
CS 38 Introduction to Algorithms Spring 2014

Solution Set 3

Posted: April 24

If you have not yet turned in the Problem Set, you should not consult these solutions.

1. We insert n elements; at this point the root list contains these n singleton nodes (and their
key values do not matter to the argument below). Now, we perform an extract-min. This
removes the node with the minimum key value and begins the consolidation process from left
to right. Let T0 be the rooted tree with a singleton node; let Ti be the rooted tree formed by
linking Ti−1 to another Ti−1’s root. Note that Ti has 2

i nodes and rank i.

We claim that after processing 2i singleton nodes from left the right, these nodes are in a
single heap-ordered tree with the shape Ti, provided the only other trees in the root-list are
of shape Tj for j > i. The proof is by induction on i. Clearly it holds for i = 0. By induction,
it holds for i− 1 so after processing the first half of the nodes, they all belong to a single tree
with shape Ti−1. The next half of the nodes are all singletons, and so applying the induction
hypothesis to them, we find that we don’t form a tree with rank at least i− 1 until the last
one is processed. Immediately after processing that node, we have created the second rank
i− 1 tree (of shape Ti−1), so we link it to the first, and this produces the Ti-shaped tree we
claimed. We conclude that after adding n nodes, there is a single tree in the root-list of shape
Tk and then a final extract-min at this point has cost at least the number of children of
the root of Tk, which is the rank, which is k = log2 n.

2. Our recursive algorithm returns the count together with a sorted list.

We split the list into two sublists of n/2 elements each, and count the inversions recursively
in each half (the base case, of two elements, is easy to handle in constant time). When the
two recursive calls return, we have two sorted lists, one for each hald.

Now we must add the inversions that straddle the boundary. These are the ai, aj pairs with
i ∈ {1, 2, . . . , n/2} and j ∈ {n/2+1, . . . , n} and ai > aj . We process the two lists as we would
for mergesort. If the two elements we are currently comparing are ai and aj and ai ≤ aj , then
we simple advance the pointer on the smaller one. If the two elements we are comparing are
ai and aj and we have ai > aj , then we have as many inversions as there are elements after
ai in that sorted list (since all of those are greater than aj and they all lie in the first list,
while aj lies in the second list). We continue in this fashion until we have scanned through
both lists (exactly in the order we would have for the merge phase of mergesort). As we go
we copy the elements in order so that we can indeed return a merged sorted list, in addition
to the total number of inversions crossing the boundary.

The running time recurrence is T (2) = O(1) and T (n) = 2T (n/2) + O(n) so the overall
running time is O(n log n).

3. Let us call the matrix whose rows and columns are indexed by n bit strings and whose a, b

entry is (−1)
∑

i
aibi , Mn.

3-1



3-2

If we order the rows in lexicographic order (so the first half are labeled with i that begins
with 0, and the second half are labeled with i that begins with 1), and the same for the
columns, we find that the lower right sub-matrix of size N/2×N/2 is simply −1Mn−1 while
the other three submatrices are Mn−1. Thus we can compute the matrix-vector product Mnx
by computing u = Mn−1x1 and v = Mn−1x2, where x1 and x2 are the first and second halves
of the vector x. Then the result vector has as its first half u+ v and as its second half u− v.

The running time recurrence is T (1) = O(1) and T (N) = 2T (N/2) + O(N) so the overall
running time is O(N logN) as required.

4. We show how to multiply a vector b by a Toeplitz matrix in O(n log n) time and then compute
the full matrix-matrix product by doing this n times.

Consider the n× n Toeplitz matrix M described by a0, a1, . . . , an−1, an, . . . , an−2, and define
the polynomial A(X) =

∑
i aiX

i. Define the polynomial B(X) =
∑

i biX
i.

Observe that the first entry of the product Mb is

an−1bn−1 + anbn−2 + . . .+ a2n−2b0

and this is exactly the coefficient on X2n−2 in the product polynomial A(X)B(X). Similarly,
the second entry of the product Mb is

an−2bn1 + an−1bn−2 + . . .+ a2n−3b0

and this is the coefficient on X2n−3 in the product polynomial. And so on. Thus we can
read off the product Mb from the coefficients of the product polynomials A(X)B(X). This
gives the promised O(n log n) algorithm for computing the product of a Toeplitz matrix with
a vector.

5. (a) Let Ai,j(X) be the polynomial
∏j

k=i(X − ak). We compute f(X) mod A0,n/2−1(X) and
f(X) mod An/2,n−1(X) which yield two polynomials f1(X) and f2(X), both of degree
n/2− 1. Note that by the second property in the hint f1(X) mod (X − ai) = f(X) mod
(X − ai), for i ∈ {0, . . . , n/2 − 1}. And by the first property in the hint this value
is f(ai). A similar statement holds with respect to fi and i ∈ {n/2, . . . , n − 1}. We
recursively solve these two problems of half the size, and report the results, which are
the evaluations of f(X) and a0, a1, . . . , an−1 as required. The base case is when n = 1
and we just return f(a0) in constant time.

We just need to have the interval polynomials Aij(X) available for the various recursive
calls. We can do this bottom-up by computing Ai,i(X) for all i, and then Ai,i+1 for even
i, and then products of pairs of these polynomials, and then products of pairs of the next
ones, and so on. The overall running time can be bounded as follows. At each level i (with
i = 1 being the bottom layer), there are n/2i products of polynomials being computed,
each of degree 2i−1. Thus at each layer the time spent is O(n/2i)·O(2i−1(i−1)) = O(in),
and i ranges from 1 to log n. The overall running time for this part is thus O(n log2 n).

Then the recursive procedure above satisfies the recurrence: T (1) = 0(1) and T (n) =
2T (n/2)+O(n log n) (the O(n log n) accounts for the two remainder computations before
the recursive calls.

Overall, we have running time O(n log2 n) as the solution to this recurrence (we saw that
in class), and also this is the running time of the overall solution.



3-3

(b) As suggested we compute the polynomial f(X) =
∏L=

√
M−1

i=0 (X − i) by repeated poly-
nomial multiplication: first we compute L/2 products of pairs of linear factors, then
L/4 products of pairs of these degree 2 polynomials, then L/8 products of these degree 4
polynomials, etc... The overall running time is L/2i+1 ·O(2ii) at level i, and i ranges from
0 to O(logL). The overall running time is thus at most O(L log2 L) = O(

√
M log2M).

Now, we use the previous part to evaluate f(X) at the values
√
M, 2

√
M, . . . ,

√
M ·

√
M .

Note that the evaluation at i
√
M equals

i
√
M∏

j=(i−1)
√
M+1

j (mod N).

Now we take the product of all of these evaluations to get
∏M

j=1 j (mod N) = M !

(mod N). The running time is O(
√
M log2M) when we apply the previous part, and an

additional (
√
M) multiplications for an overall O(

√
M log2M) running time as required.

(c) All we need to do is take the GCD of the integer M ! mod N that we computed in the
previous part, and N itself. If N has a factor other than 1 that is at most M , then this
will be a common factor of M ! and N other than 1, so the GCD will return an answer
other than 1 (using the fact that GCD(x, y) = GCD(x mod y, y). Otherwise, if N ’s only
factor that are at most M is 1, then the GCD will return 1, using the same fact.


