
CS 38 Introduction to Algorithms Spring 2014

Solution Set 7

Posted: June 3

If you have not yet turned in the Problem Set, you should not consult these solutions.

1. Our LP will have variables xi, one for each set, and the objective function is to maximize∑
i xi, subject to the following constraints:

•
∑

i:u∈Si
xi ≥ 1 for each u ∈ U , and

• 0 ≤ xi ≤ 1 for all i.

After solving this LP, our solution will be to include set i for which xi ≥ 1/k.

Let OPT be the value of the optimum set cover. Our solution is a set cover, because each
constraint is the sum of at most k of the xi, and thus at least one must be ≥ 1/k. Moreover,
its value is ∑

i:xi≥1/k

1 ≤ k
∑

i:xi≥1/k

xi ≤ k
∑
i

xi ≤ k ·OPT.

Where the last inequality uses the fact that the LP represents a relaxation of the set cover
problem, so its optimium can only be smaller than the true OPT. Thus we have obtained a
k-approximation as required.

2. Our LP will have variables xv, one for each vertex v and yu,v, one for each edge (u, v). If these
variables were integer 0/1 variables, we would want each yu,v to be 1 iff edge (u, v) crossed
the cut and the xv values to encode which vertices appear on which side of the cut. Our
objective function is thus to maximize

∑
(u,v)∈E yu,v, subject to the following constraints:

• yu,v ≤ xu + xv for all edges (u, v) ∈ E, and

• yu,v ≤ (2− xu − xv) for all edges (u, v) ∈ E, and

• 0 ≤ xv ≤ 1 for all v ∈ V , and

• 0 ≤ yu,v ≤ 1 for all (u, v) ∈ E.

We solve the LP and now round to an integeral solution as follows. For each vertex v, we flip
a coin rv that comes up heads with probability xv, and include vertex v on one side of the
cut if the coin flip comes up heads and the other if it comes up tails.

Let us compute the expected size of the cut obtained in this fashion:

E[size of cut] =
∑

(u,v)∈E
Pr[ru ̸= rv] =

∑
(u,v)∈E

xu(1− xv) + xv(1− xu).

We now claim that

xu(1− xv) + xv(1− xu) ≥ 1/2 ·min{xu + xv, 2− xu − xv}.

7-1

7-2

We have several cases: if xu, xv ≥ 1/2, then

xu(1− xv) + xv(1− xu) ≥ 1/2 · (2− xu − xv).

If xu, xv ≤ 1/2, then
xu(1− xv) + xv(1− xu) ≥ 1/2 · (xu + xv).

Otherwise, we have xu ≥ 1/2 and xv ≤ 1/2 (and the other case when they are reversed is
symmetric). We observe that min{xu + xv, 2− xu − xv} ≤ 1, and that

xu(1− xv) + xv(1− xu) = xu(1− 2xv) + xv

is minimized when xu = 1/2 and xv = 0 (since 1 − 2xv ≥ 0, we should always minimize xu,
and then once xu = 1/2 it is best to set xv = 0). Thus

xu(1− xv) + xv(1− xu) ≥ 1/2 = 1/2 · 1 ≥ 1/2 ·min{xu + xv, 2− xu − xv}.

as desired.

Note also that the optimum value of the LP satisfies yu,v = min{xu + xv, 2− xu − xv} since
there is nothing preventing us from increasing yu,v until one of its two constraints are tight.
If OPT denotes the optimum size of a cut, we have

E[size of cut] =
∑

(u,v)∈E
xu(1− xv) + xv(1− xu) ≥ 1/2 ·

∑
(u,v)∈E

min{xu + xv, 2− xu − xv}

= 1/2 ·
∑

(u,v)∈E
yu,v ≥ 1/2 ·OPT.

3. (a) We simply run through the edges of the graph in the order they appear in the adjacency
list. We maintain a bit for each vertex indicating whether one of its incident edges
belongs to the matching so far. Each time we encounter a new edge, we check the bits
associated with the two endpoints. If neither are set, we add the edge, and set both
bits, otherwise, we skip the edge. This required constant work per edge, and so it runs
in time O(E).

(b) Observe that if M is a maximal matching, then its endpoints constitute a vertex cover
(for if there was an edge not touched by this set of vertices, we could have added it to
M). Thus there exists a vertex cover of cardinality twice the number of edges in M . And
if v is the cardinality of the minimum vertex cover then 2|M | ≥ v. At the same time we
claim v is an upper bound on the cardinality of a maximum matching. Since each vertex
in a vertex cover can touch only one edge of a matching, the maximum matching can
be no larger than v. We conclude that 2|M | is at least the cardinality of a maximum
matching, as required.

4. Set A =
∑

i ai. Observe that the number of bins used must be at least ⌈A⌉. Thus OPT≥ A.

We claim that our approximation algorithm fills all but the possibly one bin at least to 1/2
capacity. For if bin i < j are both filled to at most 1/2 capacity, at the point that the first
item was placed in j, it should have been placed in bin i (by our “first-fit” rule, and since its
value is certainly at most 1/2).

7-3

Thus if the algorithm uses k bins, as we have noted all but one uses more than 1/2 of its
capacity, and so we have A > 1/2(k − 1). We conclude that

k − 1 < 2A ≤ 2 ·OPT

Since both k and OPT are integers, the strict inequality implies k ≤ 2 ·OPT , as required.

