CS 38 Introduction to Algorithms Spring 2014

Problem Set 7
Out: May 27 Due: June 3

Reminder: you are encouraged to work in groups of two or three; however you must turn in your
own write-up and note with whom you worked. You may consult the course notes and the optional
text (CLRS). The full honor code guidelines can be found in the course syllabus.

Please attempt all problems. To facilitate grading, please turn in each problem on a
separate sheet of paper and put your name on each sheet. Do not staple the separate
sheets.

1. We are given subsets 51,52, ...,5, of an m-element universe U. Recall that a cover is set [
such that
Usi=u.
el

In lecture 18, we saw a (Inm + 1)-approximation algorithm for this problem. In this problem
you are asked to give a k-approximation algorithm for SET COVER in the special case that no
element u € U appears in more than k subsets. Hint: solve an LP relaxation, and round.

2. In the MAX CUT problem, we are given an undirected graph G = (V, E) and we seek a cut
with the maximum number of edges crossing it. An edge (u,v) crosses a cut S C V iff one
of u,v is in S and the other is not in S. This problem is NP-complete. Formulate an LP
relaxation and rounding scheme that yields a 2-approximation algorithm for this problem.
Hint: your LP should have variables for each vertex and for each edge.

3. Faster maximum matching in a general graph. We saw in lecture 12 how to find a maximum
bipartite matching in time O(mn'/2?) time, and we asserted that a more complex algorithm
achieved a similar time bound for general graphs. In this problem you will show that if one
is satisfied with a 2-approximation, then an O(m) running time can be achieved by a very
simple algorithm.

(a) A mazimal matching is a matching that cannot be enlarged by adding any edge. Show
that one can find a maximal matching in O(m) time in a general undirected graph.

(b) Prove that every maximal matching has cardinality at least one-half of the cardinality
of a maximum matching. Hint: relate both quantities to the cardinality of a minimum
vertex cover.

4. Bin packing. We are given a list of real numbers a1, as, ..., a, and we wish to pack them into
as few unit-capacity bins as possible. A unit-capacity bin can accommodate any subset of the
a’s whose sum is at most 1. This problem is NP-hard (it is even NP-complete to determine
if 2 bins suffice).

A simple strategy is to place each a; in turn into the first bin into which it can fit. Prove
that this strategy is a 2-approximation algorithm for bin-packing.
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