamplable in (poly-
size) NC0.

Proof. The resampler Rr(x, b) uses the first bit of r to
select a bit c and the remaining bits to select a string y of
length |x| with parity c. It outputs the pair (x ⊕ y, b ⊕ c).
For fixed r, this amounts to complementing some input bits,
which can be done in NC0.



Combining this fact with Lemma 4.3 we obtain new pseu-
dorandom distributions for low-level circuit classes. We start
with the class of AC0 circuits with mod p gates – denoted
AC0[p], for an odd prime p. The strongest known hard-
ness result for this class is the following well-known, long-
standing result by Smolensky [Smo87, Smo93] (cf. [Fil10]).

Lemma 4.5 ([Smo93]). For every d and prime p > 2,
there is a constant α > 0 such that the n-bit parity function
is ε-hard, with ε = n−1/2+o(1), for AC0[p] circuits of size

≤ 2nα

.

Equivalently if X is a random variable uniformly dis-
tributed on {0, 1}n, then (X, parity(X)) is ε-pseudorandom
for such circuits. (Cf. §1.2 for the definition of hard and
pseudorandom.) The following corollary shows that this
pseudorandomness does not decay with the number of re-
peated experiments.

Corollary 4.6. Fix a prime p 6= 2 and d ≥ 1. For every

k ≤ 2no(1)
, every poly(n, k)-size AC0[p] circuit C of depth d

satisfies
∣∣Pr

[
C

(
(X, parity(X))⊗k

)
= 1

]− Pr[C(U) = 1]
∣∣ ≤

o(1), where X is uniformly distributed on {0, 1}n, and U is
the uniform distribution over k ·(n+1) bits. Moreover, there

is an explicit generator G : {0, 1}n(1−1/poly lg n) → {0, 1}n

that is o(1)-pseudorandom for AC0[p] circuits C of depth d

and size 2lgd n.

Proof. This proof follows from the combination of
Lemma 4.3, Fact 4.4, and Smolensky’s Lemma 4.5.

For the interesting case of p = 2, this proof does not work.
In §4.4 we obtain similar generators using the machinery of
[IK02].

The distribution induced by the generator in Corollary 4.6
has the appealing feature that it can be equivalently gener-
ated by an NC0 circuit such that each output bit depends
on just 2 input bits. This can be obtained using the corre-
sponding “trick” for parity which is explained for example in
[Vio10].

4.3 A generator based on majority
We begin by remarking that we do not know of a resam-

pler for majority, so this setup is a bit more complicated.
We require a generalization of Definition 4.2 and Lemma
4.3, in which the “resampler” Rr(·) maps a source problem
WY

⋃
WN to a target problem ΠY

⋃
ΠN . We furthermore

relax the requirement on the output of the resampler Rr(·),
and allow the output distribution to be only η-close to the
target distribution (for some parameter η > 0). More pre-
cisely, we consider a revised notion of Definition 4.2 in which
part (1) of the definition is replaced with: for any x ∈ WY

(resp. WN ), the distribution Rr(x) for uniform r is η-close
to the uniform distribution over ΠY (resp. ΠN ). The argu-
ment of Lemma 4.3 can be used in exactly the same way to
reduce an ε-distinguisher for Π⊗k

Y vs. Π⊗k to an (ε− k · η)-
distinguisher for WY vs. WN . In the application below,
η = exp(−nΩ(1)) is very small so that the loss of k · η is
insignificant for polynomial k.

We will now implement this plan for the majority func-
tion. Our target problem is Π = Π(majority) on odd n.
Namely, for odd n, let ΠY = {(y, majority(y)) : y ∈ {0, 1}n}

and ΠN = {(y, 1−majority(y)) : y ∈ {0, 1}n}. This is done
so that Π⊗k

Y is the output of the repeated sampling genera-

tor and Π⊗k is the uniform distribution on strings of length
k · (n + 1).

Our source problem is W = WY

⋃
WN defined as follows:

for odd `, WY is the set of `-bit strings of hamming weight
(`+1)/2 and WN is the set of those strings of weight (`−1)/2.
Distinguishing WY from WN is hard:

Lemma 4.7 ([Hås87]). For any constants d ≥ 1, ε > 0,
poly(`)-size AC0 circuits of depth d cannot distinguish WY

from WN with gap greater than ε.

Only a worst-case lower bound is stated in [H̊as87], but the
stated average-case result follows using standard techniques
[Aar10b, SV10].9 The next step is to show a resampler from
W to Π.

Lemma 4.8. There is a function t = poly(`) and a distri-
bution Rr(·) on AC0 circuits of size poly(`) mapping ` bits
to n = ` · t bits, such that

• for any x ∈ WY , Rr(x) has statistical distance

exp(−nΩ(1)) from uniform in ΠY , and

• for any x ∈ WN , Rr(x) has statistical distance

exp(−nΩ(1)) from uniform in ΠN .

As a corollary we obtain the following result (which we
state for only polynomially many repetitions k, because this
is all that is needed for the special case of Conjecture 2.6).

Corollary 4.9. For any constant d ≥ 1 and any func-
tion k = poly(n), every poly(n)-size AC0 circuit C of depth
d satisfies∣∣Pr

[
C

(
(X, majority(X))⊗k

)
= 1

]− Pr[C(U) = 1]
∣∣ ≤ o(1),

where X is uniformly distributed on {0, 1}n, and U is the
uniform distribution over k · (n + 1) bits.

The proof of Corollary 4.9 follows by combining Lemma 4.7
with the version of Lemma 4.3 discussed above instantiated
with the resampler of Lemma 4.8. We now present the re-
sampler required for Lemma 4.8.

Proof of Lemma 4.8. Let t = t(`) be odd. Let Dt be a
probability distribution over {0, . . . , t} that we specify later.
On input x ∈ {0, 1}` the resampler R will use the random-
ness r to do the following: Pick i at random according to
the distribution Dt. Concatenate 2i + 1 copies of x with
a balanced string on (t − (2i + 1))` bits, and let y denote
a random permutation of the obtained string. Note that
if x ∈ WY , the hamming weight of y is (n + 1)/2 + i and
majority(y) = 1, while if x ∈ WN , the hamming weight of
y is (n− 1)/2− i and majority(y) = 0. The final output of
the resampler is obtained by flipping a coin and outputting
(y, 1) or (y⊕1n, 0) depending on the coin flip. Note that for
every setting of random coins r of the resampler we indeed
have that (1) if x ∈ Wy then Rr(x) ∈ ΠY , and (2) if x ∈ Wn

then Rr(x) ∈ ΠN .

9Specifically, one can use the fact that the problem is re-
samplable (just permute input bits) and the fact that ap-
proximate majority is in AC0 [Ajt83, ABO84] (cf. [Vio09a])
to show that any small AC0 circuit distinguishing WY from
WN with gap ε ≥ Ω(1) can be transformed into a small AC0

circuit solving W in the worst case.



For every x ∈ WY ∪WN the distribution of the first argu-
ment of Rr(x) is the same (and does not depend on x). Let
us denote this random variable by z. To conclude the proof
it is sufficient to choose a distribution Dt over i so that z is
exp(−nΩ(1))-close to uniform.

We now describe the distribution Dt for choosing i. We se-
lect i ∈ {0, . . . , t} with the probability given by the uniform
distribution to strings of weight (n + 1)/2 + i, normalized
to give a probability distribution. Since n = `t, by letting t
be a sufficiently large polynomial in ` and using a Chernoff
bound, the statistical distance between z and the unfirom
distribution is exp(−nΩ(1)).

4.4 Generators based on L-hardness
We consider the problem, introduced by Ishai and Kushile-

vitz [IK00, IK02], of distinguishing certain matrixes with full
rank from rank full −1. This problem is used to great ef-
fect in several works, e.g. [AIK06, GGH+07, GGH+08], and
we use the name CMD (for connectivity matrix determi-
nant) from [GGH+07]. For a self-contained exposition of
this problem and the properties we shall need, see [Vio09b,
Chapter 4].

Definition 4.10 ([IK00, IK02]). An input to the
problem Π = CMD (for connectivity matrix determinant) is
an n×n matrix A that has 0/1 entries on the main diagonal
and above it, 1 on the second diagonal (one below the main),
and 0 below this diagonal. The matrix A is represented by
the n(n + 1)/2 0/1 entries on and above the main diagonal.
Each such matrix has rank ≥ n − 1. ΠY are matrixes with
full rank n over GF(2), ΠN are matrixes with rank n− 1.

In [IK02] various useful properties are established. First,
note CMD is balanced, i.e. |CMDY | = |CMDN |. To see this,
imagine choosing a random matrix in the definition of CMD
by first choosing all rows except the first. This yields an
n− 1 dimension vector space, and the matrix will have full
rank n if and only if the first row will land outside of this
space, which happens with probability 1/2.

Second, CMD is hard for log-space computation, and in
fact is complete for the richer complexity class ⊕L, under
NC0 reductions, i.e. maps such that each output bits de-
pends on just a constant number of input bits.

Lemma 4.11 ([IK02]). CMD is ⊕L-complete under
NC0 reductions.

Finally, the techniques in [IK02] also show that CMD is
resamplable in AC0[2].

Lemma 4.12 ([IK02]). CMD is resamplable in poly-
size AC0[2].

Proof sketch. There are two distributions A, B over
n×n matrixes such that for every M ∈ ΠY (resp., M ∈ ΠN )
the product AMB is uniform over ΠY (resp., ΠN ). The re-
sampler is thus RA,B(M) := AMB. Since the multiplication
is over GF(2), this can be computed by a poly-size AC0[2]
circuit.

We use another result by Smolensky, that majority is hard
for AC0[2]. See [Fil10] for an exposition.

Lemma 4.13 ([Smo93]). For any AC0[2] circuit C of
size s and depth d we have

Pr
x∈{0,1}n

[C(x) = majority(x)] ≤ 1/2+O(log(Sn))d/
√

n+1/n.

We can now state our generator against AC0[2].

Corollary 4.14. For every d there is c such that
for large enough n there is an explicit generator G :
{0, 1}n(1−1/ lgc n) → {0, 1}n such for any AC0[2] of depth

d and size 2lgd n:

∣∣ Pr
s∈{0,1}n(1−1/ lgc n)

[C(G(s)) = 1]

− Pr
x∈{0,1}n

[C(x) = 1]
∣∣ ≤ o(1).

Towards the proof of the corollary we record the following
standard fact.

Fact 4.15. Let f : {0, 1}n → {0, 1} be a balanced func-
tion, and let C : {0, 1}n → {0, 1} be any function. Then
Prx[C(x) = f(x)] = 1

2
+ 1

2
· (Prx:f(x)=1[C(x) = 1] −

Prx:f(x)=0[C(x) = 1]).

Proof of Corollary 4.14. By Lemma 4.13 and Fact
4.15, circuits of the given resources satisfy

∣∣ Pr
x∈{0,1}lga n:majority(x)=1

[C(x) = 1]

− Pr
x∈{0,1}lga n:majority(x)=0

[C(x) = 1]
∣∣ ≤ o(1), (?)

where the probability is over inputs of length lga n, for a
constant a depending only on p, d.

Note that majority is computable in logarithmic space,
and recall that CMD is hard for logarithmic space under
NC0 reductions (Lemma 4.11). In addition, CMD is resam-
plable (Lemma 4.12). The combination of these facts implies
that circuits of the given resources satisfy

|Pr[C(CMDY ) = 1]− Pr[C(CMDN ) = 1]| ≤ o(1),

where the probability is over inputs of length lgb n, for a con-
stant b depending only on p, d. This holds because if some
circuit C violates the above, on input a majority instance we
can apply the reduction to CMD, and then the resampler,
to violate Equation (?).

The output of the generator G is a k-tuple of strings
representing CMDY instances. Recall that CMD is bal-
anced, i.e. |CMDY | = |CMDN |, so the seed length is (lgb n−
1)n/ lgb n = n(1 − 1/ lgb n). The correctness follows from
Lemma 4.3.

Note that the proof in §4.3 won’t work, because W is
solvable just by computing the parity of the instance. It is
open if (x, majorityx)⊗k is pseudorandom for small AC0[2]
circuits for every k = poly(n).

We also get the following conditional result for AC0[m]
for every even m. For simplicity we state it for m = 6.

Corollary 4.16. Suppose that L 6⊆ AC0[6]. Then for
every d > 1 and any δ ∈ (0, 1), for large enough n there is

an explicit generator G : {0, 1}n(1−1/nδ) → {0, 1}n such for
any AC0[6] circuit of depth d and size nd:
∣∣∣∣∣ Pr
s∈{0,1}n(1−1/nδ)

[C(G(s)) = 1]− Pr
x∈{0,1}n

[C(x) = 1]

∣∣∣∣∣ ≤ o(1).

Proof. Since CMD is hard for L, the assumption implies
that poly(n)-size AC0[6] circuits fail to compute CMD on



instances of length nδ. Since CMD is resamplable (Lemma
4.12) we can apply Proposition 4.19 to argue that poly(n)-
size AC0[6] circuits C satisfy

|Pr[C(CMDY ) = 1]− Pr[C(CMDN ) = 1]| ≤ o(1),

where the probabilities are over instances of length nδ.
The output of the generator G is a k-tuple of strings rep-

resenting CMDY instances of length nδ. Recall that CMD
is balanced, i.e. |CMDY | = |CMDN |, so the seed length is
(nδ − 1)n/nδ = n(1 − 1/nδ). The correctness follows from
Lemma 4.3.

4.5 AC0 circuits with few majority gates
We now consider the class AC0 with a limited number of

majority gates. When the number of majority gates is loga-
rithmic in the size of the circuit, strong (approaching 1/2 su-
perpolynomially fast) average-case lower bounds that allow
for superpolynomial-stretch generators are known [Vio07].
But when the number of majority gates is larger, say poly-
nomial in the circuit size, the best average-case hardness
result remains the one proved by Beigel [Bei94, Corollary
4.4] building on the seminal lower bound by Aspnes, Beigel,
Furst, and Rudich [ABFR94].

Lemma 4.17 ([ABFR94, Bei94]). For any d there is
α > 0 such that for any And-Or-Majority-Not circuit of
depth d, size ≤ 2nα

, with at most nα majority gates,

Pr
x∈{0,1}n

[C(x) = parity(x)] ≤ 1/2 + o(1).

Actually [Bei94, Corollary 4.4] has 1/4 instead of o(1),
but the same techniques give o(1).

Combining Lemmas 4.17, 4.4, and 4.3, and using the fact
that the reduction does not increase the number of majority
gates one gets new generators for small-depth circuits with
few majority gates. We only state the particular tradeoff
where the number of majority gates is polynomial.

Corollary 4.18. For every d ≥ 1, δ ∈ (0, 1) there is ε >
0 such that for large enough n there are explicit generators

G : {0, 1}n(1−1/nδ) → {0, 1}n such that for any And-Or-

Majority-Not circuit C of depth d, size ≤ 2nε

, with ≤ nε

majority gates,
∣∣∣∣∣ Pr
s∈{0,1}n(1−1/nδ)

[C(G(s)) = 1]− Pr
x∈{0,1}n

[C(x) = 1]

∣∣∣∣∣ ≤ o(1).

4.6 On a possible alternative way to get gen-
erators for AC0[p]

In this section we sketch a possible alternative approach
to get generators with seed length n(1 − 1/poly log n) that
fool AC0[p] circuits, p prime, on n bits. As stated in Lemma
4.13, these circuits cannot compute majority on instances of
an appropriate length poly log n with probability ≥ 1/2 −
o(1). From this, it follows via techniques by Shaltiel and
Viola [SV10] that there exists some integer c ≤ poly log n
so that the circuits cannot distinguish (with any constant
advantage) the uniform distribution from i.i.d. bits coming
up 1 with probability 1/2 + 1/c.

If we know c, the generator that outputs i.i.d. bits coming
up 1 with probability 1/2 + 1/c has seed length H(1/2 +
1/c)n ≤ n(1− 1/poly log n), where H is the binary entropy

function. Up to the poly log n, this is of the same type we
get using resamplers.

However, we have been unable to determine if c is explic-
itly computable, though it is even possible that most values
for c will do.

4.7 Resamplability and worst-case to average-
case reductions

We now observe that resamplability implies a worst-case
to average-case connection. The proposition below first
states a connection for general promise problems and then
draws a corollary for promise problems of the form Π(f) for
a function f

Proposition 4.19. Consider unbounded fan-in circuits
on any set of gates including And, Or, and Not. For ev-
ery ε > 0 and sufficiently large n the following holds: Let
Π = ΠY

⋃
ΠN ⊆ {0, 1}n be a problem that is resamplable by

circuits of size sR and depth dR. If there is a circuit C of size
s and depth d such that |Pr[C(ΠY ) = 1]− Pr[C(ΠN ) = 1]| ≥
ε then there is a circuit C′ of size poly(n, sR, s) and depth
dR + d + O(1) that solves Π on every input.

In particular, let f : {0, 1}n → {0, 1} be a function that
is balanced and such that the problem Π(f) is resamplable
by circuits of size sR and depth dR. If there is a circuit C
of size s and depth d such that Prx[C(x) = f(x)] ≥ 1/2 + ε
then there is a circuit C′ of size poly(n, sR, s) and depth
dR + d + O(1) such that C′(x) = f(x) for every x.

Proof of Proposition 4.19. Let R be the resampler
and consider the circuit C(R(·)). By definition of resampler,
on any input x ∈ ΠY , PrR[C(R(x)) = 1] = Pr[C(ΠY ) =
1] =: pY , while on any input x ∈ ΠN , PrR[C(R(x)) = 1] =
Pr[C(ΠN ) = 1] =: pN . By assumption, these two probabili-
ties are bounded away by a constant ε > 0. Assume without
loss of generality that pY > pN .

Now consider, on any input x, repeating the computation
C(R(x)) O(n/ε2) times in parallel with independent choices
for the resampler. By a chernoff bound, if x ∈ ΠY then
> pY − ε/2 fraction of outputs will be 1 with probability
> 1 − 2−n, while if x ∈ ΠN then < pN + ε/2 fraction of
outputs will be 1 with probability > 1− 2−n.

By a union bound over all ≤ 2n inputs, we can fix the
random choices for the resamplers so that this holds on any
input.

To conclude, we need to distinguish bit strings of length
O(n/ε2) with > pY − ε/2 fraction of ones from those with
< pN + ε/2 fraction of ones. Since ε > 0 is a constant,
this can be done by circuits of polynomial size and depth 3
[Ajt83, ABO84].

The size and depth bounds are immediate by construction.
The“in particular”part follows for Π(f) by noting that the

circuit C can be used to distinguish Π(f)Y from Π(f)N with
advantage 2ε: on input (x, b) output C(x) + b + 1 mod 2.
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APPENDIX
A. A UNITARY MATRIX IN WHICH ALL

ROWS PARTICIPATE
There is a tension between the triple goals of (1) having

many pairwise orthogonal vectors, (2) maintaining bounded
pairwise intersections of the supports, and (3) having the
supports large. It is natural to wonder whether the above
construction (in which we found a number of vectors equal
to 1/2 the dimension of the underlying space) is in some
sense optimal. For example, is there some barrier to simul-
taneously optimizing all three goals?

Here we show that one can indeed optimize all three goals
at the same time, by specifying a construction that builds
on the “paired-lines” construction. Our construction will
have as many pairwise orthogonal vectors as the dimension
of the underlying space (which is obviously as many as is
possible); it will have intersections sizes bounded above by
2 (the upper bound cannot be 0 without constraining the
product of the number of rows and the support sizes to be
at most the dimension of the underlying space, and no pair-
wise intersections can have cardinality one without violating
orthogonality); the support sizes will be at least the square
root of the dimension of the underlying space (and one can’t
exceed that without having larger intersection sizes).

This construction is not needed for our main results, but
we find it aesthetically pleasing that one can optimize all
three parameters in this way. We don’t know of a local
decomposition for this matrix, and we leave finding one as
an intriguing open problem.

While the construction of Section 2.3.1 needed character-
istic two, the present construction needs odd characteristic.
We fix Fq with q an odd prime power, and we choose a subset
Q ⊆ F∗q of size (q−1)/2 for which Q∩−Q = ∅, where −Q =
{−x : x ∈ Q}. Our vectors will have q2 − 1 coordinates,
identified with the punctured plane P = Fq × Fq \ {(0, 0)}.

We have three types of vectors in {0,−1, +1}P : first, for
all a ∈ Fq and b ∈ Q

va,b[x, y] =





+1 x = 0, y = b
+1 x ∈ Q, y = ax + b
−1 x ∈ Q, y = ax− b
0 otherwise

, (2)

second, for all a ∈ Fq and b ∈ −Q

va,b[x, y] =





+1 x = 0, y = b
+1 x ∈ −Q, y = ax + b
−1 x ∈ −Q, y = ax− b
0 otherwise

, (3)

and finally, for each c ∈ F∗q

uc[x, y] =

{
+1 x = c, y ∈ Fq

0 otherwise
. (4)



Lemma A.1. The vectors defined in Eqs. (2), (3) and
(4) are pairwise orthogonal and their supports form a (q, 2)-
design.

Proof. It is an easy computation to see that the sup-
port of each of the vectors has cardinality q. We now argue
that they are pairwise orthogonal. There are several cases
depending on the two rows under consideration:

1. va,b and va′,b′ : if one comes from Eq. (2) and the other
from Eq. (3) then the supports are disjoint. So we
assume both come from Eq. (2) or both come from Eq.
(3).

(a) Both come from Eq. (2) and b = b′: we have one in-
tersection (0, b) (which contributes +1 to the inner
product) and exactly one of the following two inter-
section points: (x = −2b/(a−a′), ax+ b = a′x− b)
or (x = 2b/(a − a′), ax − b = a′x + b), which con-
tributes −1 to the inner product. We have exactly
one because the two x-values are negations of each
other, and non-zero, so exactly one is in Q.

(b) Both come from Eq. (2) and b 6= b′: we have ex-
actly one of the following two intersection points:
(x = (b′ − b)/(a − a′), ax + b = a′x + b′) or (x =
(−b′ + b)/(a − a′), ax − b = a′x − b′), which con-
tributes +1 to the inner product, and exactly one
of the following two intersection points: (x = (b′ +
b)/(a−a′), ax−b = a′x+b′) or (x = (−b′−b)/(a−
a′), ax + b = a′x− b′), which contributes −1 to the
inner product. For each pair, there is exactly one
of the pair of possible intersection points because
the two x-values are negations of each other, and
non-zero, so exactly one is in Q.

(c) Both come from Eq. (3) and b = b′: identical to
case (1a) above, with −Q in place of Q.

(d) Both come from Eq. (3) and b 6= b′: identical to
case (1b) above, with −Q in place of Q.

2. uc and u′c: these have disjoint supports for c 6= c′.

3. va,b and uc: if c ∈ Q, then the support of uc intersects
the support of va,b only if va,b comes from Eq. (2), and
then we get one intersection at point (x = c, ax + b)
which contributes a +1 to the inner product, and one
intersection at point (x = c, ax − b) which contributes
a −1 to the inner product. If c ∈ Q, then the support
of uc intersects the support of va,b only if va,b comes
from Eq. (3), and we have an identical argument, with
−Q in place of Q.

This is a complete enumeration of cases, and in no case did
we have more than 2 intersection points.

We conclude this section with a question: are these ma-
trices related in some way to the DFT matrix over some
family of non-abelian groups (e.g. the affine group F∗q nFq),
or are they indeed completely different from the unitaries
seen before in quantum algorithms?

B. DISTRIBUTIONAL VS. STANDARD OR-
ACLES

For completeness we include this argument; a similar proof10

appears in [Aar10b].
10Our proof differs in one respect: the conditioning on T (n),
which allows us to handle any pair of ε, δ with some separa-
tion.

Let D1 = {D1,n}, D2 = {D2,n} be ensembles of random

variables over 2g(n)-bit strings (and assume g(n) ≤ poly(n)
is injective and easily computable) for which BQLOGTIME
can distinguish the two distributions but AC0 cannot. Then
when D1 and D2 are viewed as distributions on (truth-tables
of) oracles, there is a BQP oracle machine that distinguishes
the two distributions, but no PH oracle machine can distin-
guish them. Specifically, we have that there exists a BQP
oracle machine A for which

Pr[AD1(1n) = 1] − Pr[AD2(1n) = 1] ≥ ε

while for every PH oracle machine M ,

Pr[MD1(1n) = 1] − Pr[MD2(1n) = 1] ≤ δ,

and we have ε > δ for sufficiently large n ≥ n0.
We now convert the distributions on oracles into a single

oracle O for which BQP O 6⊂ PHO. Let L be a uniformly
random unary language in {1}∗. For each n, if 1n ∈ L, sam-

ple a 2g(n)-bit string x from D1 and define oracle O restricted
to length g(n) so that x is its truth table; otherwise sample

a 2g(n)-bit string x from D2 and define oracle O restricted
to length g(n) so that x is its truth table.

We will show that conditioned on AO(1n) = L(1n) for all
n ≥ n0, we still have L /∈ PHO with probability 1 over the
choice of L and O. Let T (n) be the event that AO(1n) =
L(1n), and for each PH machine M and let SM (n) be the
event that MO(1n) = L(1n). Note that T (n), SM (n) are
each independent of T (n′), SM (n′) for n′ 6= n. Then we
have for n ≥ n0:

Pr[T (n)] = (1/2) · Pr[AD1(1n) = 1]

+(1/2) · Pr[AD2(1n) = 0] ≥ 1/2 + ε/2

Pr[SM (n)] = (1/2) · Pr[MD1(1n) = 1]

+(1/2) · Pr[MD2(1n) = 0] ≤ 1/2 + δ/2

and thus

Pr
L,O

[SM (n)|T (n)] =
Pr[SM (n) ∧ T (n)]

Pr[T (n)]
≤

Pr[SM (n)]

Pr[T (n)]
≤ 1 + δ

1 + ε
< 1.

So by independence of different input lengths:

Pr
L,O

[SM (n0) ∧ SM (n0 + 1) ∧ SM (n0 + 2) ∧ · · ·

|T (n0) ∧ T (n0 + 1) ∧ T (n0 + 2) ∧ · · · ] = 0.

The number of possible PH machines is countably infinite,
so by a union bound,

Pr
L,O

[∃M SM (n0) ∧ SM (n0 + 1) ∧ SM (n0 + 2) ∧ · · · |

T (n0) ∧ T (n0 + 1) ∧ T (n0 + 2) ∧ · · · ] = 0.

So conditioned on AO(1n) = L(1n) for all n ≥ n0, we have
L /∈ PHO with probability 1 over the choice of L and O.
Thus (by hardwiring L(n) for n < n0 in the BQP machine),
there exists an oracle O for which BQP O 6⊂ PHO.


