Outline

- data structures for MST and Dijkstra’s
 - union-find with log \(n \) analysis (finishing up)
 - amortized analysis: potential function method
 - Fibonacci heaps

Recall: amortized analysis

- amortized analysis:
 - each operation has an amortized cost
 - any sequence of operations has cost bounded by sum of amortized costs

1. Fibonacci heap amortized vs. binary heap
 - \textsc{extract-min} \(O(\log n) \) vs. \(O(\log n) \)
 - \textsc{insert}, \textsc{decrease-key} \(O(1) \) vs. \(O(\log n) \)

Potential function method

- \(n \) operations on initial data structure \(D_0 \)
 - \(D_i \) after i-th operation
- potential function \(\Phi(D_i) \) (real number)
- amortized cost of i-th operation w.r.t \(\Phi \):
 \[c_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \]

Potential function method

- Key observation:
 \[\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0) \]
 - sum of amortized costs is an upper bound on sum of actual costs, provided:
 \[\Phi(D_n) - \Phi(D_0) \geq 0 \]
 - will typically ensure \(\Phi(D_n) - \Phi(D_0) \geq 0 \) for all \(i \)
Potential function method

• Example: binary counter C on k bits
 – single operation: INCREMENT

 \[
 \begin{array}{c}
 1010100011101011011111101111111011000000 \\
 \rightarrow \quad 1010010001110111101000000
 \end{array}
 \]

 – worst case cost?

Potential function method

• Example: binary counter C on k bits
 – single operation: INCREMENT

 \[
 \begin{array}{c}
 1010100011101011011111101111111011000000 \\
 \rightarrow \quad 1010010001110111101000000
 \end{array}
 \]

• Potential function: $\phi(C) = \# \text{ of ones}$

• Consider i-th operation:
 – actual cost $c_i = (\# \text{ of ones set to zero}) + 1$
 – $\Delta \phi = (\phi(C_{i-1}) - t_i + 1) - \phi(C_{i-1}) = 1 - t_i$
 – so amortized cost $c_i = 2$

Potential function method

• Example: binary counter C on k bits
 – single operation: INCREMENT

 \[
 \begin{array}{c}
 1010100011101011011111101111111011000000 \\
 \rightarrow \quad 1010010001110111101000000
 \end{array}
 \]

• Starting with 0 counter on k bits:
 – $\phi(C_0) = 0$, $\phi(C_i) \geq 0$ for all i
 – so total cost of n operations is $2n$

• Starting with arbitrary value on k bits:
 \[
 \sum_{i=1}^{n} c_i = \sum_{i=1}^{n} \phi(C_i) + \phi(C_0) \leq 2n + k
 \]

Fibonacci heaps

data structure

Kevin Wayne’s slides
based on CLRS text