
CS 38 Introduction to Algorithms Spring 2014

Solution Set 2

Posted: April 22

If you have not yet turned in the Problem Set, you should not consult these solutions.

1. (a) Assume without loss of generality that the ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓn. Consider the full binary
tree of height h = ℓn. Partition the 2h leaf nodes (considered in the natural order
from left to right) into blocks of size 2h−ℓ1 , 2h−ℓ2 , . . . , 2h−ℓn . The sum of these sizes is
2h ·2−(ℓ1+ℓ2+···+ℓn) ≤ 2h by assumption. Now remove the subtree whose leaves constitute
the first block, then the subtree whose nodes constitute the second block, and so on.
The roots of theses subtrees have depths ℓ1, ℓ2, . . . , ℓn as desired.

(b) Set ri = ⌊log2(1/pi)⌋, and note that
∑

i 2
−ri ≤

∑
i pi = 1 since p is a probability

distribution. By part (a) there is a prefix-free encoding scheme with lengths ri. Since
the ℓi represent the lengths of an optimal prefix-free encoding scheme, we have∑

i

ℓipi ≤
∑
i

ripi =
∑
i

⌊log2(1/pi)⌋pi ≤
∑
i

(log2(1/pi) + 1)pi = H(p) + 1,

as required.

2. (a) For both the graphic and matric matroid, the first two axioms clearly hold. We focus
on the third property, sometimes called the exchange property.

For the graphic matroid, consider two forests F1 and F2, with |F1| < |F2|. We claim
there is an edge in F2 between two distinct connected components of F1. Suppose for
the purpose of contradiction that each connected component of F2 is contained in a
connected component of F1. Now F1 has tree on each of its connected components,
which has the maximum number of edges for an acyclic subgraph on that component.
So F2 has at most as many edges as F1 in each connected component of F1, which implies
|F2| ≤ |F1|, a contradiction. Thus we can add an edge of F2 to F1 while maintaining
independence, as required.

For the matric matroid, consider two subsets of columns, C1 and C2, with k = |C1| <
|C2|. We must have |C1| strictly less than the column-rank of the matrix, since C2 is
larger and independent. Now if every column vector in C2 is contained in the span
of C1, then C2 would not be independent (we cannot have more than k independent
vectors in the span of a k-dimensional subspace). Adding this vector to C1 maintains
independence, as required.

(b) We sort the elements of the universe E in order of decreasing weight in O(|E| log |E|)
time, and we begin adding the elements in this order, only skipping over an element
when we find that adding it to the set so far yield a set that is not independent. This
clearly has the required running time. Now consider the sequence of sets

∅ = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ An = A

2-1

2-2

obtained as the algorithm considers the n elements of E in order of decreasing weight.
We claim that for all i, Ai is contained in some maximum-weight independent set Bi for
which Bi\Ai is contained in elements i+1, i+2, . . . , n (the elements not yet considered).

This holds for A0 by taking B0 to be any maximum weight independent set.

Now suppose it holds for i−1, and consider Ai, which is formed from Ai−1 by considering
the i-th element. If the i-th element is not added, then Ai−1 ∪ {i} is not independent,
and then since Ai−1 ⊆ Bi−1 we find that Bi−1 cannot include i (if it did, then by axiom
2, we could remove elements of Bi−1 until it comprised just Ai−1 ∪ {i}. So in this case
we can take Bi = Bi−1. Otherwise, the i-th element is added. If Bi−1 contains i, then
we can take Bi = Bi−1. If not, then by repeated application of axiom 3 to Ai and basis
Bi−1, we can extend Ai to a basis B using elements of Bi−1. This process adds all but
one element of Bi−1, call it j, so we have B = Bi−1 − {j} + {i}. Since Bi−1 \ Ai−1

contains only elements from {i+1, . . . , n}, the weight of element j is no larger than that
that of element i. Thus the weight of B is at least as large as the weight of Bi−1, which
was a maximum-weight independent set. We can then take Bi = B.

We conclude that An ⊆ Bn where Bn is a maximum-weight independent set, and because
An is as well, we have An = Bn, which completes the proof.

(c) The first two axioms are obvious. For the third axiom, consider two independent sets A
and B in the dual, with |A| < |B|. Then there is a basis X of the original matroid that
is disjoint from B. There is also a basis Y of the original matroid disjoint from A such
that

X \A ⊆ Y

since we can augment X \ A with elements of a basis disjoint from A. We claim that
B \A contains an element not in Y . In this case we can add this element to A and the
resulting set is still disjoint from Y , and therefore is an independent set in the dual as
required. To verify the claim, observe that if it fails, then we can compute |X| as

|X ∩A|+ |X \A| ≤ |A \B|+ |X \A| < |B \A|+ |X \A| ≤ |Y |

where the first inequality holds because X and B are disjoint, and the second inequality
holds because |A| < |B|, and the third inequality holds because we are assuming B \ A
is contained in Y and moreover B and X are disjoint. This contradicts that X and Y
could both be basis (since they have different cardinalities).

(d) Clearly the first two axioms hold; for the 3rd, consider A,B both of cardinality at most
k, for which |A| < |B|. Then the 3rd axiom holds for these sets, and so Ik is a matroid
as required.

3. (a) We already argued that the graphic matroid is indeed a matroid. If we are the weights
for each edge e, then we assign to element e in the matroid, the weight L−we, for L equal
to the maximum weight among all edges. Since every basis has the same cardinality k,
we have that the weight of any maximum-weight basis B, equals kL−

∑
e∈B we, which

is maximized when B is a basis minimizing
∑

e∈B we, as desired.

(b) The first two axioms are trivial to verify. Consider two independent sets A,B with
|A| < |B|. If A contains no cycle, then adding any edge of B created at most one cycle,

2-3

so the axiom holds. If A contains a cycle with an edge e not in B, then we can remove
edge e from A and an edge on a cycle in B (if there is one), resulting in A′ and B′,
with |A′| ≤ |B′| and both A′ and B′ being forests. As we know from the fact that the
graphic matroid is a matroid, we can add an edge of B′ to A′ without creating a cycle.
Then adding e back creates at most one cycle, and we are done. The last remaining
case is that A contains a cycle that is completely contained in B. In this case consider
removing an edge e from the cycle from both A and B, and applying the analysis of the
graphic matroid to the resulting sets A′ and B′. We find that there is an edge of B′

that can be added to A′, that connects two distinct components. Since only one of these
components could have contained the cycle, we can create only one cycle when adding
back edge e. Thus the third axiom holds.

(c) Let I be the dual of the graphic matroid on the underlying graph G. The bases of this
matroid contain exactly the maximum sets of edges that can be removed from G while
leaving it connected (since they are complements of spanning trees). Then Ik has bases
which are exactly the sets of k edges that can be removed without disconnecting G, as
required.

4. We perform a DFS traversal of the tree, starting at the root. Each time we finish (not
discover) a vertex v, we perform a union with its parent, and “name” the resulting set in
the union-find data structure by the parent. This maintains the invariant that at the time
subtree T with parent w is finished, all of its nodes are in a single set in the union-find data
structure, named w.

Consider two nodes (u, v) whose least common ancestor is node w, and suppose that u’s
subtree is explored first. Then at the point that we discover v, the set in the union-find data
structure containing v is the one named by w. So, as we discover each vertex v we see if it
belongs to any pairs in the input. If its “partner” u has been finished, we output the name of
the set resulting from a find on u. As we have argued this will be the least common ancestor
of the pair.

To support this last part, we should store the pairs as an array of linked lists, with element
u of the array containing a linked list of all nodes v for which the pair (u, v) is in the input
list of pairs. We can easily produce this structure in linear time by scanning the list of pairs
once. Then, observe that the algorithm only examines v’s list once when it discovers v, so
the overall time for these checks is linear in m.

Finally, we perform n make-set operations (one for each vertex), and n union operations
(each time we finish a vertex), and m find operations, once for each pair in the input list.
The resulting cost using the union-find data structure is O((m + n) log∗ n), and all other
operations cost O(m+ n) in the aggregate.

