
1

CS38

Introduction to Algorithms

Lecture 5

April 15, 2014

April 15, 2014 CS38 Lecture 5 2

Outline

• review of Dijkstra’s algorithm

• greedy algorithms: Huffman codes

• data structures for MST and Dijkstra’s

– union-find with log* analysis

– Fibonacci heaps with amortized analysis

Dijkstra’s algorithm

• given

– directed graph G = (V,E) with non-negative

edge weights

– starting vertex s 2 V

• find shortest paths from s to all nodes v

– note: unweighted case solved by BFS

– shortest paths from s form a tree rooted at s

– “find” = fill in predecessor pointers for each

vertex to define shortest-path tree from s
April 15, 2014 CS38 Lecture 5 3

Dijkstra’s algorithm

• shortest paths exhibit “optimal substructure”
property

– optimal solution contains within it optimal
solutions to subproblems

– a shortest path from x to y via z contains a shortest
path from x to z

• Main idea:
– maintain set S µ V with correct distances

– add nbr u with smallest “distance estimate”

 April 15, 2014 CS38 Lecture 5 4

Dijkstra’s algorithm

April 15, 2014 CS38 Lecture 5 5

Lemma: can be implemented to run in O(m) time

plus n EXTRACT-MIN and m DECREASE-KEY calls.

Proof?

Dijkstra(G = (V,E), s)

1. S = ;, s.dist = 0, build Min-Heap H from V, keys are distances

2. while H is not empty

3. u = EXTRACT-MIN(H) Ã “greedy choice”

4. S = S [{u}

5. for each neighbor v of u

6. if v.dist > u.dist + weight(u,v) then

7. v.dist = u.dist + weigth(u,v), DECREASE-KEY(H, v)

Dijkstra’s algorithm

April 15, 2014 CS38 Lecture 5 6

Lemma: can be implemented to run in O(m) time

plus n EXTRACT-MIN and m DECREASE-KEY calls.

Proof: each vertex added to H once, adj. list scanned

once, O(1) work apart from min-heap calls

Dijkstra(G = (V,E), s)

1. S = ;, s.dist = 0, build Min-Heap H from V, keys are distances

2. while H is not empty

3. u = EXTRACT-MIN(H) Ã “greedy choice”

4. S = S [{u}

5. for each neighbor v of u

6. if v.dist > u.dist + weight(u,v) then

7. v.dist = u.dist + weigth(u,v), DECREASE-KEY(H, v)

2

Dijkstra’s example from CLRS

April 15, 2014 CS38 Lecture 5 7

Lemma: invariant of algorithm: for all v 2 S it

holds that v.dist = distance(s, v).

Proof: induction on size of S

– base case: S = ;, trivially true

– case |S| = k:

Dijkstra’s algorithm

8

s

u

x y

v
S

consider any other

s – v path, let (x,y)

be edge exiting S

x.dist, u.dist correct by

induction, so s – y path

already longer than s – v

since algorithm chose latter
April 15, 2014 CS38 Lecture 5

Dijkstra’s algorithm

• We proved:

– using binary heaps

– later: Fibonacci heaps: O(m + n log n) time

April 15, 2014 CS38 Lecture 5 9

Theorem (Dijkstra): there is an O(n + m log n)

time algorithm that is given

 a directed graph with nonnegative weights

 a starting vertex s

and finds

 distances from s to every other vertex

 (and produces a shortest path tree from s)

Variable-length encoding

• Scenario: large file with n symbol types

and frequencies fx for each symbol x

• Goal: compress the file (losslessly)

– represent each symbol x by a length Lx string

of binary digits (“variable-length”)

– prefix-free: no encoding string is a prefix of
another;) can write them one after another

• minimize total length: x Lxfx

April 15, 2014 CS38 Lecture 5 10

• can represent prefix-free encoding

scheme by binary tree T:

Huffman codes

April 15, 2014 CS38 Lecture 5 11

Example:

cost C(T) =

cL(T)cfc • Problem: given

frequencies, construct

optimal tree (prefix-free

encoding scheme)

Huffman codes

• Idea: build tree bottom-up and make

greedy choice (what is it?)

– joining two symbols commits to a bit to

distinguish them; which should we choose?

April 15, 2014 CS38 Lecture 5 12

1. build heap H with frequencies as keys

2. for i = 1 to n-1
3. allocate new node z

4. z.left = x = EXTRACT-MIN(H)

5. z.right = y = EXTRACT-MIN(H)

6. z. freq = x.freq + y.freq; INSERT(H, z)

7. return EXTRACT-MIN(H)

3

Huffman example from CLRS

April 15, 2014 CS38 Lecture 5 13

Huffman codes

Lemma: there exists an optimal tree where

the 2 lowest frequency symbols are siblings.

Proof: let T be an optimal tree; a,b lowest siblings

change from exchanging x, a:

cL(T)cfc - cL(T’)cfc = (fa – fx)(L(T)a – L(T)x)¸0

April 15, 2014 CS38 Lecture 5 14

Huffman codes

Lemma: there exists an optimal tree where

the 2 lowest frequency symbols are siblings.

Proof: let T be an optimal tree; a,b lowest siblings

change from exchanging y, b:

cL(T’)cfc - cL(T’’)cfc = (fb – fy)(L(T’)b – L(T’’)y)¸0

April 15, 2014 CS38 Lecture 5 15

Huffman codes

“optimal substructure”

Lemma: T’ is an optimal tree.

Proof: consider another tree S’, w.l.o.g. having x,

y as siblings. Let S be merged version. Optimality

of T gives:

 C(S’) = C(S) + fx+ fy ¸ C(T) + fx + fy = C(T’)

April 15, 2014 CS38 Lecture 5 16

T: optimal tree with

merged symbol
T

z

T’

x y

T’: replace z

Greedy algorithms review

• Coin changing: choose largest coin

• Interval scheduling: choose job w/ first finish

• Dijkstra’s: extend shortest paths tree by vertex
with smallest distance estimate

• Prim’s: extend tree by lowest weight edge

• Kruskal’s: extend forest by lowest weight edge

• Huffman : build tree by merging lowest freq. pair

April 15, 2014 CS38 Lecture 5 17

Safe choice: can always extend to an optimal solution

Role of data structures

• Running times: using heaps

– Huffman: O(n) INSERT, O(n) EXTRACT-MIN

– Dijkstra: O(n) INSERT + EXTRACT-MIN;

O(m) DECREASE-KEY

– Prim: O(n) INSERT + EXTRACT-MIN,

O(m) DECREASE-KEY

 … and using union-find

– Kruskal: time to sort m items and then

O(m) FIND + UNION

April 15, 2014 CS38 Lecture 5 18

4

Coming up: two data structures

• amortized analysis:

– each operation has an amortized cost

– any sequence of operations has cost bounded

by sum of amortized costs

1. Fibonacci heap amortized vs. binary heap

– EXTRACT-MIN O(log n) vs. O(log n)

– INSERT, DECREASE-KEY O(1) vs. O(log n)

April 15, 2014 CS38 Lecture 5 19

Coming up: two data structures

• ammortized analysis:

– each operation has an amortized cost

– any sequence of operations has cost bounded

by sum of amortized costs

2. Union find (amortized)

– any sequence of n UNIONs and m FINDs:

O(n log* m)

April 15, 2014 CS38 Lecture 5 20

Improvements to running times

• using Fibonacci heaps (vs. binary heaps):

– Dijkstra: O(n) INSERT + EXTRACT-MIN;

O(m) DECREASE-KEY

– Prim: O(n) INSERT + EXTRACT-MIN,

O(m) DECREASE-KEY

• using union-find

– Kruskal: time to sort m items and then

O(m) FIND + UNION

April 15, 2014 CS38 Lecture 5 21

O(m + n log n)

vs. O(m log n)

O(m log m + m log* n)

Union-find

data structure

Kevin Wayne’s slides

based on Kleinberg + Tardos text and

Dasgupta, Papadimitriou,Vazirani text

April 15, 2014 CS38 Lecture 5 22

