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Abstract

The Minimum Equivalent Expression problem is a natural optimization problem in the second level
of the Polynomial-Time Hierarchy. It has long been conjectured to be ΣP

2 -complete and indeed appears
as an open problem in Garey and Johnson [GJ79]. The depth-2 variant was only shown to be ΣP

2 -
complete in 1998 [Uma98, Uma01], and even resolving the complexity of the depth-3 version has been
mentioned as a challenging open problem. We prove that the depth-k version is ΣP

2 -complete under
Turing reductions for all k ≥ 3. We also settle the complexity of the original, unbounded depth Minimum
Equivalent Expression problem, by showing that it too is ΣP

2 -complete under Turing reductions.
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1 Introduction

Circuit minimization problems are natural optimization problems contained in the second level of the
Polynomial-Time Hierarchy (PH). The general form of such a problem is: given a Boolean circuit, find
the smallest Boolean circuit that computes the same function. The input and output circuit may be required
to be circuits of a particular form, e.g., Boolean formulas, or bounded-depth circuits. These problems are
central problems in the field of logic synthesis, where fairly large instances are routinely solved using heuris-
tics [DGK94]. They are also the prime examples of natural problems that should be complete for the classes
of the second level of the PH. Indeed, versions of these problems inspired the definition of the PH in the early
70s by Meyer and Stockmeyer [MS72, Sto76], and Garey and Johnson use the formula variant to motivate
the definition of the second level of the PH [GJ79]. See [SU02] for an up-to-date list of known complete
problems in higher levels of the PH.

Completeness proofs for circuit minimization problems have been hard to find. The DNF formula ver-
sion of circuit minimization was only proven to be ΣP

2 -complete in 1998 by Umans [Uma98, Uma01]; the
other variants have remained prominent open problems. The only non-trivial hardness result for the general
formula variant – called Minimum Equivalent Expression – is a PNP

|| -hardness result of Hemaspaandra and
Wechsung from 1997 [HW97, HW02]. One reason reductions for these problems are difficult is that one
direction of the reduction entails proving a lower bound for the type of circuit under consideration. This
shouldn’t be an absolute barrier, though, for two reasons. First, we have lower-bound proof techniques
for Boolean formulas and bounded-depth circuits; nevertheless incorporating these into a reduction seems
tricky. Second, a reduction need not entail strong lower bounds and in principle even slightly non-trivial
lower bounds could suffice. A similar difficulty for potential reductions showing the (conjectured) NP-
hardness of a related problem1 was noted by Cai and Kabanets [KC00], although there, the use of weak
lower bounds is not even an option, under a complexity assumption.

Proving ΣP
2 -completeness of the depth-3 formula variant was proposed [UVSV06] as a challenging first

step, one that might begin to utilize techniques for proving lower bounds for bounded depth circuits (e.g., the
Switching Lemma). In this paper we resolve, in one shot, the depth-3 case, as well as the depth-k variants for
all k ≥ 3. The same techniques show in addition that the unbounded depth Minimum Equivalent Expression
problem is ΣP

2 -complete under Turing reductions. Our results resolve the complexity of these problems in
the sense that they show for the first time that they are complete for the second level of the PH. Of course,
many-one reductions would give a more refined result. We are able to achieve our results by exploiting
the second way around the apparent barrier of proving circuit lower bounds: our reductions entail circuit
lower bounds, but we get by with very weak ones, that with some effort are incorporated naturally into the
structure of the reduction.

1.1 Description of the reduction

In this section we give a high-level description of the reduction, emphasizing a few interesting features
before delving into the technical details.

The problem we reduce from is SUCCINCT SET COVER, which was defined and shown to be ΣP
2 -

complete in [Uma99]:

Problem 1.1 (SUCCINCT SET COVER (SSC)). Given a DNF formula D on variables

v1, . . . , vm, x1, . . . , xn
1The problem is called “Circuit Minimization,” but it and related problems in [AKRR03, AHM+08, AKRR] refer to the NP

problem of finding a minimum sized circuit which computes a given truth table.
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and an integer k, is there a subset I ⊆ {1, 2, . . . n} with |I| ≤ k and D ∨
∨
i∈I xi ≡ true?

This can be seen as a succinct version of SET COVER, in which the n + 1 exponentially large sets are
implicitly and succinctly specified by the formulas D, x1, x2, . . . , xn, and D is mandatory in any set cover.
Here, the universe is the set of assignments to the variables, {true, false}m+n. An implicitly specified set
contains the assignments that it accepts.

We will assume that the formula D accepts the all-true assignment, as it only requires polynomial time
to check this and the SSC instance is trivially false otherwise.

Our reductions exploit the special structure of this SUCCINCT SET COVER instance. In particular, all of
the sets other than the one implicitly specified byD have an extremely simple form (they are just halfspaces),
and in our reduction to MINIMUM EQUIVALENT EXPRESSION the choice of whether they are included or
excluded from a cover will manifest itself relatively easily in the size of a minimum equivalent expression.
However, D may be a complicated function, one whose minimum formula size is not readily apparent. To
circumvent this problem, we will use a Turing reduction (actually a non-adaptive, or truth-table, reduction)
which first ascertains the minimum formula size of D, and then asks one further query on a formula that
incorporates D and other components, to determine whether or not the original instance of SUCCINCT SET

COVER is a positive instance. This provides a somewhat rare example of a natural problem for which a
Turing reduction seems crucial (in the sense that we do not know of any simple modification or alternative
methods that would give a many-one reduction).

More specifically, the main idea of our reduction is to consider the following formula, derived from an
instance of SUCCINCT SET COVER:

D ∨ [z ∧ (x1 ∨ · · · ∨ xn)] (1)

where z is a new variable. Notice that when z is false , this formula is equivalent to justD, which (intuitively)
forces a minimum equivalent formula to devote part of its size to computing D exactly. When z is true , the
formula covers exactly the union of all of the sets in the instance of SUCCINCT SET COVER. That problem
asks whether the disjunction of k or fewer xi literals suffice to accept everything not accepted by D. If the
variables indexed by I ⊆ {1, 2, . . . , n} suffice, then a very economical equivalent formula to the one above
is

D ∨

[
z ∧

(∨
i∈I

xi

)]
.

By forcing a minimum equivalent formula to contain a copy of D, we can ensure that a smallest equivalent
formula is indeed of this intended form. We can then determine whether or not there is a cover of size k
by asking whether (1) has an equivalent formula of size at most k greater than the size of the minimum
subformula equivalent to D together with the z variable.

To make this actually work requires some modifications. For example, because the sets in the original
instance cover all points in the domain, D ∨ z is already a small equivalent formula which does not depend
at all on whether or not the instance of SUCCINCT SET COVER was a positive instance. But, we can solve
this problem by modifying D initially to not accept the assignment in which every variable is set to true .

A more general technique that we use in several places in the reductions is “weighting” some variables
in order to control the form of candidate small equivalent expressions. This is accomplished by replacing a
single variable y with a conjunction of new variables, y1∧· · ·∧yw, where w is the desired weight. We show
that after this replacement, a minimum equivalent expression must be at least as large as the “w-minimum”
expression (in which the size of a formula is measured by the number of occurrences of variables other than
y plus w times the number of occurrences of the variable y).
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We use this technique, for example, to weight z so highly that there can be only one occurrence of it;
this then forms the conceptual pivot from which we argue that the subtrees of the formula surrounding that
occurrence of z must compute D, and separately, a disjunction of as many variables as there are sets in a
minimum cover of the original SUCCINCT SET COVER instance.

1.2 Outline.

In Section 2 we define general notation, and the variants of the problems we will be considering. In Section
3 we give the reductions – first a reduction showing that we can demand that the top-gate be an OR gate (or
an AND gate) in Subsection 3.1, and then the main reductions in Subsection 3.2. We conclude in Section 4
with some open problems.

2 Preliminaries

Given a Boolean formula F , we use |F | to mean the size of the formula F , measured by the number of
occurrences of variables in F . Formulas can include constants, but these are not counted toward the size.
We use F for the negation of the formula F . Similarly, for a variable x, x is the negation of x.

Restrictions. Given a function f : {true, false}n → {true, false} and a function ρ : [n]→ {true, false,
free}, we define the restriction of f to ρ, fρ to be the function which fixes the ith input to ρ(i) if ρ(i) is
not equal to free, and leaves it as an input otherwise. Similarly, if F is a formula for f , we define Fρ to
be the formula in which every instance of the ith input variable is replaced with ρ(i) if ρ(i) 6= free, and is
unchanged otherwise. Note that Fρ is a formula for fρ.

Weighted formulae. If the variables xi of some function f have associated weights w(xi), then the w-
weighted size of a formula for f is the sum of the weights of the variables occurring at the leaves (in their
multiplicity). The usual measure of formula size is the w-weighted size when w(xi) = 1 for all xi. Note
that, as usual, size counts the number of literals at the leaves, and not the (∨,∧,¬) gates.

Given a weight function w, we can take a formula F and create a formula F ′ which has minimum for-
mula size that is at least the minimum w-weighted formula size of F . Formula F ′ is obtained by substituting
x

(1)
i ∧ x

(2)
i ∧ · · · ∧ x

(w(xi))
i for every occurrence of xi in F . Note that by moving negations to the variable

level, we are substituting x(1)
i ∨ x

(2)
i ∨ · · · ∨ x

(w(x))
i for every occurrence of xi. We call F ′ the w-expanded

version of F . The following lemma demonstrates the usefulness of this transformation:

Lemma 2.1. Let F be a formula and w a weight function for F . Let F ′ be the w-expanded version of F .
Then the minimum size of a formula equivalent to F ′ is at least the minimum w-weighted size of a formula
equivalent to F .

Proof. Consider a minimum formula F̂ ′ equivalent to F ′. For each xi, let 1 ≤ ji ≤ w(xi) be the integer
for which x(ji)

i occurs least among the xi-leaves of F̂ ′. Consider the restriction ρ that for each i sets x(j)
i to

true for j 6= ji. By our choice of ji, |F̂ ′| is at least the w-weighted size of F̂ ′ρ. But the formula F̂ ′ρ clearly
is equivalent to F , so its w-weighted size is an upper bound on the minimum w-weighted size of a formula
equivalent to F .
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2.1 The problems

As mentioned in the introduction, we will reduce from the ΣP
2 -complete problem SUCCINCT SET COVER. It

will be convenient to work with a slightly modified version in which the goal is for the succinctly specified
sets to cover everything except the all true assignment.

Problem 2.1 (MODIFIED SUCCINCT SET COVER (MSSC)). Given a DNF formula D on variables

v1, v2, . . . , vm, x1, x2, . . . , xn

and an integer k, is there a subset I ⊆ {1, 2, . . . n} with |I| ≤ k and for which

D ∨
∨
i∈I

xi ≡

(
m∨
i=1

vi ∨
n∨
i=1

xi

)
?

It’s easy to see that this variant of SUCCINCT SET COVER is ΣP
2 -complete by reducing from SUCCINCT

SET COVER:

Theorem 2.2. MSSC is ΣP
2 -complete.

Proof. We are given an instance of SSC: a DNF D on variables

v1, v2, . . . , vm, x1, x2, . . . , xn

and an integer k. We produce the instance

D′ = D ∧

(
m∨
i=1

vi ∨
n∨
i=1

xi

)

(multiplied out into DNF) paired with the same integer k. Check in polynomial time whether D accepts the
all true assignment. If not, produce any negative instance of MSSC, as the SSC instance is negative.

Otherwise, if there exists I ⊆ [n] of size at most k for which D∨
∨
i∈I xi ≡ 1 then clearly D′ ∨

∨
i∈I xi

accepts everything except the all true assignment, and vice-versa, as we have already checked thatD accepts
the all true assignment.

Remark 1. In both SSC and MSSC, the instances produced by the reduction have the property that taking
I = {1, 2, . . . , n} is a feasible solution. This clearly holds for MSSC if it holds for SSC. To see that it holds
for SSC, refer to the reduction in [Uma99].

The central problem we are concerned with in this paper is:

Problem 2.2 (MINIMUM EQUIVALENT EXPRESSION (MEE)). Given a Boolean (∧,∨,¬)-formula F and
an integer k, is there an equivalent (∧,∨,¬)-formula of size at most k?

We also consider the constant-depth versions. When discussing constant-depth formulas, as usual, we
allow arbitrary fan-in AND and OR gates and we use the convention that all NOT gates occur at the variable
level.

Problem 2.3 (MINIMUM EQUIVALENT DEPTH-d EXPRESSION (MEEd)). Given a depth-d Boolean formula
F and an integer k, is there an equivalent depth-d formula of size at most k?
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While distributing the NOT gates to the variable level clearly does not affect formula size, it’s not as
clear that finding the minimum depth-d formula is equivalent to finding the minimum depth-d formula with
an OR gate at the root. The latter variant, defined below, will be easier to work with.

Problem 2.4 (MINIMUM EQUIVALENT DEPTH-d EXPRESSION WITH A TOP OR GATE (MEEd−OR)).
Given a Boolean formula F with a top OR gate and an integer k, is there an equivalent depth-d formula
with a top OR gate, of size at most k?

Containment of these problems in ΣP
2 is trivial and well-known. In Theorem 3.3 we reduce MEEd−OR

to MEEd, so that ΣP
2 -hardness for the latter follows from the ΣP

2 -hardness for the former. Using ≤m to
refer to many-one reductions and ≤tt to refer to truth table Turing reductions, the sequence of reductions
used in this paper to show hardness of MEEd is

SSC ≤m MSSC ≤tt MEEd−OR ≤m MEEd.

See Section 3.3 for the sequence of reductions to show hardness of MEE.

3 Main results

In this section we prove:

Theorem 3.1. For every d ≥ 3, the problem MEEd is ΣP
2 -complete under polynomial-time Turing reduc-

tions.

Theorem 3.2. The problem MEE is ΣP
2 -complete under polynomial-time Turing reductions.

These two theorems are proved via the reductions in Sections 3.1, 3.2, and 3.3. The first allows us to
restrict our attention to the MEEd−OR problem, rather than the general MEEd problem. This restriction
allows us to focus on the d ≥ 3 case, as d = 2 is simply DNF minimization, which was shown to be
ΣP

2 -complete in [Uma01].

3.1 Top OR gate vs. unrestricted top gate

Theorem 3.3. For every d ≥ 2, there is a polynomial-time reduction from MEEd−OR to MEEd.

Proof. Fix d ≥ 2. If every depth-d formula F has a minimum equivalent depth-d formula F ′ with an OR
gate at the root, then the two problems are equivalent, and the identity reduction suffices.

Otherwise there exists a formula F ∗ such that F ∗ has a smaller equivalent depth-d formula with an
AND at the root than the smallest equivalent depth-d formula with an OR at the root. Equivalently, F ∗ has
a smaller equivalent depth-d formula with an OR at the root than the smallest equivalent depth-d formula
with an AND at the root. Let G be a minimum depth-d formula for F ∗.

Now, given a depth-d formula F with a top OR gate and an integer k (which we may assume to be less
than |F |), we create |F | + 1 copies of G on disjoint variable sets (also disjoint from the variable set of F ).
Call these copies Gi. Our reduction produces the formula

F ′ = F ∨G1 ∨ · · · ∨G|F |+1 (2)

paired with the integer k′ = (|F |+ 1)|G|+ k.

5



If F has an equivalent depth-d formula with an OR at the root, of size at most k, then it is clear that F ′

has an equivalent depth-d formula of size at most k′.
If F does not have an equivalent depth-d formula with an OR gate at the root, of size at most k ≥ 0,

then we note that it cannot be a constant function. We wish to show that in this case F ′ does not have an
equivalent depth-d formula of size at most k′. Suppose for the purpose of contradiction that it did, and call
the equivalent formula F̂ ′. We claim that F̂ ′ must have an OR gate at the root. Note that G cannot be a
constant function. Therefore, for each i there is a restriction ρi that sets the variables of F so that F evaluates
to false, and sets the variables of Gj for j 6= i so that Gj evaluates to false while leaving the variables of Gi
free. The resulting formula F̂ ′ρi

is equivalent to Gi, and if F̂ ′ had an AND gate at the root, this would be a
depth-d formula for Gi with an AND gate at the root, which must have size at least |G|+ 1. This holds for
each i, and the Gi are on disjoint variable sets, so the total size of F̂ ′ must be at least (|F | + 1)(|G| + 1),
which is greater than k′ (since we assumed that k ≤ |F |).

Thus, F̂ ′ has size at most k′ and an OR gate at the root. Since the Gi and F are not constant functions,
and they are all on disjoint sets of variables, we can apply the restriction argument above to conclude that
(|F | + 1)|G| leaves must be used to account for the various Gi, and then at most k′ − (|F | + 1)|G| = k
are available to compute F . Thus there must be an equivalent formula for F with an OR gate at the root,
of size at most k (and this formula can be obtained by restricting the variables belonging to the Gi in F̂ ′ so
that each Gi becomes false). So we conclude that F has an equivalent depth-d formula with an OR gate at
the root of size at most k, a contradiction.

3.2 Main reduction

The following is a Turing reduction from MSSC to MEEd−OR. We describe the steps of a Turing Machine
with access to an oracle for MEEd−OR:

• We are given an instance of MSSC consistent with Remark 1: a DNF D on variables

v1, v2, . . . , vm, x1, x2, . . . , xn

and an integer k. Let w be the weight function with w(xi) = 1 for all i and w(vi) = n + 1 for all i,
and let D′ be the w-expanded version of D. Note that D′ has depth at most 3, as we are expanding a
DNF formula.

• We make O(log |D′|) calls to the oracle to find the size u of the smallest equivalent depth-d formula
with top OR gate for D′, using binary search.

• Define the formula E involving fresh variables yi and z as follows:

E = D ∨ [(x1 ∨ x2 ∨ · · · ∨ xn ∨ y1 ∨ · · · ∨ yu+n) ∧ z].

Let w′ be the weighting function with w′(xi) = 1 for all i, w′(vi) = n+ 1 for all i, w′(yi) = 1 for all
i and w′(z) = 2u+ k + n+ 1, and let F be the w′-expanded version of E. We will label the copies
of z used in the expanded version z1, z2, . . . , z2u+k+n+1. Note that F has only depth 3.

• We ask the oracle if F has an equivalent depth-d formula with top OR gate, of size at most 4u+ 2k+
2n+ 1. We will show that the answer is “yes” iff the original MSSC instance was a positive instance.
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Remark 2. Note that since this reduction utilizes logarithmically many adaptive oracle calls, it can be
transformed using standard techniques (see, e.g. [Pap94, Thm 17.7]) into a non-adaptive truth table Turing
reduction utilizing polynomially many oracle calls. This is a nonadaptive AC0 (or FO) reduction, so our
main results could also be stated as ΣP

2 ⊆ FO(MEE),FO(MEEd).

The remainder of this section is devoted to proving the following theorem:

Theorem 3.4. Let F̂ be a minimum equivalent depth-d formula with top OR gate for F . Then |F̂ | ≤
4u+ 2k + 2n+ 1 iff there exists I ⊆ {1, 2, . . . , n} with |I| ≤ k and and for which

D ∨
∨
i∈I

xi ≡

(
m∨
i=1

vi ∨
n∨
i=1

xi

)
.

As a point of reference, Figure 1 shows the “intended” form of a minimum equivalent depth-d formula
for F . Of course for one direction of the reduction we will need to show that a small formula must have this
form, which is a somewhat involved argument.

∨

D̂
∧

Z X

Figure 1: The desired form of an equivalent formula for F . Here D̂ is a minimum depth-d formula with top
OR gate equivalent to D′, Z =

∧2u+k+n+1
i=1 zi, and X is of the form

∨
i∈I xi ∨

∨u+n
i=1 yi.

In the backward (easy) direction, we claim that if the instance of MSSC is a positive instance, then there
is a depth-d formula equivalent to F , of the form pictured in Figure 1, and with size at most 4u+2k+2n+1.
Let D̂ be a depth-d formula with top OR gate equivalent to D′ of size u, and let I ⊆ {1, 2, . . . , n} be a set
of size at most k for which

D ∨
∨
i∈I

xi ≡

(
m∨
i=1

vi ∨
n∨
i=1

xi

)
,

(such a set I exists because the MSSC instance is a positive instance). Then

D̂ ∨

[(
2u+k+n+1∧

i=1

zi

)
∧

(∨
i∈I

xi ∨
u+n∨
i=1

yi

)]

is a depth-d formula equivalent to F of size 4u + 2k + 2n + 1. Furthermore, it is of the form pictured in
Figure 1.

In the other direction, we assume that the MSSC instance is a negative instance, and we wish to show
that there is no depth-d formula with top OR gate equivalent to F of size at most 4u+ 2k + 2n+ 1. Let F̂
be a minimum depth-d formula for F .
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We will derive from F̂ a minimum depth-d formula for F that is of the form pictured in Figure 1. We
prove this in the next three subsections. Note that if F̂ has size larger than 4u + 2k + 2n + 1, then we are
done; therefore we will assume the contrary in what follows.

3.2.1 The z variable.

First, we show that there is some i for which zi occurs exactly once in F̂ and that it does not occur negated.

Lemma 3.5. If a formula for F has size at most 4u+ 2k + 2n+ 1, then there is some i such that zi occurs
exactly once.

Proof. If the formula is of size at most 4u + 2k + 2n + 1 and yet contains two or more copies of each
zi, then this is a contradiction as the number of occurrences of zi variables alone is 2(2u + k + n + 1) =
4u+ 2k + 2n+ 2 > 4u+ 2k + 2n+ 1.

Thus, some zi must occur at most once. Now, since we are assuming that D came from a negative in-
stance of MSSC, we know thatD rejects some assignment to its variables other than the all-true assignment.
On the other hand E accepts this assignment when the z variable is true. This implies that E depends on z
and that F (the w′-expanded version of E) depends on each zi. So some zi occurs exactly once.

Fix an i for which zi occurs exactly once. Now, let ρ be the restriction that restricts all zj for j 6= i to
true , and leaves all other variables free. From now on we will be working with F̂ρ, which has only a single
z variable.

Lemma 3.6. Let f be the function corresponding to F̂ρ. Further, let ρ0 restrict zi to false , leaving all other
variables free and ρ1 restrict zi to true , leaving all other variables free. If zi appears negated in F̂ρ, then
fρ1 ⇒ fρ0 .

Proof. Consider any restriction σ that assigns all variables except zi to true or false and leaves zi free. (F̂ρ)σ
takes in the single input zi. Since there are no negations other than at the variable level, (F̂ρ)σ is monotone
in zi. Thus, fσ(true)⇒ fσ(false). Since this is true for all σ, fρ1 ⇒ fρ0 .

Now, if we substitute false for zi in F̂ρ, the function that this formula computes is equivalent to D′,
and if we substitute true , it accepts everything except the all true assignment to the x, y, and w-weighted v
variables. These both follow directly from the construction of F and the fact that D does not accept the all
true assignment. Defining f, ρ0, ρ1 as in Lemma 3.6 (and again using the fact that D comes from a negative
instance of MSSC) we have that fρ1 6⇒ fρ0 . Lemma 3.6 then tells us that zi occurs non-negated in the
formula F̂ρ.

3.2.2 Properties of F̂ρ.

In the remainder of the proof, we will use ALLTRUE as shorthand for the all-true assignment to the variables
of F̂ρ – namely, the x variables, y variables, the w′-expanded v variables, and zi. Similarly ALLTRUE
refers to the function that accepts every assignment to those variables except ALLTRUE. Here we define an
important term used in the upcoming proofs.

Definition 3.1 (Apogee). Let F be a depth-d formula with a top OR gate which contains exactly one copy
of the sub-formula G. We call F a G-apogee if there is no other depth-d formula F ′ ≡ F with a top OR
gate, for which the following properties hold:
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• F ′ contains exactly one copy of G.

• The one copy of G occurs at a higher level (closer to the top OR gate) in F ′ than in F .

• No variable occurs more often in F ′ than in F .

Intuitively, F is a G-apogee if it is not possible to rearrange it so that G is higher in the formula.

Note that for any depth-d formula F with a top OR gate, and with one copy of sub-formula G, there
exists a G-apogee F ′ equivalent to F with no variable occurring more often in F ′ than in F . Let F̂ ′ρ be a
zi-apogee equivalent to F̂ρ with size at most |F̂ρ|. Note that F̂ ′ρ has exactly one copy of zi, which is not
negated. For future reference, we record a few other useful properties of F̂ ′ρ:

Lemma 3.7. The following properties regarding F̂ ′ρ hold:

1. |F̂ ′ρ| ≤ |F̂ | − (2u+ k + n).

2. When zi is true, F̂ ′ρ is equivalent to the formula ALLTRUE with zi set to true .

3. When zi is false , F̂ ′ρ is equivalent to D′.

Proof. Property (1) follows from the observation in the proof of Lemma 3.5 that F depends on each zj , so
every zj must appear at least once in F̂ .

Property (2) follows because for formula E, when z is true, E accepts exactly those assignments with
at least one variable false. This follows from the construction of E and Remark 1. This property is pre-
served when the v variables are w′-expanded. The resulting function is the same as the one obtained by
w′-expanding z and then restricting via ρ, after replacing z with zi.

Property (3) follows from the definition of F and ρ.

3.2.3 The X subformula.

In this section we show (Lemma 3.9) that there is a minimum formula accepting at least all of the assign-
ments to the v, x and y variables not accepted by D′ and not accepting the all-true assignment of the form(∨

i∈I
xi ∨

u+n∨
i=1

yi

)

for some I . We will eventually use this to argue that zi’s sibling subformula in F̂ ′ρ has the intended form,
and in a technical part of Section 3.2.4.

The following general lemma will be useful.

Lemma 3.8. Let {t1, t2, . . . , tn} be a set of variables, and S a subset of {true, false}n. A smallest formula
accepting at least the assignments in S but not accepting the all true assignment is of the form

∨
i∈I ti for

some I ⊆ {1, 2, . . . , n}.

Proof. Let T be a formula accepting at least S and rejecting the all-true assignment. Suppose that T depends
on ` variables. Then |T | ≥ `. Furthermore, in each assignment accepted by T , one of these variables is
set to false , as T does not accept all-true. Therefore, if T depends on variables ti for i ∈ I , the formula
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T ′ =
∨
i∈I ti accepts at least everything that T accepts. Furthermore T ′ does not accept all-true and |T ′| =

` ≤ |T |.
Thus, given a minimum formula T that accepts at least S but not all-true, we can find another minimum

formula accepting at least S but not all-true which is of the desired form.

Applying the lemma in our setting yields:

Lemma 3.9. Let S be the subset of assignments to the y variables plus the variables of D′ (the w-expanded
v variables and the x variables) which are not accepted by D′ (ignoring the y variables). Then a minimum
formula accepting at least S but not the all-true assignment to these variables is of the form

∨
i∈I xi ∨∨u+n

i=1 yi for some I ⊆ {1, 2, . . . , n}.

Proof. By Lemma 3.8, we know that a minimum formula for this will be a disjunction of negated variables
(from among the x, y and w-expanded v variables). Note that for each i, S includes the assignment in which
yi is false , all the other y variables are true, and all the other variables are true, because D′ does not accept
the all-true assignment to its variables. Therefore, the disjunction must accept this assignment. On the other
hand, flipping yi to true in this assignment results in the all-true assignment that the disjunction must not
accept. Therefore the disjunction depends on each yi, so it must contain all of the y variables.

Now, we simply need to see that none of the w-expanded v variables appear. If some v(j)
i does appear

in the disjunction of negated variables, then it must be that D′ rejects some assignment in which v(j)
i is

false and every other variable in the disjunction is true (otherwise v(j)
i could be safely omitted). But then

by symmetry, D′ also rejects some assignment in which v(j′)
i is false and every variable in the disjunction is

true, for every j′ 6= j such that v(j′)
i is not in the disjunction. Thus for all j′, v(j′)

i must be in the disjunction
if v(j)

i is. So if a single v variable appears in the disjunction, then at least n+1 v variables appear (recall that
w(vi) = n+ 1 for all i). However, by Remark 1, we know that the disjunction of the n negated x variables
together with all of the negated y variables suffices. This is a smaller disjunction than any disjunction
involving v variables, which would need to include n+ 1 v variables (as argued above) together with all the
y variables.

We conclude that a minimum formula accepting at least S but not the all-true assignment is of the
claimed form.

3.2.4 Position of the z variable.

Finally, we show (Lemma 3.13) that zi occurs directly under a second-level AND gate in F̂ ′ρ. We begin with
two general lemmas

Lemma 3.10. LetA be a subformula of formulaG which has all negations pushed to the variable level, and
suppose formula B implies G. Then, the formula obtained by replacing A with A ∨B in G is equivalent to
G.

Proof. Because all of the negations have been pushed to the variable level, flipping the result of a non-input
gate from false to true can only change the output of the formula from false to true , and not the reverse.
Since we are replacing A with A∨B, this can only change the result of the top gate of A from false to true .
Furthermore, since B implies G, this can only occur when G is already true, and thus it will not change the
output.

Lemma 3.11. Let A be a subformula of formula G that implies G. Then, the formula G′ obtained by
replacing A with false in G, and then taking the disjunction of this new formula with A is equivalent to G.

10



Proof. In the case that A is true, then G must be true because A implies G. In this case G′ will also be true,
as A occurs directly beneath the top-level OR in G′. In the case that A is false, G′ is equivalent to G with A
replaced by false , so G′ has the same result as G in this case as well.

Note that the transformation in Lemma 3.11 does not increase the size of the formula, the number of
occurrences of any variable, nor its depth if G already has a top OR gate. We now describe how the above
general lemmas will be applied to F̂ ′ρ:

Lemma 3.12. Suppose that F̂ ′ρ has a subformula A∧ I as pictured in Figure 2. If I ∧ALLTRUE implies F̂ ′ρ
and I does not have a top AND gate, then either A ∧ I occurs at the second level or F̂ ′ρ is not an I-apogee.

∧

A I

Figure 2: The subformula under consideration in Lemma 3.12

Proof. By assumption I∧ALLTRUE implies F̂ ′ρ, and soA∧I∧ALLTRUE does as well. IfA∧I∧ALLTRUE
is equivalent to A ∧ I , then A ∧ I implies F̂ ′ρ. Then by Lemma 3.11, we can move A ∧ I to the second
level without changing the formula or increasing the number of occurrences of any variable. So either A∧ I
already occurred at the second level, or F̂ ′ρ is not an I-apogee.

Otherwise A ∧ I accepts ALLTRUE. Since A ∧ I accepts ALLTRUE, A must accept ALLTRUE, so
A ∨ALLTRUE is true. By Lemma 3.10 and the assumption that I ∧ALLTRUE implies F̂ ′ρ, we can replace
A ∧ I with

I ∧ (A ∨ (I ∧ ALLTRUE)). (3)

Note that if I is true, (3) reduces to A ∨ ALLTRUE, which is true, and if I is false, (3) is false. Thus, (3)
is equivalent to I , so we can replace A ∧ I with I , which places I higher in the formula (as I doesn’t have
a top AND gate, so the AND gate is not part of I and can be removed) without increasing the number of
occurrences of any variable, demonstrating that F̂ ′ρ is not an I-apogee.

Lemma 3.13. zi occurs directly under a second-level AND gate in F̂ ′ρ.

Proof. Recall that we have chosen F̂ ′ρ such that zi occurs exactly once and non-negated. So we proceed by
proving that zi occurs under a second-level AND. The proof is by case analysis. There are four possible
cases in which zi does not occur under a second-level AND in F̂ ′ρ: it can occur under the top-level OR gate,
under an AND gate below the second level, under an OR gate below the third level, or under an OR gate at
the third level. We will show that each of these cases results in a contradiction.

Case 1: The variable zi cannot occur directly under the top OR gate, as setting zi to true would result in
acceptance, and thus the formula would accept ALLTRUE, violating Lemma 3.7 (2).

11



∧

A zi

Figure 3: The portion of F̂ ′ρ containing zi if zi is under a low-level AND gate

Case 2: Suppose that zi occurs under an AND gate below the second level. Then consider the subformula
containing zi, as pictured in Figure 3.

Since zi ∧ ALLTRUE implies F̂ ′ρ (by Lemma 3.7(2)) and F̂ ′ρ is a zi-apogee, Lemma 3.12 (with I set
to zi) tells us that zi is under a second-level AND gate, a contradiction.

Case 3: Suppose that zi occurs under an OR gate below the third level. Then consider the subformula
containing zi, as pictured in Figure 4.

∧

A

zi B

∨

Figure 4: The portion of F̂ ′ρ containing zi if zi is under a low-level OR gate

We will show that (zi ∨ B) ∧ ALLTRUE implies F̂ ′ρ. We already know that zi ∧ ALLTRUE implies
F̂ ′ρ, so we only need to see that B ∧ ALLTRUE implies F̂ ′ρ. Now, (zi ∧ B) ∧ ALLTRUE implies
F̂ ′ρ because zi ∧ ALLTRUE does. And, since zi only occurs once in F̂ ′ρ, in disjunction with B,
(zi ∧B)∧ALLTRUE must also imply F̂ ′ρ, as flipping zi from true to false will not change the result
of any gate in the formula if B is already true. This is because setting B to true will satisfy the OR
gate that zi occurs under, and since zi only occurs once it cannot affect the result of any other gate.
Thus, B ∧ ALLTRUE implies F̂ ′ρ, as both (zi ∧B) ∧ ALLTRUE and (zi ∧B) ∧ ALLTRUE do.

Thus, since (zi∨B)∧ALLTRUE implies F̂ ′ρ, by Lemma 3.12, we know that either F̂ ′ρ is not a (zi∨B)-
apogee or A ∧ (zi ∨ B) occurs at the second level. A ∧ (zi ∨ B) can’t occur at the second level, as
this would place zi under a third-level OR gate, which is not the case we are examining. However, if
F̂ ′ρ is not a (zi ∨ B)-apogee, then there exists a formula F̂ ∗ρ ≡ F̂ ′ρ in which no variable occurs more
often than in F̂ ′ρ and zi ∨ B occurs at a higher level than in F̂ ′ρ. This would also place zi at a higher
level, contradicting the fact that F̂ ′ρ is a zi-apogee. This leaves us with Case 4 below.

Case 4: If zi occurs directly under a third-level OR gate, then the formula has the form in Figure 5.
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∨

A
∧

B
∨

zi C

Figure 5: The form of F̂ ′ρ when zi is under a 3rd-level OR gate

Case 4a: Suppose that C does not accept ALLTRUE. Then we claim that C implies F̂ ′ρ. Consider an
assignment accepted by zi ∧ C. Since C does not accept ALLTRUE, such an assignment must
have some variable false, and hence F̂ ′ρ accepts it (by Lemma 3.7 (2)). However, flipping zi to
false in this assignment cannot alter the output of C (since it does not contain zi) and therefore
the OR gate above C remains true, and no other gate values above it change, since zi occurs
only once in the formula. Thus F̂ ′ρ accepts this assignment as well. We conclude that zi ∧ C as
well as zi ∧ C imply F̂ ′ρ, and therefore C implies F̂ ′ρ.
Now, by Lemma 3.11, we can replace C with false and move C to the top-level OR gate. This
leaves zi alone under its OR gate, and so we can move it up one level so that it resides under the
second level AND gate, contradicting that F̂ ′ρ is a zi-apogee.

Case 4b: Suppose that C does accept ALLTRUE. Recall that D′ does not accept ALLTRUE. We
claim that C cannot accept any other assignment that D′ does not accept. Suppose for the
purpose of contradiction that it did, and let τ be an assignment to the variables of D′ other than
ALLTRUE that is accepted by C but not by D′. By Lemma 3.7 (3), when zi = false , F̂ ′ρ does
not accept τ , and by Lemma 3.7 (2), when zi = true , F̂ ′ρ does accept τ (since τ is not the all
true assignment). However, toggling zi in this assignment cannot alter the output of F̂ ′ρ, because
zi occurs only once, and under assignment τ , the subformula C already makes the OR above zi
true. This is a contradiction. Thus we know that C accepts at least everything not accepted by
D′, but not ALLTRUE, and then by Lemma 3.9, C has size at least u+ n.
Referring again to Figure 5, we see that when restricting zi to true in F̂ ′ρ, the formula reduces to
A∨B. By Lemma 3.7 (2), the resulting formula accepts everything except ALLTRUE. Therefore
A ∨B depends on every variable other than zi, and so every variable must appear at least once,
and their combined size must be at least u+ n from the y variables alone.
Adding up the sizes of A, B, C and zi, we have that |F̂ ′ρ| is at least (u + n) + (u + n) + 1 =
2u+ 2n+ 1. Applying Lemma 3.7 (1), we find that

|F̂ | ≥ (2u+ 2n+ 1) + (2u+ k + n) = 4u+ 3n+ k + 1.
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Since k < n (the MSSC instance is trivially a positive instance if k ≥ n) this quantity is strictly
greater than 4u+2k+2n+1, contradicting our original assumption that |F̂ | ≤ 4u+2k+2n+1.
We conclude that this sub-case cannot arise.

The only remaining case is that zi already occurs under a second-level AND, completing the proof.

3.2.5 Finishing up.

Lemma 3.14. There is a minimum depth-d formula with top OR gate equivalent to F , of the form pictured
in Figure 6.

∨

A
∧

Z B

Figure 6: The required form of a minimum depth-d formula with top OR gate equivalent to F .

Proof. By Lemma 3.13, there is a minimum depth-d formula with top OR gate equivalent to F̂ρ that is of
the form in Figure 6, but with the Z subformula replaced by zi. Replacing zi with

∧2u+k+n+1
j=1 zj , we obtain

a depth-d formula for F , of the form pictured in Figure 6, of size at most |F̂ρ|+ 2u+ k+n. By Lemma 3.7
(1), this quantity is a lower bound on the size of a minimum depth-d formula with top OR gate equivalent to
F , so it must be minimum.

Now we are finally able to argue that |F̂ | must be larger than 4u + 2k + 2n + 1. First, observe that
by Lemma 3.14, there is a depth-d formula equivalent to F of the form pictured in Figure 6 whose size is
the same as the size of F̂ . In this formula, when Z is set to false, the function simplifies to just A, and
by the definition of F , this must be equivalent to D′, and hence it must have size at least u. On the other
hand, when Z is set to true , the formula must accept every assignment in which at least one variable is set
to false . This means that B must accept everything not accepted by D′ except the all true assignment. By
Lemma 3.9, we know that we can assume B to be a disjunction of negated variables, and that it must have
size at least u+ n+ k + 1 (because the original MSSC instance was a negative instance). Adding the sizes
of A and B to the number of zi variables in Z, we have a formula of size at least 4u + 2k + 2n + 2. We
conclude that

|F̂ | ≥ 4u+ 2k + 2n+ 2 > 4u+ 2k + 2n+ 1

as required.
This completes the proof of Theorem 3.4.
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3.3 The unbounded depth case

The reduction to MEE is the same as the reduction in the previous section (3.2). We never used the depth-d
restriction in any of the arguments in that reduction; it was only mentioned in the context of ensuring that
various manipulations maintained depth-d, a constraint that is no longer operative for the unbounded depth
case. Furthermore, we can assume that an unbounded depth formula has a top OR gate, as a formula can be
placed beneath an OR gate without an increase in size. So the sequence of reductions becomes

SSC ≤m MSSC ≤tt MEE.

It is still convenient in the reduction to think of formulas with alternating levels of unbounded-fan-in
AND and OR gates, and here we simply note that discussing the size of such formulas is the same as
discussing the size of standard, fan-in-2 (∧,∨,¬)-formulas.

Proposition 3.15. If F is a formula with unbounded-fan-in AND and OR gates of size s, then there is an
equivalent formula F ′ with fan-in-2 AND and OR gates of size s. Similarly if there is a formula F with
fan-in-2 AND and OR gates of size s, there is an equivalent formula F ′ with unbounded-fan-in AND and
OR gates of size s.

So hardness holds for unlimited depth formulas regardless of whether fan-in is bounded.

4 Conclusions and open problems

The most natural open problems remaining are to give many-one reductions for the problems in this paper
(rather than Turing reductions), and to resolve the complexity of the circuit versions of the problems. Our
techniques here rely heavily on the fact that we are dealing with formulas rather than circuits.

Another important direction is to study the approximability of the problems in this paper. For the depth-2
case (DNF minimization) it is known that the problems are inapproximable to within very large (N ε) factors
[Uma99]. Our reductions are quite fragile and do not seem to give any hardness of approximation results
for these problems.

Finally, we note that the complexity of the ΠP
2 versions of all of these problems remain open. These

are problems of the form: given a Boolean circuit (of some specified form), is it a minimum circuit (of
the specified form). Even for DNF formulas, this problem is not known to be ΠP

2 -complete, although we
conjecture that it is complete for that class.
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