CS38
Introduction to Algorithms

Lecture 5
April 15, 2014

Outline

* review of Dijkstra’s algorithm

 greedy algorithms: Huffman codes
« data structures for MST and Dijkstra’s

— union-find with log* analysis

— Fibonacci heaps with amortized analysis

April 15, 2014 CS38 Lecture 5

Dijkstra’s algorithm

* given
— directed graph G = (V,E) with non-negative
edge weights
— starting vertex s € V
« find shortest paths from s to all nodes v
—note: unweighted case solved by BFS
— shortest paths from s form a tree rooted at s

—“find” = fill in predecessor pointers for each
vertex to define shortest-path tree from s

April 15, 2014 CS38 Lecture 5

Dijkstra’s algorithm

+ shortest paths exhibit “optimal substructure”
property
— optimal solution contains within it optimal
solutions to subproblems

— a shortest path from x to y via z contains a shortest
path from x to z

* Main idea:
— maintain set S C V with correct distances
— add nbr u with smallest “distance estimate”

April 15, 2014 CS38 Lecture 5

Dijkstra’s algorithm

Dijkstra(G = (V,E), s)

1. S =), s.dist = 0, build Min-Heap H from V, keys are distances
2. while H is not empty

3. u=EXTRACT-MIN(H) < “greedy choice”

4. s=sufy

5. for each neighbor v of u

6.

7

if v.dist > u.dist + weight(u,v) then
v.dist = u.dist + weigth(u,v), DECREASE-KEY(H, v)

Lemma: can be implemented to run in O(m) time
plus n EXTRACT-MIN and m DECREASE-KEY calls.

Proof?

April 15, 2014 CS38 Lecture 5

Dijkstra’s algorithm

Dijkstra(G = (V,E), s)
1. S =0, s.dist = 0, build Min-Heap H from V, keys are distances
2. while H is not empty

3. u=EXTRACT-MIN(H) + “greedy choice”

4. sS=sufy

5. for each neighbor v of u

6. if v.dist > u.dist + weight(u,v) then

7. v.dist = u.dist + weigth(u,v), DECREASE-KEY(H, v)

Lemma: can be implemented to run in O(m) time
plus n EXTRACT-MIN and m DECREASE-KEY calls.

Proof: each vertex added to H once, adj. list scanned
once, O(1) work apart from min-heap calls

April 15, 2014 CS38 Lecture 5

Dijkstra’s example from CLRS

April 15, 2014 CS38 Lecture 5 7

Dijkstra’s algorithm

Lemma: invariant of algorithm: for all v € S'it
holds that v.dist = distance(s, V).

Proof: induction on size of S Conside:har?ytO(the)r
e . s — v path, let (x,y
- base case: S =, trivially true |, edge exiting S

— case [S| =k:

x.dist, u.dist correct by
induction, so s —y path
already longer than s — v
since algorithm chose latter

April 15, 2014 CS38 Lecture 5 8

Dijkstra’s algorithm

* We proved:

Theorem (Dijkstra): there is an O(n* m log n)
time algorithm that is given
a directed graph with nonnegative weights
a starting vertex s
and finds
distances from s to every other vertex
(and produces a shortest path tree from s)

— using binary heaps
— later: Fibonacci heaps: O(m + n log n) time

April 15, 2014 CS38 Lecture 5 9

Variable-length encoding

» Scenario: large file with n symbol types
and frequencies f, for each symbol x
* Goal: compress the file (losslessly)
—represent each symbol x by a length L, string
of binary digits (“variable-length”)
— prefix-free: no encoding string is a prefix of
another; = can write them one after another

* minimize total length: >, L f,

April 15, 2014 CS38 Lecture 5 10

Huffman codes

a b c d e f

Froquency (nthowsands) 45 13 1216 9 5
Example: Fecengicosewors o 001 o0 o 100 o0n
Variable-length codeword 0 101 100 11 1101 1100

« can represent prefix-free encoding

scheme by binary tree T: oo CT) =
+ Problem: given YN PR E Q)
frequencies, construct = ﬂ/ﬁﬁx‘
optimal tree (prefix-free J’“ _ﬂs‘”‘L
encoding scheme) =B Em)
5] [3]

April 15, 2014 CS38 Lecture 5 u

Huffman codes

* Idea: build tree bottom-up and make
greedy choice (what is it?)
— joining two symbols commits to a bit to
distinguish them; which should we choose?

1. build heap H with frequencies as keys
2. fori=1ton-1
3 allocate new node z

4 z.left = x = EXTRACT-MIN(H)
5. zright = y = EXTRACT-MIN(H)

6 z. freq = x.freq + y.freq; INSERT(H, z)
7. return EXTRACT-MIN(H)

April 15, 2014 CS38 Lecture 5 12

Huffman example from CLRS

w [E5] (28] E1F B @ 5 o EEEE @ EE ES

@ @ Em @& @ @
of \i () [
5] [09 [Ei7 (BT

o\ o\
eia) by 09 @
o

(=51 (3]

April 15, 2014 CS38 Lecture 5 13

Huffman codes

Lemma: there exists an optimal tree where
the 2 lowest frequency symbols are siblings.

Proof: let T be an optimal tree; a,b lowest siblings

y I“, ’.)

m L, e w . e
Il L

b E Ef

change from exchanging x, a:
ZL(Mefe - Z(T)cfe = (Fa = L(L(T)a — L(T),)=0

e

A

April 15, 2014 CS38 Lecture 5 14

Huffman codes

Lemma: there exists an optimal tree where
the 2 lowest frequency symbols are siblings.

Proof: let T be an optimal tree; a,b lowest siblings

T T, T
o = o m e m
. o i f\ - A
m}EI“ 2 " P Y Hm

change from exchangingy, b:
e L(T)efe - Zl(T)efe = (fy = f)(L(T), — L(T™),)>0

April 15, 2014 CS38 Lecture 5 15

Huffman codes

“optimal substructure” T
T: optimal tree with T XAy

merged symbol H T replace z

Lemma: T is an optimal tree.

Proof: consider another tree S’, w.l.0.g. having x,
y as siblings. Let S be merged version. Optimality
of T gives:

C(S) = C(S) + fy+f, > C(T) + f, +f, = C(T")

April 15, 2014 CS38 Lecture 5 16

Greedy algorithms review

» Coin changing: choose largest coin
* Interval scheduling: choose job w/ first finish

» Dijkstra’s: extend shortest paths tree by vertex
with smallest distance estimate

* Prim’s: extend tree by lowest weight edge
» Kruskal’s: extend forest by lowest weight edge
» Huffman : build tree by merging lowest freq. pair

ISafe choice: can always extend to an optimal solution I

April 15, 2014 CS38 Lecture 5 17

Role of data structures

* Running times: using heaps
— Huffman: O(n) INSERT, O(n) EXTRACT-MIN

— Dijkstra: O(n) INSERT + EXTRACT-MIN;
O(m) DECREASE-KEY

— Prim: O(n) INSERT + EXTRACT-MIN,
O(m) DECREASE-KEY
... and using union-find

— Kruskal: time to sort m items and then
O(m) FIND + UNION

April 15, 2014 CS38 Lecture 5 18

Coming up: two data structures

amortized analysis:
— each operation has an amortized cost

— any sequence of operations has cost bounded
by sum of amortized costs

. Fibonacci heap amortized vs. binary heap
— EXTRACT-MIN O(log n) vs. O(log n)
— INSERT, DECREASE-KEY O(1) vs. O(log n)

Coming up: two data structures

ammortized analysis:
— each operation has an amortized cost

— any sequence of operations has cost bounded
by sum of amortized costs

2. Union find (amortized)
—any sequence of n UNIONs and m FINDs:

O(n log™ m)
Improvements to running times
* using Fibonacci heaps (vs. binary heaps): i _fi
— Dijkstra: O(n) INSERT + EXTRACT-MIN; U nion flnd

O(m) DECREASE-KEY

— Prim: O(n) INSERT + EXTRACT-MIN,
O(m) DECREASE-KEY o(m +nlog n)

+ using union-find vs. O(m log)

— Kruskal: time to sort m items and then
O(m) FIND + UNION

IO(m log m + mlog” n) I

April 15, 2014 CS38 Lecture 5 21

data structure

Kevin Wayne'’s slides
based on Kleinberg + Tardos text and
Dasgupta, Papadimitriou,Vazirani text
April 15, 2014

CS38 Lecture 5 22

