
CS 38 Introduction to Algorithms Spring 2014

Solution Set 5

Posted: May 22

If you have not yet turned in the Problem Set, you should not consult these solutions.

1. (a) We have a variable xe in our LP for each edge in the flow network. The objective function
is

∑
e exiting s xe and the constraints are

•
∑

e entering v xe −
∑

e exiting v xe = 0, for all v except s and t,

•
∑

e incident to v xe ≤ d(v), for all v, and

• 0 ≤ xe ≤ c(e), for all e.

This is the standard LP formulation of max-flow, with additional constraints representing
the vertex-limiting feature.

(b) We have a variable xe in our LP for each edge in the flow network. The objective function
is

∑
e exiting s 2xe − xe∗ and the constraints are

•
∑

e entering v xe −
∑

e exiting v xe = 0, for all v except s and t,

• 0 ≤ xe ≤ c(e), for all e.

This is the standard LP formulation of max-flow, but the objective function is non-
standard. We claim that the objective function is maximized when f =

∑
e exiting s xe

equals the max-flow value, and subject to that, xe∗ is minimized. Let fmax be the
maximum flow value achievable. Suppose f < fmax. Then by Ford-Fulkerson, we can
add ∆ = fmax − f units of flow, and this increases the flow across edge e∗ by at most ∆
units of flow. So the net change in the objective function is +2∆−∆ which is positive, so
it must be that f = fmax. Then it is clear that subject to that constraint, the objective
function is maximized when xe∗ is minimized.

2. (a) We have a variable xu,v for each edge in the bipartite graph G = (V,U,E). If w(u, v)
are the edge weights, the objective function is

∑
u, vw(u, v)xu,v. We have constraints:

• 0 ≤ xu,v ≤ 1 for all u, v,

•
∑

u xu,v = 1 for all v,

•
∑

v xu,v = 1 for all u,

In other words, we require that the variables xu,v are 0/1 depending on whether edge
u, v is included in the matching or not. We also require that every vertex on the left is
matched (and no vertex has more than one incident edge in the matching) and similarly
for the vertices on the right. We observe that the xu,v ≤ 1 constraints are redundant,
since every xu,v is involved in one of the other constraints that assert that the sum of
several variables equals 1, and all variables are non-negative. We need this observation
for the constraints to be in standard form so we can argue about total unimodularity.

Now, we argue that the constraint matrix is totally unimodular. Observe that every
column in the constraint matrix contains exactly two ones (since each xu,v appears in

5-1



5-2

exactly exactly two constraints), and in fact by reordering rows (which doesn’t affect
total-unimodularity), we can assume that one such one is in an odd row and the other
is in an even row.

We claim that any square submatrix of such a matrix has determinant 0, 1, or −1. It
is clear that any submatrix has at most two 1’s per columns, and if there are two 1’s,
one is in an even row and the other is in an odd row. The proof is by induction on the
size of the submatrix. If it is 1×1, it clearly has determinant 1 or 0. Now assume the
claim holds for i− 1× i− 1 matrices. Consider any i× i submatrix. If it has a column
of all zeros, its determinant is zero and we are done. If it has a column with a single
one in it, then we can expand the determinant along that column and find that it equals
±1 times the determinant of an i− 1× i− 1 submatrix, which is ±1 or 0 by induction.
Otherwise every column has two ones in it, one in an odd row and the other in an even
row. Consider multiplying on the left by the row vector with 1’s in the corresponding
odd coordinates and −1’s in the corresponding even coordinates. The result is the zero
vector, so the matrix is singular and the determinant is zero. This concludes the proof
of the claim.

(b) We have a variable xi,j for each pair of i-th storage lot and j-th showroom, and the ob-
jective function is

∑
i, i− ci,jxi,j (since we want to minimize cost). We have constraints:

•
∑

j xi,j ≤ ai for all i,

•
∑

i xi,j ≥ bj for all j, and

• 0 ≤ xi,j for all i, j

The first set of constraints assert that the total outflow from the i-th storage lot does
not exceed the supply and the second set of constraints assert that the total inflow to
the j-th showroom is at least the demand bj for that showroom. To get this LP into
standard form, we’ll need slack variables si and tj , and the constraints become:

•
∑

j xi,j + si = ai for all i,

•
∑

i xi,j − tj = bj for all j,

• 0 ≤ xi,j for all i, j,

• 0 ≤ si for all i, and

• 0 ≤ tj for all j

Now, we argue that the constraint matrix is totally unimodular. The proof is similar to
the previous part. Observe that every column in the constraint matrix contains exactly
two ones (since each xi,j appears in exactly exactly two constraints) OR it contains
exactly one 1 or exactly one −1 (if it corresponds to one of the slack variables. Again,
by reordering rows (which doesn’t affect total-unimodularity), we can assume that every
column with two ones, has one such one in an odd row and the other in an even row.

We claim that any square submatrix of such a matrix has determinant 0, 1, or −1. The
proof is by induction on the size of the submatrix. If it is 1×1, it clearly has determinant
±1 or 0. Now assume the claim holds for i − 1 × i − 1 matrices. Consider any i × i
submatrix. If it has a column of all zeros, its determinant is zero and we are done. If it
has a column with a single 1 or −1 in it, then we can expand the determinant along that
column and find that it equals ±1 times the determinant of an i− 1× i− 1 submatrix,
which is ±1 or 0 by induction. Otherwise every column has two ones in it, one in an



5-3

odd row and the other in an even row. Consider multiplying on the left by the row
vector with 1’s in the corresponding odd coordinates and −1’s in the corresponding even
coordinates. The result is the zero vector, so the matrix is singular and the determinant
is zero. This concludes the proof of the claim.

3. (a) Given distributions p and q, consider the quantitiesQj =
∑

i piM [i, j] and Pi =
∑

j qjM [i, j],
and let Qmax = maxj Qj and Pmax = maxi Pi. We claim that p and q represent a Nash
equilibrium iff Qj = Qmax for all j ∈ T and Pi = Pmax for all i ∈ S.

Suppose for some j ∈ T we have Qj < Qmax, and let j∗ be such that Qj = Qmax. Then
the column player’s expected payoff can be improved by shifting the probability from pj
to pj∗ . Similarly, if for some i ∈ S we have Pi < Pmax, and i∗ is such that Pi = Pmax,
then the row player’s expected payoff can be improved by shifting the probability from
qi to qi∗ . This proves the forward direction (via the contrapositive).

Now suppose we have Qj = Qmax for all j ∈ T and Pi = Pmax for all i ∈ S. Any
mixed strategy p′ for the row-player achieves an expected payoff that is some convex
combination of the Qj , and thus it can never be larger than Qmax, which is achieved
by p. Similarly any mixed strategy q′ for the column-player achieves an expected payoff
that is some convex combination of the Pi, and thus it can never be larger than Pmax,
which is achieved by q. Thus p, q represent a Nash equilibrium.

Given this characterization, we can produce an LP. The objective function is just 1 (i.e.
there is no optimization necessary; we are just interested in a feasible solution). The
variables will be the pi and qj , P and Q, and we have constraints:

•
∑

i piM [i, j] ≤ Q for all j,

•
∑

j qjM [i, j] ≤ P for all i,

•
∑

i piM [i, j] = Q for all j ∈ T ,

•
∑

j qjM [i, j] = P for all i ∈ S,

• 0 ≤ pi, qj , P,Q for all i, j

In any feasible solution to this LP, the variables P and Q equal Qmax and Pmax, re-
spectively. By the above characterization, any feasible solution to this LP yields a Nash
equilibrium p, q. Since LPs can be solved in polynomial time, this takes only polynomial
time given S, T .

(b) We simply enumerate over all subsets S, T . This takes 22n time. For each pair, we solve
the LP from the previous part. We can check if the solution satisfies the characterization
from that part in polynomial time as well. If we obtain a solution (which is guaranteed
since Nash equilibria always exist, although you were not expected to know that), we
output it and halt. The overall running time is O(22n) · poly(n) as required.


