
CS 38 Introduction to Algorithms Spring 2014

Final Exam Solutions

Posted: June 10

If you have not turned in the final, obviously you should not consult these solutions.

1. As in the greedy approximation algorithm for set cover, we repeatedly pick the set that covers
the largest number of remaining uncovered items, until we’ve selected k sets. Let U ′ ⊆ U be
a subset of maximum size that can be covered by k sets.

Let xi be the number of elements covered after i rounds, and let yi = |U ′| − xi. We note that
x0 = 0 and y0 = |U ′| = OPT .

We claim that yi ≤ (1 − 1/k)iOPT . The proof is by induction on i. Clearly it holds for
i = 0. Now in the i-th step, there are at least yi−1 elements of U ′ that remain uncovered,
and yet k sets cover all of U ′. Thus there is some set that covers at least 1/k fraction of the
remaining elements. Thus in round i we cover at least 1/k of the yi−1 remaining elements,
and so yi ≤ (1− 1/k)yi−1 which by induction yields yi ≤ (1− 1/k)iOPT .

Using the suggested inequality, we have that yk ≤ OPT/e, and because xk = OPT − yk we
find that xk ≥ (1 − 1/e)OPT . In other words, we achieve coverage of OPT/(e/(e − 1)), as
required.

2. We pick an arbitrary node r as the root, and perform a DFS from r. We will fill in the
dynamic programming table as we finish processing each vertex in this order (this ensures
that all children are processed before the parent).

Define M0[u] to be the size of the maximum matching of the subtree rooted at u in which u
is not matched, and M1[u] to be the size of the maximum matching of the subtree rooted at
u in which u is matched. We observe that

M0[u] =
∑

children v of u

max(M0[v],M1[v])

since u is to be unmatched, so we just form the best possible matching at each subtree below
u. And,

M1[u] = max
children v of u

M0(v) +
∑

children v′ of u,v′ ̸=v

max(M0[v],M1[v]),

since we must choose one child v of u to match to u, and then v cannot be matched in its
subtree, and the remaining subtrees are matched in the best possible way as above.

We initialize M [v, 0] = M [v, 1] = 0 for leaves v and then fill in the table in post-order via the
DFS as described above. At each node, we need to do work proportional to the number of
children. Summing through the entire tree, we find that the total work in O(E) as required.
The size of the maximum matching overall is the maximum of M0[r] and M1[r].

0-1

0-2

To actually report the matching, we can store an extra value at each node u saying which of
M0[u] or M1[u] was greater, and if it was M1[u], which of the children v we chose to match
to u. With one further DFS, we can then traverse the tree and output those edges selected
by the optimum matching.

3. In linear time, we can compute Ai,n/2 for i = 1, 2, . . . , n/2 and An/2,j for j = n/2, n/2 +
1, . . . , n. We work out from the middle, so once we have computed Ai,n/2 we only need to
add to it ai−1 to obtain Ai−1,n/2, and so on. As we produce these sums, we keep track of the
maximum in each sequence; i.e., the i∗ for which Ai∗,n/2 is maximum among Ai,n/2 and the
j∗ for which An/2,j∗ is maximum among An/2,j .

Now, the optimum subsequence is either contained in the left half entirely, or in the right half
entirely, or it straddles the middle. Each of the first two possibilities leads to a recursive call
on a sequence half as long. The maximum subsequence that straddles the middle is clearly
Ai∗,j∗ which we have already computed.

If T (n) is the number of operations to solve the problem on an input sequence of n integers,
we obtain the recurrence: T (1) = O(1) and

T (n) = 2T (n/2) +O(n)

which has as its solution T (n) = O(n log n) as required.

4. (a) The constraint matrix has all 0, 1,−1 entries as is necessary for total unimodularity. The
proof is by induction on the size of the submatrix. Consider an i× i square submatrix.
If it involves the row associated with constraint ys = 1 then it has at most one 1 in
that row, and we can reduce to the i− 1× i− 1 case not involving that row (either by
expanding around that 1 or finding that the row has all zeros and so the determinant
is 0). The same holds for submatrices that include the row associated with constraint
yt = 0. The same argument also holds for submatrices that include the column associated
with variable xe, as this has exactly one 1 in it. So, the only case left is that we have a
submatrix of the matrix whose columns are associated with the yv and whose rows are
associated with first set of constraints, one for each edge e. This matrix has a 1 in entry
(e, v) iff edge e enters vertex v and a −1 in entry (e, v) iff edge e leaves vertex v. Thus
there are at most two non-zero entries per row. Now if our submatrix has a row with
zero or 1 non-zeros, then we can reduce to the i − 1 × i − 1 case as before. Otherwise,
there are exactly two non-zeros in each row, since in a given row, there is a +1 for edge
e = (u, v) entering v and a −1 for edge e leaving u (if either of these were missing, we
wouldn’t have two non-zeros in that row). In this case if we add all the rows of the
submatrix, we get the zero vector, which implies it is singular, and has determinant 0.

We conclude that every square submatrix has determinant 0, 1 or −1 and so the con-
straint matrix is totally unimodular, as required.

(b) We make the following observations about the structure of an optimal solution to the
LP.

First, if yv is smaller than all of its neighbors, then we can decrease the LP value (make
it better) by increasing it to equal the minimum of its neighbors. This is because for
any edge e = (u, v) the constraint on xe is xe ≥ yu − yv and for any edge e = (v, w) the

0-3

constraint on xe is xe ≥ yv − yw, which is subsumed by xe ≥ 0 as long as yv ≤ yw. Thus
we can decrease the value of xe by increasing the value of yv, up to the minimum of its
neighbors.

Similarly, if yv is larger than all of its neighbors, then we can decrease the LP value
(make it better) by decreasing it to equal the maximum of its neighbors. This is because
for any edge e = (u, v) the constraint on xe is xe ≥ yu− yv which is subsumed by xe ≥ 0
as long as yv ≥ yu, and for any edge e = (v, w) the constraint on xe is xe ≥ yv − yw.
Thus we can decrease the value of xe by decreasing the value of yv, up to the maximum
of its neighbors.

Finally we note that for an edge e = (u, v), changing both yu and yv by the same amount
doesn’t alter the constraint on xe (namely xe ≥ yu − yv).

Let U = {u : yu = maxu yu} and let V = {v : yv = minv yv}. Then if there is a
connected component U ′ ⊆ U that excludes ys and yt, we can decrease the value of the
yu by the same amount for all u ∈ U ′, and by the observations above this allows the LP
value to decrease. Similarly, if there is a connected component V ′ ⊆ V that excludes
ys and yt, we can increase the value of the yv by the same amount for all v ∈ V ′, and
by the observations above this allows the LP value to decrease. When neither operation
is available, we must have that every connected component of U contains ys and every
connected component of V contains yt and thus maxu yu = 1 and minv yv = 0. We
conclude that at the optimum, we have yv between 0 and 1 for all v.

Then by total unimodularity the optimum occurs at a 0/1 assignment to the yv variables.
We can thus think of this assignment as an s− t cut (since ys = 1 and yt = 0). An edge
e = (u, v) crossing the cut from the s side to the t side has the associated constraint
yv − yu + xe ≥ 0, which implies xe ≥ 1. Similarly, and edge contained on one side of the
cut or the other has the constraint xe ≥ 0 and an edge crossing in the reverse direction
has the constraint xe ≥ −1 which is subsumed by the constraint xe ≥ 0 which is there
for all edges. Thus we have exactly the constraints that xe ≥ 1 for edges crossing the
cut, and xe ≥ 0 otherwise, and since the ce are positive and we are minimizing, the
minimum occurs when all of these constraints are tight, and the value is thus the value
of the cut. Since every s − t cut is possible with a 0/1 assignment to the yv variables,
the minimum of the LP is exactly the value of the min s− t cut in the graph.

