CS 38 Introduction to Algorithms Spring 2014

Problem Set 3
Out: April 22 Due: April 29

Reminder: you are encouraged to work in groups of two or three; however you must turn in your
own write-up and note with whom you worked. You may consult the course notes and the optional
text (CLRS). The full honor code guidelines can be found in the course syllabus.

Please attempt all problems. To facilitate grading, please turn in each problem on a
separate sheet of paper and put your name on each sheet. Do not staple the separate
sheets.

1. Recall that Fibonacci heaps support three operations, INSERT, EXTRACT-MIN, and DECREASE-
KEY, with amortized costs O(1), O(logn), and O(1), respectively. Describe a sequence of
n = 2F operations so that a final EXTRACT-MIN call takes at least k operations. Assume
that whenever a root is added to the root-list by any operation it is added to the left-most
position, and that the consolidation process associated with extract-min processes the root
list from left to right.

2. In a list of integers, a1,as,...,a,, an inversion is a pair (a;, a;) with i < j but a; > a;. Give
a divide-and-conquer algorithm for computing the number of inversions in a list of n integers,
that runs in time O(nlogn). Hint: your algorithm may resemble Mergesort.

3. Set N = 2" and consider the N x N matrix M with rows and columns indexed by {0, 1}",
whose (a,b) entry equals

n

(~pZie
Give an algorithm that uses at most O(N log N') operations for multiplying M with a vector.

4. A Toeplitz matrix is a matrix whose diagonals are constant. An nxn Toeplitz matrix can thus
be described by 2n — 1 values, specifying the values on each distinct diagonal. For example,
here is the 4 x 4 Toeplitz matrix described by the values 4, 3,6,7,2,5,9:

=W O3
W S N
(SR B NV
N N Ot ©

Give an algorithm to multiply two n x n Toeplitz matrices (each specified by a list of 2n — 1
values) in time O(n?logn). Hint: reduce the problem to computing several products of
polynomials.

5. In this problem you will develop the (current) asymptotically fastest deterministic algorithm
for factoring integers. If an integer N has a non-trivial factor, then it can be assumed to be a

3-1



3-2

most v N, so there is a brute force algorithm that tries v/ N possible factors. Your algorithm
will require only N'/* operations.

In lecture we saw that degree-n polynomial multiplication and division with remainder could
be performed in O(nlogn) operations when the polynomials had coefficients in the complex
numbers. In fact those algorithms work without modification over any ring, and in this
problem you will be working over the ring of integers modulo N, where N is the number to
be factored. In other words, all of the scalar values in this problem are integers between 0
and N — 1 and all computations on them are performed modulo V.

(a) Remainder trees. Given a degree n — 1 polynomial f specified by its n coefficients

f07f17"'7fn—17

and n evaluations points ag, a1, ..., a,_1, describe a divide-and-conquer algorithm run-
ning in time O(nlog®n) that outputs f(ag), f(a1),..., f(an_1). Hint: use these facts:
(1) if f is a polynomial and a is a scalar, f(X) mod (X — a) equals f(a), and (2) if f, g
and h are polynomials, (f(X) mod g(X)h(X)) mod ¢(X) = f(X) mod g(X).

(b) Let M be an integer. Find an algorithm that outputs the integer M!mod N, using
O(v'M log® M) operations. Hint: consider the polynomial Hg (X — 1), and apply
the previous part.

(c) Given N, M (with M satisfying M < v/N), give an algorithm that determines whether
there is a nontrivial factor (i.e., other than 1) of N that is at most M, using only
O(N 1/410g? N ) operations. You may use Euclid’s algorithm which computes the great-
est common divisor (GCD) of two n-bit integers in time O(n?), and the fact that

GCD(z,y) = GCD(z mod y, y).

It is now standard that by using part (c) and performing a binary search on M, we can
find the smallest non-trivial factor of N, divide, and repeat, until N is completely factored.
The resulting algorithm for factoring N has running time O(N'/4)-(lower-order terms) as
promised.



