CS38
Introduction to Algorithms

Lecture 8
April 24, 2014

Outline

+ Divide and Conquer design paradigm
— closest pair (finishing up)
—the DFT and the FFT
— polynomial multiplication
— polynomial division with remainder

— integer multiplication
— matrix multiplication

April 25, 2014

CS38 Lecture 8

Closest pair in the plane

+ Given n points in the plane, find the

closest pair
o © o o © o
o o o
o 0© °
o ° ° ° o
(o) o o
° o

April 25,2014 CS38 Lecture 8

Closest pair in the plane

+ Divide and conquer approach:
— split point set in equal sized left and right sets

o o
o o o °
o o o o
o °° °
o ° ° o
o o
o
o o o

—find closest pair in left, right, + across middle

April 25, 2014

CS38 Lecture 8

Closest pair in the plane

« Divide and conquer approach:
— split point set in equal sized left and right sets

o o]
o) OOO
°° @

o

7 R R

o o
° o o

— find closest pair in left, right, + across middle

April 25, 2014 CS38 Lecture 8

Closest pair in the plane

* Divide and conquer approach:

— split point set in equal sized left and right sets
— time to perform split?

— sort by x coordinate: O(n log n)
— running time recurrence:
T(n) = 2T(n/2) + time for middle + O(n log n)

Ils time for middle as bad as O(n2)?|

April 25, 2014 CS38 Lecture 8

Closest pair in the plane

Claim: time for middle only O(n log n) !!

distance between

closest pair on left
* key: we know d = min of

distance between

closest pair on right

o o
o o] o o
o ° ol©° Observation: only
o @ O | need to consider
[e] points within distance
o o © ° 5 d of the midiine
(o) o
April 25, 2014 — 2d -

Closest pair in the plane

— 2d —

+ scan left to right to identify, then sort by y coord.
— still (n?) comparisons?

— Claim: only need do pairwise comparisons 15
ahead in this sorted list !

April 25, 2014 CS38 Lecture 8 8

Closest pair in the plane

* no 2 points lie in

d/2 by di2
same box (why?)

* if 2 points are within >
16 positions of each
other in list sorted by y
coord...

» ... then they must be
separated by > 3 rows

+ implies dist. > (3/2)- d

April 25,2014 CS38 Lecture 8

Closest pair in the plane

Closest-Pair(P: set of n points in the plane)

. sort by x coordinate and split equally into L and R subsets

. (p,q) = Closest-Pair(L)

. (r,s) = Closest-Pair(R)

d = min(distance(p,q), distance(r,s))

scan P by x coordinate to find M: points within d of midline

sort M by y coordinate

. compute closest pair among all pairs within 15 of each other in M
. return best among this pair, (p,q), (r,s)

© NG AWNR

* Running time:
T(2) = O(1); T(n) =2T(n/2) + O(n log n)

April 25, 2014 CS38 Lecture 8 10

Closest pair in the plane

* Running time:
T(2)=a; T(n)=2T(n/2) + bn-log n
set ¢ = max(a/2, b)
Claim: T(n) < cn-log2n
Proof: base case easy...
T(n) < 2T(n/2) + bn-log n
< 2cn/2(log n - 1)2 + bn-log n
<cn(log n)(log n - 1) + bn-log n
< cnlog? n

April 25, 2014 CS38 Lecture 8

Closest pair in the plane

» we have proved:

Theorem: There is an O(n log?n) time
algorithm for finding the closest pair
among n points in the plane.

+ can be improved to O(n log n) by being
more careful about maintaining sorted lists

April 25, 2014 CS38 Lecture 8 12

The DFT,
the FFT,

and polynomial
multiplication

April 25, 2014 CS38 Lecture 8 13

Roots of unity

* An n-th root of unity is an element w such
that w» =1

— primitive if " # 1 for 1 <k <n

* examples:
—in C: €27 = cos(27/n) + i-sin(27/n)
is a primitive n-th root of unity

—inintegers mod 7: 2 is a primitive 3-th root of
unity

April 25, 2014 CS38 Lecture 8 14

Roots of unity

* An n-th root of unity is an element w such
thatwr =1
— primitive if w*# 1 for1 <k<n
* key property:
Wttt L+ttt w=0
why? w= 1 and
O0=wr-1=(w—1)(w+wr=+.. . +w'+w°)

April 25,2014 CS38 Lecture 8 15

Discrete Fourier Transform (DFT)

+ Given n-th root of unity w, DFT,, is a linear
map from C" to C™:

(wO)O (wO)l (WO)Q L. (Wﬂ)n—l

(UI)O (wl)l (wl)Q (wl)n—l

(UQ)D (u2)1 (w2)2 . (wz)”’l
(w'n;—l)D (mu—l)l (un—l)Z (un—l)n—l

 (i,)) entry is w¥

April 25, 2014 CS38 Lecture 8 16

Fast Fourier Transform (FFT)

« Given vector x € C", how many operations
to compute DFT-x?

(UD)O (NO)‘l (w())’z L (w())u—l z0

(wl)O (wl)l (wl)Q . (wl)“_l z1

(w2)0 (w2)l (w2)2 . (w2)n—1 . xp
(wn:—l)o (u_,n—l)l (wn—l)Q . (wn—l)n—l :,-,:71

« standard matrix-vector multiplication: O(n?)

April 25, 2014 CS38 Lecture 8 17

Fast Fourier Transform (FFT)

« try Divide and Conquer:

» would lead to
—T(n) = 4T(n/2) + time to split‘combine
which implies T(n) = Q(n?)

April 25, 2014 CS38 Lecture 8 18

Fast Fourier Transform (FFT)

« DFT, has special structure (assume n= 2%
— reorder columns: first even, then odd
— consider exponents on w along rows:

multiples of: same multiples plus:
0—0|0|0|0]|0|0O0|../0O|0|O0|0|0]|0]...|«<0
2—1 02|46 |8[10|...[1|3|5|7|9|11]|..|«<1
4—>1 0 |4|8|12(16|20|...| 2|6 |10|14|18|22|...|< 2
6—> 0|6 |12]18|24|30|...| 3|9 |15|21|27|33]|...|< 3
8—> 0|8(16|24|32|44|...| 4 |12(20(28|36|40]|... |« 4

rows repeat twice since w" = 1

Fast Fourier Transform (FFT)

* so we are actually computing: [rootof unity

oFT. (seven) _ (DFT,a| _DDFT,,)(zeven)
Zodd DF T2 |2 D DFT Zodd

* so to compute DFT,-x

D = diagonal matrix
FFT(n:power of 2; x) diag(w®, w', w?, ..., W21)

1. letw be a n-th root of unity

2. compute a = FFT(N/2, Xeen)

3. compute b = FFT(N/2, Xq4q)

4. Yeen =a+D-bandy,y =a+w -D-b
5. return vector y

April 25, 2014 CS38 Lecture 8 20

Fast Fourier Transform (FFT)

FFT(n:power of 2; x)

1. letw be a n-th root of unity

2. compute a = FFT(N/2, Xeyen)

3. compute b = FFT(n/2, Xoqq)

4. Yeen=a+D-band y,y =a+w" Db
5. return vector y

* Running time?
-T@) =1
—T(n) =2T(n/2) + O(n)
— solution: T(n) = O(n log n)

April 25, 2014 CS38 Lecture 8 21

Discrete Fourier Transform (DFT)

« entry (i,j) of DFT, is w” (n-th root of unity w)
+ claim: entry (i,j) of inverse-DFT, is wi/n

(W0 (@)l ... (@)l (w130 (w1)? {w-1)n-1

@O (WO . (WOl] [@O (@O wOnd
(An:lJG (Wl . (Wbt (J)—(J:—i))n (“,7[.‘713)1 (mﬁ(._u)nfj
 entry (a,b) of this product is

Ty wkwkb = F, @bk = n if a=b; 0 otherwise

April 25, 2014 CS38 Lecture 8 22

Discrete Fourier Transform (DFT)

Theorem: can compute DFT and
inverse-DFT in O(n log n) operations

» extremely efficient in practice
— parallel implementation via “butterfly circuit”

April 25, 2014 CS38 Lecture 8 23

butterly circuit from CLRS

Yo

April 25, 2014 CS38 Lecture 8 24

the DFT and polynomials

* given a polynomial
ax) = agx® + a;xt + a,x? + ... +a, X"t

« observe that DFT,-a gives evaluations of a
at w for i=0,1,..., n-1

(wD)O (w())l (w0)2 s (WO)H—I ag
(wl)O (wl)l (wl)? (wl)u—l ar
(I,‘_,Q)O (w2)1 (w2)2 .. (w2)n—1 . as
(wn—l)() (wn—l)l (wn—l)Z . (wn—l)n—l p_1
April 25, 2014 Cs38 Lecture 8 25

the DFT and polynomials

* since DFT -a gives evaluations of a at w’
fori=0,1,..., n-1...

* inverse-DFT -(vector of these evaluations)
must give back a

@ @Ot e (@O a(w)
@1 @D e @ | et

(m—();—l))ﬂ (=D)L L (e (= Dya-1 a(ufﬂ 1

April 25, 2014 CS38 Lecture 8 26

Polynomial multiplication

* given two polynomials
a(x) = a0 + a;xt + ax? + ... +a, X"t
b(x) = bpx? + byxt + b,x2 + ... + b, ;x"1
* we want to compute the polynomial
a(x)- b(x)
of degree at most 2n-2
« standard method takes O(n?) operations

April 25, 2014 CS38 Lecture 8 27

Polynomial multiplication

* given two polynomials
ax) = agk® + a;xt + ax? + ... +a, xmt
b(x) = bgX? + byxt + b,x2 + ... + b, ;x"1
— DFT,,-aand DFT,,-b give evaluations of a, b
atw' fori=0,1,..., 2n-1
— can get evaluations of a-b at same points
since a(w')-b(w’) = (a-b)(w’)

—inverse-DFT,, applied to (vector of these
evaluations) gives back a-b

April 25, 2014 CS38 Lecture 8 28

Polynomial multiplication

polynomial-product(a, b: coeffs of degree n polynomials)
1. compute u = FFT(2n, a)

2. compute v = FFT(2n, b)

3. multiply vectors u,v pointwise to get vector w

4. return(inverse-FFT(2n,w))

* Running time?
—O(n log n) for FFT and inverse-FFT
— O(n) to multiply pointwise

« overall O(n log n)

April 25, 2014 CS38 Lecture 8 29

Polynomial division

X2+ 3X -2
X2+2 [x4 43 +7x-12
x4 +2x2
33 -2%% + 7x - 12
3x3 + 6x
-2x2 +x-12
-2x2 -4

remainder: x-8

X -8

check: x* + 3x3 + 7x — 12 equals
(X2+2)(X2+3x-2)+(x—8) =(x*+3x3+ 6x-4) + (x—8)

April 25, 2014 CS38 Lecture 8 30

Polynomial inversion

Theorem: given polynomial f with f(0) = 1, if
go=1,and _
G = 29, — (f)(g)? mod x2™*
then fg, = 1 mod x2' for all i.

Proof: induction on i
base case: fg, =f(0)gp=1-1=1 (mod x)
1-fg; = 1-f(29,~f(9)?) = (1 - fg)? = 0 mod x2™

April 25, 2014 CS38 Lecture 8 31

Polynomial division

polynomial-inversion (f: coeffs of deg. n poly; int. k)
output: polynomial g satisfying fg = 1 mod x*
1.go=1;r= [log k]

2.fori=1tor

3. g=2g,- (0(g.)?rem»®

4. return(g,)

* Running time? (# operations)
— O(log k) - O(k log k) = O(k log? k)
— O(k log k) if careful about degrees in loop

April 25, 2014 CS38 Lecture 8 32

Polynomial division

* (monic) polys a, b of deg. m, n (m <n)
we want polys g, r such thata = gb + r and
deg(r) < deg(b)

* key observation:
a(x) = apgx® + a;xt + ax2 + ...+ a, X"
XM a(l/x) = agx" + a; X"t + axn? + ...+ a1 x°
+ denote by rev,(a) this polynomial: x"a(1/x)

April 25, 2014 CS38 Lecture 8 33

Polynomial division

* (monic) polys a, b of deg. m, n (m < n)
we want polys g, r such thata = gb + r and

deg(r) < deg(b)

rev, n(b) is invertible mod x™m**
because constant coefficientis 1
(so rev,_,(b) not divisible by x)

« algebra:
rev,(a) = rev, £(q)-rev,(b) + X" rev. . (r)
rev,(a) = rey,, (q)-revy,(b) mod xnm+1
rev,(a)-revy(b)* = rev, ,(q) mod x™m+1

April 25, 2014 CS38 Lecture 8 34

Polynomial division

poly-division-with-rem (a, b: coeffs of degr m, n polys)
output: polys g,r satisfying a = bq + r and deg(r) < deg(b)
1. r = deg(a) — deg(b)

2. compute inverse of revgeqq,(b) mod x+

3. 0" = (reVgega)) (r€Vgegpy b) rem x7+1

4. return(q = rev,,(q") and r = a — bq)

* Running time? (# operations)
—0O(nlog n)

April 25, 2014 CS38 Lecture 8 35

Polynomial multiplication and
division

Theorem: can multiply and divide
with remainder degree n polynomials
in O(n log n) time

April 25, 2014 CS38 Lecture 8 36

integer multiplication

* given 2 n-bit integers X, y
» compute their product xy

« standard multiplication O(n?)

simple divide and conquer improves to
O(nlog23) = O(n1.59)

April 25, 2014 CS38 Lecture 8 37

integer multiplication

* given 2 n-bit integers x, y
* write:
—X=X, - 2"+ %,
—y =y 2"2+y,
* note: Xy = X;y1-2" + (XYo + Xo¥1)-2"2 + XoYo
clever idea:

(X1 + X) (Y1 + Yo) = XaY1 + XY + XY, + XY,

April 25, 2014 CS38 Lecture 8 38

integer multiplication

integer-mult(x, y: n-bit integers)

lwrite X =X, - 2"2 + xgandy =y, - 2"2 +y,
2.a = integer-mult(x,, y;)

3. b = integer-mult(x,, Yo)

4. ¢ = integer-mult(X, + Xy, Yo + Y1)
5.return(a- 2"+ (c - a- b) - 2"2 + b)

* Running time recurrence? (# operations)
—T(n) = 3T(n/2) + O(n)
_ T(n) = O(n|0923) = o(n1.59)

April 25,2014 CS38 Lecture 8 39

