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Abstract plication to be reduced to multiplication of elements of the
group algebraC[G]. This latter multiplication is performed

We further develop the group-theoretic approach to fast via a Fourier transform, which reduces it to several smaller
matrix multiplication introduced by Cohn and Umans, and matrix multiplications, whose sizes are thearacter de-
for the first time use it to derive algorithms asymptotically greesof G. This naturally gives rise to a recursive algorithm
faster than the standard algorithm. We describe several whose running time depends on the character degrees. Thus
families of wreath product groups that achieve matrix multi- the problem of devising matrix multiplication algorithms in
plication exponent less tha) the asymptotically fastest of  this framework is imported into the domain of group theory
which achieves exponedtd1. We present two conjectures and representation theory.
regarding specific improvements, one combinatorial andthe  One of the main contributions of [2] was to demonstrate
other algebraic. Either one would imply that the exponent that several diverse families of non-abelian groups support
of matrix multiplication is2. the reduction ofn x n matrix multiplication to group al-
gebra multiplication. These include, in particular, families
of groups of sizen?*°(1). The existence of such families
is a necessary condition for the group-theoretic approach to
provew = 2, although it is not sufficient.

The main question raised in [2] is whether the proposed
approach could prove nontrivial bounds en i.e., prove

< 3. This was shown to be equivalent to a ques-
tion in representation theory, Question 4.1 in [2]: is there

1. Introduction

The task of multiplying matrices is one of the most fun-
damental problems in algorithmic linear algebra. Matrix
multiplication itself is a important operation, and its impor-
tance is magnified by the number of similar problems that

are reducible to it. . . ;
s o . a groupG with subsetsSy, S, S3 that satisfy thetriple
Following Strassen's discovery [9] of an algorithm for product property(see Definition 1.3 below), and for which

H inli i i 2.81 1 _ :
nxXn mat_nx multiplication |nO(7_z ) operations, a se S1[15]1S5| > 5" d3, where{d,} is the set of character de-
guence of improvements has achieved ever better bounds o rees of2?

the exponent of matrix multiplicatigrwhich is the small- In this paper we resolve this question in the affirmative,

est real numbew for which n x n matrix multiplication o . : . . N
. wte . which immediately gives a simple matrix multiplication al-
can be performed i®(n“*¢) operations for each > 0. . . . .
The asymptotically fastest algorithm known is due to Cop- gonthm in the group-theoretic framework that has running
time O(n2-9988). The group we construct for this purpose

persmith and Winograd [3], and it proves that< 2.376. . . . .
. is awreath productand in subsequent sections we describe

Since 1990, there have been no better upper bounds proved. . : : . :
Similar constructions that produce algorithms with running

a3 mapossd a e group-IMESOU ) andO ).
Y brop group The main challenge in each case is to describe the three

theoretic approach to devising matrix multiplication algo- . .
rithms. In this framework, one selects a finite grati[sat- \S/\l;: S?\}Z ?vt/(t)hv?/gg%? gr]a;r?iitilrS]fyt:lheesglgtlaesErriO(tjiz(r:]tspLooa(her(t)}?
isfying a certain property that allows x n matrix multi- - give two way 92 48 g the P -
which give rise to th& (n=*%) algorithm relatively simply.
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timal USP construction can be extracted from Coppersmith groupwe sed — B={a—b:a € A,b € B}.
and Winograd's paper [3]. The cyclic group of ordek is denoted Cyg (with addi-

In fact, the reader familiar with Strassen’s 1987 paper tive notation for the group law), and the symmetric group on
[10] and Coppersmith and Winograd's paper [3] (or the pre- a setS is denoted Syit5) (or Sym), instead of Syrfin])).
sentation of this material in, for example, [1]) will recognize If G is a group andr is a ring, thenR[G] will denote the
that our exponent bounds @f48 and2.41 match bounds  group algebra of7 with coefficients inR.
derived in those works. It turns out that with some effort ~ When we discuss a group action, it will always be a left
the algorithms in [10] and [3], including Coppersmith and action unless otherwise specified. fand H are groups
Winograd'sO(n?37¢) algorithm, all have analogues in our with a left action ofG on H (where the action of on & is
group-theoretic framework. The translation does not appearwritten g - 1), then the semidirect produéf x G is the set
to be systematic: the algorithms are based on similar prin- H x G with the multiplication law
ciples, but in fact they are not identical (the actual oper-
ations performed on matrix entries do not directly corre- (h1,91), (ha,92) = (hi(g1 - h2),9192)-
spond), and we know of no group-theoretic interpretations
of any earlier algorithms. We defer a complete account of We almost always identifyd with the subsef x {1} and
this connection to the full version of this paper. G with {1} x G, so that(h, g) simply becomes the product

We believe that, compared to existing algorithms, our hg.
group-theoretic algorithms are simpler to state and simpler  For a right action ol on H, with the action ofg on h
to analyze. They are situated in a clearer conceptual andwrittenh9, the semidirect produd¥ x H is G x H with the
mathematical framework, in which, for example, the two multiplication law
conjectures mentioned above are natural and easy to iden-
tify. Finally, they avoid various complications of earlier al- (91, h1)(g2, h2) = (9192, hi* ha).
gorithms. For example, they substitute the discrete Fourier . ) . .
transform, together with some elementary facts in represen-AS in the previous case we identify and H with the cor-
tation theory, for the seemingly ad hoc trilinear form iden- résponding subsets 6f x H.
tities in introduced in [10], and they completely avoid the ~ Other than for Lemma 1.2, which is not required for the

need to deal with degenerations and border rank of tensorsmain results of this paper, we will use only the following
basic facts from representation theory. The group algebra

1.1. Outline C[G] of a finite groupG decomposes as the direct product

) ) ) ) ClG ng1Xd1X"‘XCdk><dk
In the rest of this section, we establish notation and re- €]

view background from [2] on the group-theoretic approach ot matrix algebras of orderd; . .., d;. These orders are
to fast matrix multiplication. Section 2 descnbeg Fhe SiM- the character degrees 6F, or the dimensions of the irre-
plest group we have found that can prove a nontrivial bound g ¢ipje representations. It follows from computing the di-
on the exponent of matrix multiplication. In Sections 3 | ansions of both sides thi| = S, d2. Itis also easy

and 4, we carry out a more elaborate construction in two 4, prove that ifG has an abelian subgroup, then all the
different ways, each of which has the potential of reach- character degrees f are less than or equal to the index

ing w = 2 althoughw < 2.48 is the best we can achieve 1. 4] (proposition 2.6 in [5]) . See [6] and [5] for further
so far by these methods. The most fundamental conceptu ackground on representation theory.

contribution in this paper is tr@multar?eous triple product The following elementary lemma will prove useful sev-
property, which we introduce in Section 5. It extends the

. : - eral times:
triple product property from [2], and it encompasses and il-
luminates all of our other constructions, as we explain in Lemma 1.1. Let s1, ss,...,s, be nonnegative real num-
Section 6. Finally, in Section 7 we show that any bound bers, and suppose that for every vectoe (,Uh R ,Un)

provable via the simultaneous triple product property can in of nonnegative integers for Whi@;l ui = N we have
fact be proved using only the approach of [2].

N - i N
1.2. Preliminaries and notation (u) Hsf <C".
=1

As usualv denotes the exponent of matrix multiplication ThenY" s, < C.
overC. T

The set{1,2,...,k} is denotedk]. We write A\ B = Proof. For each probability distributiop = (p1,...,pxs),
{a € A:a ¢ B} andif A andB are subsets of an abelian we can let N tend to infinity and choosq: so that



limy oo /N = p. AS N — oo, the inequality in the  as desired. O
hypothesis of the lemma yields

_ Zpi log p; + Zpi log 5; < log C 1.3. Background

In this subsection we summarize the necessary defini-
tions and results from [2].

If S is a subset of a group, 1€)(S) denote the right
Occasionally we will need to bound the character de- quotient set of, i.e.,Q(S) = {s157" i 51,82 € S}.

grees of wreath products, but the proof can be skipped bypefinition 1.3 ([2]). A groupG realizesin;, na, n3) if there

after taking the/N-th root and the logarithm. Setting =
>;siandp; = s;/S proveslog S < log C, as desired. [

readers not comfortable with representation theory: are subsetss, S», S; C G such that|S;| = n;, and for
Lemma 1.2. Let {dy} be the character degrees of finite ¢; € Q(S;), if
group H and let{c;} be the character degrees 8fm, q1q2q3 = 1

H™ (whereSym, acts by permuting the coordinates). Then

D e < (nh)e! (Z d;;) .
J k

Proof. When H is abelian, we can use the elementary facts
that the character degrees of Sym H™ are at most! Lemma 1.5 ([2]). If S1,52,53 C G and S}, 55,5, C G

theng; = ¢2 = g3 = 1. We call this condition o1%, S, S3
thetriple product property

Lemma 1.4 ([2]). If G realizes(ny, n2,n3), then it does so
for every permutation of, no, ns.

(which is the index o™ in Sym, x H™) and thatzj c? = satisfy the triple product property, then so do the subsets
|Sym,, x H"| to obtain S1 x 87,52 x 85,83 x S5 CGxG.
Yo <)Y el = () H|" Theorem 1.6 ([2]). Let R be any algebra oveE (not neces-
j ] sarily commutative). I& realizes(n, m, p), then the num-

For generalf, we need further information regarding Per of ring operations required to multiplyx m with m x p
the character degrees of SymH™. From Theorem 25.6in matrices overR is at most the number of operations re-
[5] we get the following description: The symmetric group duired to multiply two elements &f{G].

Sym, acts on the irreducible representationstt by per- One particularly useful construction from [2] involves

muting then factors. Letl” be any irreducible representa- permutations of the points in a triangular array. Let
tion of H™, and letGy C Sym, be the subgroup that fixes

V (in the action on such representations). Theextends A, = {(a,b,c) € Z* :a+b+c=n—1anda,b,c > 0}.
to a representation @y, x H"™. Taking the tensor product
with an irreducible representatidit of Gy (with H™ act-
ing trivially on W) and inducing to Sym x H™ yields an
irreducible representation

Geometrically, these triples are barycentric coordinates for
a triangular array of points with points along each side,
but it is more convenient to manipulate them algebraically.
S H Forz € A,, we writex = (21, 22,23). Let Hy, Ha,
Indg; % (W @c V) andHs be the subgroups of Sy, ) that preserve the first,

of Sym, x H™. Al irreducible representations of Sy second, and third coordinates, respectively. Specifically,

H™ arise in this way. Two such representations are isomor- H; = {m € SymA,) : (n(z)); = z; forallz € A, ).
phic iff the choices ofit” are isomorphic and the choices
of V' are equivalent under the action of Synon irre- Theorem 1.7 ([2]). The subgroupsH, Hs, H; defined
ducible representations &f™. In other words, if we look  above satisfy the triple product property.
at all choices oft” andW, each representation is counted
n!/|Gy | times (because that is the size6% orbit under
RIS f th

The imension  of this representation is w/3 w
(n!/|Gy|) dim(W) dim(V). Thus, becauseim(W) < (rmp)™ < Zdi ‘
Gy| andy,, dim(W)? = |Gy, '

Theorem 1.8 ([2]). Suppos&= realizes(n, m,p) and the
character degrees aF are {d;}. Then

Gyl | w Combining Theorem 1.8 with the fact that, d? = |G|
Zc;) = Z 7"/ Z < i dim(W) dim(V)) yields the following corollary, which is generally how the
7 7 GGy theorem is applied:

IN

_ . _ ! Corollary 1.9 ([2]). Supposé&~ realizes(n, m,p) and has
w—1 w w—1 W
(n!) zv:dlm(v) = (n)) <Xk: dk) ' largest character degreé. Then(nmp)~/3 < d“=2|G|.



2. Beating the sum of the cubes (and how many ardé). That can be used to improve this
analysis, but the bound anchanges by less thai®—*, so

Suppose realizes(n, m,p) and has character degrees We do not present the details here.
{d;}. Theorem 1.8 yields a nontrivial bound @r(by ruling All that remains is to prove the triple product property:
out the possibility ofu = 3) if and only if Lemma 2.1. Sy, So, and S5 satisfy the triple product prop-
. erty.
nmp > Z 3. e
i Proof. Consider the triple produet goq3 with ¢; € Q(S;),

. . . ._and suppose it equals the identity. Each quotignt
Question 4.1 in [2] asks whether such a group exists. InthlsiS either of the form(a;, bi)(—a/, ') or of the form

section we construct one, which shows that our methods do(ai7bi)2(_a;7 1), with ai,a, € H, andb,,b, € Hyy,.

!ndee_d prove nontrivial bound_s an The rest of _the PaPer  There must be an even number of factorszaimong the
is logically independent of this example, but it serves as
three elements, ¢, g3.

motivation for later constructions. . .

We do not know of any construction that makes use of First, suppose there are none. We can wiitggs as
small groups. We have used the computer program GAP (a1,b1)(—d,, —b))(ag, by)(—aly, —bh)(as, bs)(—al, —b),
[4] to verify by brute force search that no group of order
less thanl128 proves a nontrivial bound o using three wherea;,a; € H; andb;, b, € H; ;. The product is thus
subgroups (as opposed to subsets). Thus a constructioequal to
must involve either fairly sizable groups or subsets other
than subgroups, and in fact all of our constructions involve (a1 — @} +az — a3 +az — aj, by — by + bz — by +bs — b),
both.

The example in this section realizes matrix multiplica- . X
tion through subsets other than subgroups. However, theProduct property holds (trivially) foffy, Ha, M in .
subsets are close to subgroups in the sense that they can be Second, Suppose two f, ¢z, gs contain az. The prod-

obtained from subgroups by deleting a small number of el- UCtq1¢2¢s can be simplified as above to yield a sum in each
ements coordinate, except now; anda;, contribute to different co-

. ) : . /
Let H — Cycg, and letG — H? x Cyc,, where Cyg g}rdm;sesq whe%t(r:]ogtamsdaf, astd'ct;blta?dgi'ff The:e are
acts onH? by switching the two factors off. Let z denote us twoz s such that; anda; contrioute to difierent coor-

. o 1 , .
the generator of Cyc We write elements ofr in the form ?lnt?]tes. For one gf th:)se t\r/:zts, bi _ar:d biflt iﬁntrlbgte -
(a,b)=1, with a, b € H andi € {0, 1}. Note thatz(a, b)> — o the same coordinate (where we interpret the subscripts

(b, a) modulo3). The sum in the other coordinate contains one of

Let H,, Hy, Hs be the three factors of Cydn the prod- i andagdb?t rr:]efilthet: Ofb;—1 afnd b;‘l’. an‘d tlhus ?{n‘ly oge
uct H = Cyc’, viewed as subgroups df. For notational ~ >tmmand frome; (because for each, a;,a; € H; an

J
; ; b;, b, € H;11). Sincea; anda; are nonzero by the defini-
efl, — H. " C Y g+l ¢ i X )
ggnvenlence, letl, = H,. Define subsets;, 55, 53 < & tion of S;, the producty; g2¢3 cannot be the identity. [

which is the identity iffg; = ¢2 = g3 = 1, since the triple

S; ={(a,b)2? :a € H;\ {0},bec Hi11,5 € {0,1}}. 3. Uniquely solvable puzzles

We will prove in Lemma 2.1 that these subsets satisfy the |, this section we define a combinatorial object called
triple product property. . ~astrong USP which gives rise to a systematic construc-
To analyze this construction we need very little tion of sets satisfying the triple product property in a wreath
representation-theoretic information. The character degree%roduct. Using strong USPs we achieve< 2.48, and we
of G are all at mos®, becausé{? is an abelian subgroup of conjecture that there exist strong USPs that prove 2.
index2. Then since the sum of the squares of the character
degrees i$G|, the sum of their cubes is at m&3t7|, which 3.1. USPs and strong USPs
equalsin.
On the other handS;| = 2n(n — 1), so0|S1||S2||S3| =
8n3(n —1)3. Forn > 5, this product is larger thain5. By
Corollary 1.9,(2n(n — 1))* < 2°~22n°. The best bound

A uniquely solvable puzzIl@)SP) of widthk is a subset
U C {1,2,3}* satisfying the following property:

onw is achieved by setting = 17, in which case we obtain For all permutationsry,m, 73 € Sym(U), either
w < 2.9088. m = my = w3 Or else there exist € U andi € [k]

It is a straightforward calculation in representation the- such that at least two dfrq (u)); = 1, (m2(u)); = 2,
ory to determine how many of the character degreeare and(ms(u)); = 3 hold.



The motivation for the name “uniquely solvable puzzle” There is a simple upper bound for the USP capacity,
is that a USP can be thought of as a jigsaw puzzle. Thewhich is of course an upper bound for the strong USP ca-
puzzle pieces are the sdts: u; = 1}, {i : u; = 2}, and pacity as well:

{i : ui = 3} with u € U, and the puzzle can be solved by | o100 35 The USP capacity is at mosf22/3.

permuting these types of pieces accordingtor,, andrs,
respectively, and reassembling them without overlap into Proof. Let U be a USP of widthk. For each triple
triples consisting of one piece of each of the three types.ni,n2, n3 of nonnegative integers summingipdefine the
The definition requires that the puzzle must have a uniquesubsetU,,, ., », 0f U to consist of all elements @f con-

solution. tainingn; entries that are, n, that are2, andng that are3.

A strong USHs a USP in which the defining property is  There areg(*?) choices ofuy, n2, n3, so

strengthened as follows:

For all permutationsry,mo, 73 € Sym(U), either
m = me = w3 Or else there exist € U andi € [k]
such thaexactlytwo of (1 (u)); = 1, (m2(u)); = 2,
and(ms(u)); = 3 hold.

One convenient way to depict USPs is by labelling a grid

in which the rows correspond to elements of the USP and

the columns to coordinates. The ordering of the rows is
irrelevant. For example, the following labelling defines a
strong USP of siz&8 and width6:

3/3/3|3

| Wl Wk P ww
PR P R w wl w
N[ W[ N W[ N W N

NN W WN N W W
NI NN N W W ww

R W R Wk w e

1

This construction naturally generalizes as follows:

Proposition 3.1. For eachk > 1, there exists a strong USP
of size2* and width2k.

Proof. Viewing {1,3}* x {2, 3}* as a subset df1, 2, 3},
we definel to be

{u e {1,3}* x {2,3YF - fori € [k], u; = 1iff ujyp = 2}.

Supposer;, ma, 3 € Sym(U). If m; # 73, then there
existsu € U such that(r(u)); = 1 and(m3(u)); = 3
for somei € [k]. Similarly, if 7o # w3, then there exists
u € U such thaf(m(u)); = 2 and(ms(u)); = 3 for some
i € [2k] \ [k]. In either case, exactly two dfri(u)); =
1, (ma(u)); = 2, and(mws(u)); = 3 hold because in each
coordinate only two of the three symbals 2, and3 can
occur. It follows that” is a strong USP, as desired. O

We define thestrong USP capacitio be the largest con-
stantC such that there exist strong USPs of ige-o(1))*
and widthk for infinitely many values of%. (We use the

term “capacity” because this quantity is the Sperner capac-

ity of a certain directed hypergraph, as we explain in Sec-
tion 6.) TheUSP capacitys defined analogously.

max |Up, nyongl-
ni,nz,n3

k+2
<

If two elements of/ have the symbal in exactly the same
locations, then lettingr; interchange them would violate
the definition of a USP, and of course the same hold2 for
or 3. Thus,

3

[k *
Uil <min () < (75 +o0)

where the latter inequality holds becausi; (7’;) is max-
imized whenn; = ny = ng = k/3. It follows that

|U| < (3/22/3+o(1))k,as desired. O
USPs turn out to be implicit in the analysis in Copper-

smith and Winograd'’s paper [3], although they are not dis-

cussed as such. Section 6 of [3] can be interpreted as giv-

ing a probabilistic construction showing that Lemma 3.2 is
sharp:

Theorem 3.3 (Coppersmith and Winograd [3]). The USP
capacity equals /22/3.

We conjecture that the same is true for strong USPs:
Conjecture 3.4. The strong USP capacity equalg2?/3.

This conjecture would imply that = 2, as we explain
in the next subsection.

3.2. Using strong USPs

Given a strong USK/ of width £, let H be the abelian
group of all functions fron/ x [k] to the cyclic group Cyg
(H is a group under pointwise addition). The symmetric
group SyniU) acts onH via

m(h)(u, i) = h(n~" (u),i)

form e SymU), h € H,u € U, andi € [k].

Let G be the semidirect produd x Sym(U), and de-
fine subsets$,, Sy, andSs of G by letting.S; consist of all
productshr with 7 € Sym(U) andh € H satisfying

h(u,j) #0  iff
forallu € U andj € [k].

Uj:Z



Proposition 3.5. If U is a strong USP, thel§;, Sz, and.S3
satisfy the triple product property.

Proof. Consider a triple product

hamimy Ry hamamh PRy Thamamy Thy Tt =1 (3.1)

with h;m;, hiwl € S;. For (3.1) to hold we must have

1 1 1—1

T 77271"27 m3my - = 1. (3.2)

Setr = 77171'171 andp = 7r17rfl7727r;71. Then the remain-
ing condition for (3.1) to hold is that in the abelian gratp
(with its Sym(U) action),

h1 — h/3 + 7T(h2 — hll) —+ p(h3 — h/2) = O (33)

Note that
(hl — hé)(u,]) 7& 0 iff Uj S {1,3}7
m(he — hY)(u,5) #0 iff (77 '(u)); € {2,1}, and

p(hs = hy)(u, ) #0 iff - (p~'(u)); € {3,2}.
By the definition of a strong USP, either = p = 1 or
else there exist andj such that exactly one of these three
conditions holds, in which case (3.3) cannot hold. Thus,
m = p = 1, which together with (3.2) implies; = =} for

all . Then we have

h1+h2+h3=h/1+h/2+hé,

which impliesh] = h; for eachi (because for different
choices ofi they have disjoint supports). Thus, the triple
product property holds. O

Analyzing this construction using Corollary 1.9 and the
bound[G : H]| = |U|! on the largest character degree(of
yields the following bound:

Corollary 3.6. If U is a strong USP of widtk, andm > 3
is an integer, then

" 3logm  3log|U|!
~log(m—1) |Ulklog(m —1)"

In particular, if the strong USP capacity 8, then

3(logm — log C)
log(m — 1)

Proposition 3.1 yields) < 2.67 with m = 9. In the next

3.3. The triangle construction

The strong USP constructed in Proposition 3.1 has the
property that only two symbols (of the three possibilitles
2, and3) occur in each coordinate. Every USP with this
property is a strong USP, and we can analyze exactly how
large such a USP can be as follows.

Supposd/ C {1,2,3}* is a subset with only two sym-
bols occurring in each coordinate. L&Y be the subgroup
of SymU) that preserves the coordinates in which ohly
and2 occur, H, the subgroup preserving the coordinates in
which only2 and3 occur, andH5 the subgroup preserving
the coordinates in which onlyand3 occur.

Lemma 3.7. The setV is a USP iffH,, Ho, and H3 satisfy
the triple product property withiSym(U).

Proof. Supposer, Ty, m3 € SymU). The permutation
mim, b is not in H, iff there existsv € U and a coordi-
natei such thaty; = 2 and ((my75, H)(v)); = 1. If we
setu = 7, '(v), then this is equivalent téms(u)); = 2
and (my (u)); = 1. Similarly, mom3 ' ¢ Hy iff there ex-
ist w and¢ such that(my(u)); = 2 and(w3(u)); = 3, and
mam; b ¢ Hs iff there existu andi such that(m; (u)); = 1
and(ms(u)); = 3.

Thus,U is a USP iff for allwy, 7, 73, if mmy * € Hy,
7T27T;1 € Hs, and’ﬂ'gﬂ';l € Hj, thenm, = m = m3.
That is equivalent to the triple product property fér, H»,
and Hj: recall that because these are subgroups, the triple
product property says that fér; € H;, hihohs = 1 iff
hy = hy = hg = 1. Any three elementé, ho, h3 satis-
fying h1hohs = 1 can be written in the formh, = wlwgl,
hzzﬁgﬂgl,andhgzﬁg’fr;l. O

Proposition 3.8. For eachk > 1, there exists a strong USP
of size2"~1(2* + 1) and width3k.

It follows that the strong USP capacity is at least?
andw < 2.48.

Proof. Consider the triangle
A, ={(a,b,c) €Z®:a+b+c=n—1anda,b,c > 0},

with n = 2%, and letH,, H,, and H; be the subgroups
of Sym(A,,) preserving the first, second, and third coordi-
nates, respectively. By Theorem 1.7, these subgroups sat-
isfy the triple product property in Syf,,).

To construct the desired strong USP, choose a subset
U C {1,2,3}3" as follows. Among the first coordinates,
only 1 and2 will occur, among the secoridonly 2 and3,

subsection we prove that the strong USP capacity is at leasand among the thiré only 1 and3. In each of these three

22/3 and hencey < 2.48, which is the best bound we know
how to prove using strong USPs.

If Conjecture 3.4 holds, then Corollary 3.6 yields= 2
upon takingm = 3.

blocks ofk coordinates, there a¥ possible patterns that
be made using the two available symbols. Number these
patterns arbitrarily fron® to 2 — 1 (each number will be
used for three patterns, one for each pair of symbols). The



elements ofU will correspond to elements ak,,. In par-
ticular, the element ot/ corresponding tda,b,c) € A,
will have thea-th pattern in the firsk coordinates, thé-th
in the second:, and thec-th in the third. It follows from
Lemma 3.7 thal/ is a strong USP. O

One can show using Lemma 3.7 that this construction is
optimal:

Corollary 3.9. If U is a USP of widthk such that only
two symbols occur in each coordinate, tHéH < (22/% +

o(1))*.
The condition of using only two symbols in each coor-
dinate is highly restrictive, but we have been unable to im-

prove on Proposition 3.8. However, we know of no upper 1, we define triples of subsets i3 indexed byv

Lemma 4.2. If n pairs of subsetsl;, B; C H satisfy the si-
multaneous double product property, amdoairs of subsets
Al, B C H' satisfy the simultaneous double product prop-
erty, then so do then’ pairs of subsetsl; x A;-, B; x B;- -
Hx H'.

PairsA;, B; satisfying the simultaneous double product
property in groupH can be transformed into subsets satis-
fying the triple product property via a construction similar
to the one in Section 3. Recall that

A, ={(a,b,c) €Z* :a+b+c=n—1anda,b,c > 0}.

Given n pairs of subsetsi;, B; in H for 0 < i < n —

bound on the size of a strong USP besides Lemma 3.2, andy, | v,, v3) € A,, as follows:

we see no reason why Conjecture 3.4 should not be true.

4. The simultaneous double product property

There are at least two natural avenues for improving the
construction from Subsection 3.3. In the combinatorial di-

rection, one might hope to replace the strong USP of Propo-

sition 3.8 with a larger one; this will reach exponenif
Conjecture 3.4 holds. In the algebraic direction, one might
hope to keep the combinatorial structure of the triangle con-
struction in place while modifying the underlying group.
Such a modification can be carried out usingghmultane-
ous double product propergefined below, and we conjec-
ture that it reaches = 2 as well (Conjecture 4.7).

We say that subsets, S; of a groupH satisfy thedou-
ble product propertyf
implies

qig2 =1 G =g =1,

whereg; € Q(5;).

Definition 4.1. We say that, pairs of subsetsi;, B; (for
1 <4 < n)of agroupH satisfy thesimultaneous double
product propertyf

e for all 4, the pair A;, B; satisfies the double product
property, and

e forall i, j, k,
ai(a}) "o ()t =1

wherea; € A;, a; € Aj, b; € B;, andbj, € By,.

implies 1=k,

A convenient reformulation is that if one looks at the sets
A7'B; ={a'b:a € A;,b€ By},

those withi = j are disjoint from those with # j.

For a trivial example, sel = Cyc" x Cyc,, and set
A; = {(z,i) : = € Cyd’} andB; = {(0,7)}. Then the
pairs A;, B; for i € Cyc, satisfy the simultaneous double
product property.

<

Ay, x {1} X By,
B,, x Ay, x {1}
{1} X By, X Ay,

SIS

v

Theorem 4.3. If n pairs of subsetsl;, B; C H (with0 <

1 < n—1) satisfy the simultaneous double product property,
then the following subsets;, Sy, S3 of G = (H3)%~ %
Sym(A,,) satisfy the triple product property:

Si = {am:me SymA,),a, € A, forall v}
Sy = {bm:meSymA,)b, € B, forall v}
Sy = {er:me SymA,),e, e C, forall v}

The proof uses Theorem 1.7 and is similar to the proof
of Proposition 3.5; it can be found in the full version of this
paper.

Theorem 4.4. If H is a finite group with character degrees
{dx}, andn pairs of subsets!;, B, C H satisfy the simul-
taneous double product property, then

n

D

3/2
(14 [Bil)*"? < <Z dz) :
i=1 k
Using this theorem, the example after Definition 4.1 re-
covers the trivial bound < 3 ask — co.

Proof of Theorem 4.4Let A/, B, be the N-fold direct
product of the pairs4;, B; via Lemma 4.2, and let be
an arbitraryn-vector of nonnegative integers for which
Siymi = N. Among the pairsdj, Bj are M = (')
pairs for which

n

|4311B]| = [Tl Bil)";

i=1



call this quantityL.. SetP = |A |, soP = M(M +1)/2.
The three subsets in Theorem 4.3 each haveRIiZ¢’. By
Theorem 1.8 and Lemma 1.2 we obtain

3NP
(PILP) < (P! <Z d;;) .
k

Taking2 P-th roots and lettingV — oo yields

N N w/2 3N/2
™) <H<A7;|Bi|>m> < (de) .
H =1 k

Finally, we apply Lemma 1.1 witk; = (|4;||B;])*/2 and
C = (3, d¢)*? to obtain the stated inequality. O

Itis convenient to use two parameterand to describe

pairs satisfying the simultaneous double product property:

if there aren pairs, chooser and 3 so that|A;|| B;| > n®
foralli and|H| = n”. If H is abelian Theorem 4.4 implies
w < (36 —-2)/a.

The best construction we know is the following:

Proposition 4.5. For eachm > 2, there is a construction in
Cycf,f satisfying the simultaneous double product property
with a = logy(m — 1) + o(1) and 8 = log, m + o(1) as

{ — oo.

Takingm = 6 yields exactly the same bound as in Sub-
section 3.3¢ < 2.48).

Proof. Let n = (%). Thenn = 22(-°1) s0 3 =
log, m + o(1). For each subsef of the 2¢ coordinates
of Cyc® with | S| = ¢, let A5 be the set of elements that are
nonzero in those coordinates and zero in the others.SLet
denote the complement 6f and set3s = Ag. For eachS,
we havd Ag||Bs| = (m—1)%, soa = logy(m—1)+o(1).
We will show that the pairslg, Bg satisfy the simulta-
neous double product property. Each paj, Bs clearly

Proof. The inequalitya < 3 follows immediately from the
double product property, since that means that the quotient
map(a,b) — a~1bfrom A; x B; to H is injective.

For the other inequality, first note that;,..., A, are
disjoint (if z € A; N A; with i # j, andy € B, then
x7'y € (A7'B;) N (A; ' B;), which is impossible). Simi-
larly, B, ..., B, are also disjoint. It follows that the map

Sym, x Sym, x ﬁAi X ﬁBl- — (H™)?

i=1 =1

defined by(mw, p,a,b) — (ma, pb) is injective. Here, the
group Sym, acts by permuting the coordinates. Com-
paring the sizes of these sets yields)?(n®)" < (n?)?",
which implies28 > a + 2 asn — oo. Note that by tak-
ing direct powers via Lemma 4.2, one can takarbitrarily
large without changing: andg. O

The most important case is whéhis an abelian group.
There the bound ow is w < (38 — 2)/a, and Propo-
sition 4.6 shows that the only way to achieve= 2 is
a = 3 = 2. We conjecture that that is possible:

Conjecture 4.7. For arbitrarily large n, there exists an
abelian groupH with n pairs of subsets4;, B; satisfy-
ing the simultaneous double product property such that
|H| = n?t°(M) and|A;|| B;| > n?>~°M,

5. The simultaneous triple product property

Each of our constructions of a group proving a nontrivial
bound onw has the same general form, namely a semidirect
product of a permutation group with an abelian group. The
crucial part of such a construction is the way in which the
abelian part is apportioned among the three subsets satisfy-
ing the triple product property.

This apportionment can be viewed as reducing sev-

satisfies the double product property, because the elementgral independent matrix multiplication problems to a single

of Ag andBg are supported on disjoint sets of coordinates.
Each element oBg — Ag is nonzero in every coordinate,
but if Q # R then there is a coordinate iR N Q (note
that this is why we requiréQ)| = |R|). Each element of
Bg — Ap vanishes in that coordinate, so

(Bq—Agr)N(Bs — Ag) =0
as desired. O

The only limitations we know of on the possible values
of « andg are the following:

Proposition 4.6. If n pairs of subsetsi;, B, C H satisfy
the simultaneous double product property, with || B;| >
n® for all i and|H| = n”, thena < ganda + 2 < 24.

group algebra multiplication, using triples of subsets satis-
fying the simultaneous triple product property:

Definition 5.1. We say that triples of subsets;, B;, C;
(for 1 <4 < n) of agroupH satisfy thesimultaneous triple
product propertyf

o for eachi, the three subsetd;, B;, C; satisfy the triple
product property, and

e foralli,j, k,
ai(a;-)_lbj(b;)_lck(cg)_l =1 implies i=j=k

fora; € A;, a; € Aj,b; € By, by, € By, ¢, € Cy and
C,IL- e C;.



We say that such a groupsimultaneously realizes The proof is similar to that of Theorem 1.6:

(1A, 1Bil, [Cal)s -+ ([Anl, [ Bnl, |Cnl)- . :
Proof. SupposeH simultaneously realizegn;, my,p1),

In most applications the groufl will be abelian, in vovy (N, My, pi) Via triples N;, M;, P; with 1 < ¢ < k.
which case it is more conventional to use additive notation. Let A; be ann; x m; matrix andB; anm,; x p; matrix. We
In this notation the implication above becomes will index the rows and columns of; with the setsV, and

, , , ) . o M;, respectively, those aB; with M; and P;, and those of
a;—a;+bj—by+c,—c; =0 implies i=j=k. A, B; with N; andP.
Consider the product of the following two elements of

As an example, lell = Cyc;i, and call the three factors RIH]:

H,, Hy, andH3. Define &
—1
A =H \ {0}, Bi=H\{0}, C\=H;\{0} YD (Aas

1=1 seN; ,teM;
and and

k
Ay = Ha\ {0}, Bo=H;3\{0}, C.=H:\{0}. o> Beattu

This construction is based on the one in Section 2, except
that this one is slightly more symmetrical. We have
- - (s_lt)(t/_lu) _ s'_lu'

Proposition 5.2. The two triples A, B;,C; and . , .

As, By, Cs satisfy the simultaneous triple product property. With s € Ni, t € M;, " € Mj, u € Pj, s' € N, and
v e Piff i=j7=kands=¢,t=1,andu = v/, so the

Proof. Each triple clearly satisfies the triple product prop- coefficient ofs~ ' in the product is

erty in isolation, so we need only deal with the second con-

dition in the definition. Foi € {1, 2} defineU; = A; — C;, Z(Ai)s,t(Bi)t,u = (A;By)su-
V; = B, — A;, andW,; = C; — B;. What we must prove teT
is that if u; + v; + w,, = 0 with u; € U;, v; € Vj, and ) ]
wy € Wy, theni = j = k. Thus, one can simply read off the matrix products from the
We have group algebra product by looking at the coefficients ofu
with s € N;,u € P;, and the theorem follows. O

Uy =Wy ={(z,0,2) € C C‘:’L:r 0,z # 0},
! 2=l ) y 7 70} Other results about the triple product property also gen-

Vi =Us = {(z,9,0) € Cyc : x # 0,y # 0}, eralize straightforwardly to the simultaneous triple product

and property, such as the following lemma:

. Lemma 5.4. If n triples of subsets;, B;,C; C H sat-
Wi =Ve ={(0,y,2) € Cyc, 1y # 0,2 # 0}, isfy the simultaneoups triple product property, amdriples

If 4, j, andk are not all equal, then two of them must be Of subsetsA’, B, €% C H' satisfy the simultaneous triple
equal but different from the third. In each such cdse)V/;, product property, then so do then’ triples of subsets
and W, comprise exactly two of the three subsets of Cyc  Ai X A}, Bi x B}, C; x C5 € H x H'.

defined in the equations above, with one of those two sets
occurring twice. The sum of an element from each cannot
vanish, since in the repeated set one coordinate is zero, an
the other set is always nonzero in that coordinate. [

By Schbnhage’s asymptotic sum inequality ((15.11) in
1), one can deduce a bound anfrom the simultaneous
iple product property:

Theorem 5.5. If a group H simultaneously realizes
{a1,b1,¢1),...,{an,bn,c,) and has character degrees
{dx}, then

The reason for the strange condition in the definition of
the simultaneous triple product property is that it is exactly
what is needed to reduce several independent matrix multi-

plications to one group algebra multiplication. Z(aibici)w/3 < Z ds .

Theorem 5.3. Let R be any algebra ove€. If H simul- =t 4§

taneously realize$n,, m1,p1), ..., (nk, my, pr), then the Frequentlyd will be abelian, in which cas@ ", df =
number of ring operations required to perforknindepen- |H|. That occurs in the example from Proposition 5.2,
dent matrix multiplications of sizeg xmy bym; xp1, ..., which proves that < 2.93 using Theorem 5.5.

ng X my by mg X pg is at most the number of operations In Section 7 we provide a proof of Theorem 5.5 com-
required to multiply two elements & H]. pletely within our group-theoretic framework, and show



furthermore that any bound an that can be achieved us- Then the triplesA,,, B, C,, satisfy the simultaneous triple
ing the simultaneous triple product property can also be product property.

achieved using the ordinary triple product property. Thus,

there is no added generality from the simultaneous triple ~ Note that this construction isolates the key idea behind
product property, but it is an important organizing princi- Proposition 3.5.

ple.
Proof. Suppose, v, w € U are not all equal and

6. Using the simultaneous triple product prop-

erty =0

ay —a, +b, — b, +c,—c,
with a,, € Ay, al, € A,, b, € By, b, € By, ¢ € Cy
Every construction we have found of a group proving and¢/, € C,. By the definition of a local strong USP, there
a nontrivial bound onw has at its core a simultaneous existsi € [k] such thau;, v;, w;) is in
triple product property construction in an abelian group.
Each construction also involves a wreath product, but as {(1,2,1),(1,2,2),(1,1,3),(1,3,3),(2,2,3),(3,2,3)}.
explained in Section 7 that is a general tool for dealing
with the simultaneous triple product property. Given Theo- In each of these cases exactly oneugfa’, b, b.,, cw,
rem 5.5, which can be proved either via the wreath productis nonzero, namely.,, b,, a., c.,, b.,, andc,,, respectively.
construction of Section 7 or using the asymptotic sum in- Thus, in each case the equation+b, +c,, = a,,+b,+c,,
equality, one can dispense with non-abelian groups entirely.is impossible, sa = v = w, as desired.
In this section we explain how to interpret each of our con-  All that remains is to show that for each the sets
structions in this setting. Ay, By, C,, satisfy the triple product property, which is triv-
ial (they are supported on disjoint sets of coordinates)l
6.1. Local strong USPs
At first glance the definition of a local strong USP ap-
A local strong USPof width k is a subset/ C {1,2,3}* pears far stronger than that of a strong USP. For example,

such that for each ordered triple, v, w) € U?, with u, v, the strong USPs constructed in Subsection 3.3 are not local
andw not all equal, there existse [k] such thafu;, v;, w;) strong USPs. However, it turns out that any bound dhat
is an element of can be proved using strong USPs can be proved using local

strong USPs:
{(1,2,1),(1,2,2),(1,1,3),(1,3,3),(2,2,3),(3,2,3)}.

. Proposition 6.3. The strong USP capacity is achieved by
Lemma 6.1. Every local strong USP is a strong USP. local strong USPs. In particular, given any strong USP
Proof. Let U be a local strong USP, and suppose of width &, there exists a local strong USP of siZé|! and
T, T2, T3 S Syl’T(U) If T, T2, and T3 are Wldth|U|k
not all equal, then there exists € U such that

m(u), 7o(u), and ms(u) are not all equal. There ex- Proof. Let U be a strong USP of width, and fix an arbi-

X : . trary orderinguy, us, ..., u | of the elements ot/. For
ists i € [k] such that((m(u));, (m2(u))i, (13(u));) is 12 U

in {(1,2,1).(1,2,2). (1,1,3),(1,3,3),(2.2,3),(3,2,3)},  82chT € Sym(U), letUr € {1,2,3}I"" be the concatena-
and hence exaCtIy two (ﬁrl(u))z -1, (ﬂg(u))L — 2. and tion of 7T('I.L1), 7T(’U,2), e ,W(U‘U|). Then the set of all vec-

(m3(u)); = 3 hold, as desired. O torsU, isa Iocgl strong USP: given any three eIemem;g
Ux,, andU,, with 71, w9, w3 not all equal, by the definition
The reason for the word “local” is that local strong USPs of a strong USP there existe U andsi € [k] such that ex-
satisfy a condition for every triple of rows, rather than a actly two of (71 (u)); = 1, (m2(u)); = 2, and(m3(u)); = 3
weaker global condition on permutations. The advantage ofhold. Then in the coordinate indexed bynds, the vectors
local strong USPs is that they lead naturally to a construc-U,,, U,,, andU,, have entries amongl, 2, 1), (1,2, 2),
tion satisfying the simultaneous triple product property: (1,1,3),(1,3,3), (2,2,3), (3,2,3), as desired. O

Theorem 6.2. Let [ be a local strong USP of width, and Proposition 6.3 explains the choice of the word “capac-

for eachu € U define subsetd.,, By, i < Cyc’; by ity”: optimizing the size of a local strong USP amounts to
A, = {zeCyd:a; #0iff u; =1}, determining the Sperner capacity of a certain dire(_:ted hy-
pergraph (see [8] for background on Sperner capacity). The
full version of this paper will explain this perspective more
{x € Cyc : x; # 0iff u; = 3}. completely.

B, = {xecCyd:x;#0iff u; =2}, and
Cu
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6.2. Triangle-free sets Theorem 6.6. Let H be a finite abelian groupl an H-

chart, andU a local C-USP of widthk. For eachu € U
The construction in Theorem 4.3 is also easily inter- define subsetd,,, B,,,C,, C H* by

preted in terms of the simultaneous triple product property. A i A

Recall the construction of tripled,, B,,C, indexed by _ , _ ] _ ]

v € A, defined before Theorem 4.3. These triples almost Au= 1;[1 Alwi),  Bu = Ll;[lB(ul)’ Cu = E Clui).

satisfy the simultaneous triple product property, in the fol-

lowing sense: if

au(a;;)ilbv(bLJ)7161U(C/ )71 =1

u

Then these triples of subsets satisfy the simultaneous triple
product property.

Together with the example above, this theorem gives
then it follows from the simultaneous double product prop- an analogue of Theorem 6.2 for local USPs. Using The-
erty thatu; = w1, vy = ug, andws = vs. Call a subses of orem 3.3, this example achieves< 2.41.

A, triangle-freeif for all u,v,w € 5 satisfyingu; = wy, Using a more complicated chart with 24 symbols, the
vy = Uz, andws = vs, it foI_Iows f[hatu = v = w. Thus, boundw < 2.376 from [3] may be derived from Theo-
the triplesA,,, B,,, C, with v in a triangle-free subset af,, rem 6.6. For details, see the full version of this paper.

satisfy the triple product property.

The critical question is whether there is a triangle-free 7. The wreath product construction
subset ofA,, of size |A,|'~°(). We give a simple con-
struction achieving this using Salem-Spencer sets (see [7]).
Let T be a subset of|n/2]] of sizen'—°(!) that contains
no three-term arithmetic progression. The following lemma
is easily proved:

It remains to prove Theorem 5.5 using purely group-
theoretic means. Besides giving a self-contained proof, this
will also show that the ordinary triple product property from
Definition 1.3 is as strong as the simultaneous triple prod-
Lemma 6.4. The subse{(a,b,c) € A, : b—a € T}is uct property, in the sense that any bound that can be derived

triangle-free and has sizg\,, |1 —°(%). from Theorem 5.5 can be proved using Theorem 1.8 as well.
o To prove Theorem 5.5, we make use of a wreath product
6.3. Local USPs and generalizations construction. LetH be a group, and defin@ = Sym, x

H™, where the symmetric group Synacts onH " from the

USPs also have a local version, just as strong USPs do. Aright by permuting the coordinates according(ff); =
local USPis defined analogously to a local strong USP, ex- hx(y- We write elements off ashr with h € H™ and
cept that the tripl€1, 2, 3) is allowed in addition td1, 2, 1), ™€ Sym,.
(1,2,2), (1,1,3), (1,3,3), (2,2,3), and(3,2,3). Local
USPs are USPs, and they achieve the USP capacity;
proofs are analogous to those for Lemma 6.1 and Propo
sition 6.3. In what follows we place this construction in a
far broader context:

thérheorem 7.1.If ntriples of subsetsl;, B;, C; C H satisfy
_the simultaneous triple product property, then the following
subsetsHd,, He, H3 of G = Sym, x H" satisfy the triple
product property:

Definition 6.5. Let H be a finite abelian group. A- Hy = {hm:meSym,, h; € A; foreachi}
chartC = (T, A, B, C) consists of a finite set of symbdls Hy, = {hr:meSym,h; € B, foreachi}
together with three mappings, B, C : T' — 2 such that Hy = {hm:meSym, h; € C, for eachi}

for eachz € T, the setsA(z), B(x), C(x) satisfy the triple _ N
product property. Let{(C) C I'® denote the set of ordered ~Proof. The proof is analogous to that of Proposition 3.5.

triples (x,y, z) such that Consider a triple product
0¢ A(z) — A(y) + B(y) — B(z) + C(z) — C(x). hami Wy e e TR thama s th Tt =1 (7.0)
A local C-USP of widthk is a subset/ C T'* such that  with h;m;, hin, € H;. (Note that these subscripts index
for each ordered triplgu, v, w) € U3, with u, v, w not all hi1, he, hs, rather than describing coordinates of a single
equal, there exists € [k] such that(u;, v;, w;) € H(C). h € H. Once understood that should not cause confusion.)
For example, a local USP isGUSP for the Cyg-chart ~ FOr (7.1) to hold we must have
C = ({1,2,3},A,B,C) with A, B, C defined as follows i Ay tra Tt = 1. (7.2)

(below, H = Cyc, \ {0,1}): )

Setr = m, "t andp = w7 trem, ! Then the remain-

A(1)={0} B1)=-H c(@1)={0} ing condition for (7.1) to hold is that in the group™ with
A2)={1} B@2)={0} C@2)= H its right Sym, action,
A(3)=H B(3)={0} C(3)={0} hglhl (h/flhz)ﬂ(h;lhg)p -1
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In other words, for each coordinate >, i = N. Among the triplesd;, B, C! are( ) triples
" Ly Ly for which
(hS ) (hl) (h )Tr(i) (h )Tr( )(h )p(i) (hS)p(i) =1 n
MNBIC!| = B O
By the simultaneous triple product property, we find that | Al B3l Cil HGALHBA Cil)

7(i) = p(i) = i. Thus,m = p = 1, which together with
(7.2) impliesw; = «, for all . Finally, we have

hih thohl thaht =1,

Applying Lemma 7.2 to these triples gives
N n " 3
- () oAtz < (Zd)
which impliesh; = k), hy = h, andhs = h} because K74
each triple4,, B;, C; satisfies the triple product property. ‘
O Applying Lemma 1.1 withs; = (|A4;]| B;||C;|)*/? andC' =
>, d7 yields the desired bound. O
As a first step towards proving Theorem 5.5, we prove a
weaker bound, with the geometric mean replacing the arith- Acknowledgements

metic mean:

Lemma 7.2. If H is a finite group with character degrees
{dy} andn triples of subsetsl;, B;, C; C H satisfying the
simultaneous triple product property, then

1/n
n (H<|Ai||Bi|ci>w/3> <Y a.
i k
Proof. The sizes of the three subsets®fin Theorem 7.1

aren![[, |A;|, n! T, |Bi|, andn! [, |C;|, respectively. Ap-
plying Theorem 1.8 we get the inequality

w/3
<(n!)3H|Ai||Bi|Ci|> <>
i J

By Lemma 1.2 the right-hand-side is at most
(nh*=1 (32, d¢)", and then dividing both sides by

(n!)* yields
! (Zd;g) :
k

w/3
<H |Ai|Bi|Ci> <(n

This inequality is slightly weaker than the desired in-
equality, but that is easy to fix by taking direct powers of
H via Lemma 5.4. Replacingl with H! (andn with nt)

yields
tnt
k

Taking tn*-th roots and letting — oo gives the claimed
inequality. O

t—1

tn'”w/3
(H |Az-||Bz-||cl-|) < (n'!

%

Proof of Theorem 5.5Let A., B!, C] be theN-fold direct
product of the triplesA;, B;, C; (via Lemma 5.4), and let
be an arbitrary-vector of nonnegative integers for which

12
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