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Outline 

• review of Dijkstra’s algorithm 

 

• greedy algorithms: Huffman codes 

• data structures for MST and Dijkstra’s 

– union-find with log* analysis 

 

– Fibonacci heaps with amortized analysis 

Dijkstra’s algorithm 

• given 

– directed graph G = (V,E) with non-negative 

edge weights 

– starting vertex s 2 V 

• find shortest paths from s to all nodes v 

– note: unweighted case solved by BFS 

– shortest paths from s form a tree rooted at s 

– “find” = fill in predecessor pointers for each 

vertex to define shortest-path tree from s 
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Dijkstra’s algorithm 

• shortest paths exhibit “optimal substructure” 
property 

– optimal solution contains within it optimal 
solutions to subproblems 

– a shortest path from x to y via z contains a shortest 
path from x to z 

 

• Main idea: 
– maintain set S µ V with correct distances 

– add nbr u with smallest “distance estimate” 
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Dijkstra’s algorithm 
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Lemma: can be implemented to run in O(m) time 

plus n EXTRACT-MIN and m DECREASE-KEY calls. 

Proof? 

Dijkstra(G = (V,E), s) 

1. S = ;, s.dist = 0, build Min-Heap H from V, keys are distances 

2. while H is not empty 

3.    u = EXTRACT-MIN(H)  Ã “greedy choice”  

4.    S = S [ {u} 

5.    for each neighbor v of u 

6.          if v.dist > u.dist + weight(u,v) then  

7.                v.dist = u.dist + weigth(u,v), DECREASE-KEY(H, v) 

Dijkstra’s algorithm 
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Lemma: can be implemented to run in O(m) time 

plus n EXTRACT-MIN and m DECREASE-KEY calls. 

Proof: each vertex added to H once, adj. list scanned 

once, O(1) work apart from min-heap calls 

Dijkstra(G = (V,E), s) 

1. S = ;, s.dist = 0, build Min-Heap H from V, keys are distances 

2. while H is not empty 

3.    u = EXTRACT-MIN(H)  Ã “greedy choice”  

4.    S = S [ {u} 

5.    for each neighbor v of u 

6.          if v.dist > u.dist + weight(u,v) then  

7.                v.dist = u.dist + weigth(u,v), DECREASE-KEY(H, v) 
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Dijkstra’s example from CLRS 
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Lemma: invariant of algorithm: for all v 2 S it 

holds that v.dist = distance(s, v). 

Proof: induction on size of S 

– base case: S = ;, trivially true 

– case |S| = k: 

Dijkstra’s algorithm 

8 

s 

u 

x y 

v 
S 

consider any other 

s – v path, let (x,y) 

be edge exiting S 

x.dist, u.dist correct by 

induction, so s – y path 

already longer than s – v 

since algorithm chose latter 
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Dijkstra’s algorithm 

• We proved: 

 

 

 

 

 

 

– using binary heaps 

– later: Fibonacci heaps: O(m + n log n) time 
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Theorem (Dijkstra): there is an O(n + m log n) 

time algorithm that is given 

 a directed graph with nonnegative weights

 a starting vertex s 

and finds 

 distances from s to every other vertex  

 (and produces a shortest path tree from s) 

Variable-length encoding 

• Scenario: large file with n symbol types 

and frequencies fx for each symbol x  

• Goal: compress the file (losslessly) 

– represent each symbol x by a length Lx string 

of binary digits (“variable-length”) 

– prefix-free: no encoding string is a prefix of 
another; ) can write them one after another 

• minimize total length: x Lxfx 
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• can represent prefix-free encoding 

scheme by binary tree T: 
 

 

 

 

Huffman codes 
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Example: 

cost C(T) = 

cL(T)cfc • Problem: given 

frequencies, construct 

optimal tree (prefix-free 

encoding scheme) 

Huffman codes 

• Idea: build tree bottom-up and make 

greedy choice (what is it?) 

– joining two symbols commits to a bit to 

distinguish them; which should we choose? 
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1. build heap H with frequencies as keys 

2. for i = 1 to n-1 
3.       allocate new node z 

4.       z.left = x = EXTRACT-MIN(H) 

5.       z.right = y = EXTRACT-MIN(H) 

6.       z. freq = x.freq + y.freq; INSERT(H, z) 

7. return EXTRACT-MIN(H) 
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Huffman example from CLRS 
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Huffman codes 

Lemma: there exists an optimal tree where 

the 2 lowest frequency symbols are siblings. 

Proof: let T be an optimal tree; a,b lowest siblings 

 

 

 

change from exchanging x, a:  

cL(T)cfc  - cL(T’)cfc = (fa – fx)(L(T)a – L(T)x)¸0 
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Huffman codes 

Lemma: there exists an optimal tree where 

the 2 lowest frequency symbols are siblings. 

Proof: let T be an optimal tree; a,b lowest siblings 

 

 

 

change from exchanging y, b:  

cL(T’)cfc  - cL(T’’)cfc = (fb – fy)(L(T’)b – L(T’’)y)¸0 
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Huffman codes 

“optimal substructure” 

 

 

Lemma: T’ is an optimal tree. 

Proof: consider another tree S’, w.l.o.g. having x, 

y as siblings. Let S be merged version. Optimality 

of T gives:  

 C(S’) = C(S) + fx+ fy ¸ C(T) + fx + fy = C(T’) 
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T: optimal tree with 

merged symbol  
T 

z 

T’ 

x y 

T’: replace z 

Greedy algorithms review 

• Coin changing: choose largest coin 

• Interval scheduling: choose job w/ first finish 

• Dijkstra’s: extend shortest paths tree by vertex 
with smallest distance estimate 

• Prim’s: extend tree by lowest weight edge 

• Kruskal’s: extend forest by lowest weight edge 

• Huffman : build tree by merging lowest freq. pair 
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Safe choice: can always extend to an optimal solution  

Role of data structures 

• Running times: using heaps 

– Huffman: O(n) INSERT,  O(n) EXTRACT-MIN 

– Dijkstra: O(n) INSERT + EXTRACT-MIN; 

O(m) DECREASE-KEY 

– Prim: O(n) INSERT + EXTRACT-MIN,       

O(m) DECREASE-KEY 

 … and using union-find  

– Kruskal: time to sort m items and then         

O(m) FIND + UNION  
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Coming up: two data structures 

• amortized analysis: 

– each operation has an amortized cost 

– any sequence of operations has cost bounded 

by sum of amortized costs 

 

1. Fibonacci heap amortized vs. binary heap 

– EXTRACT-MIN   O(log n) vs. O(log n) 

– INSERT, DECREASE-KEY   O(1) vs. O(log n) 
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Coming up: two data structures 

• ammortized analysis: 

– each operation has an amortized cost 

– any sequence of operations has cost bounded 

by sum of amortized costs 

 

2. Union find (amortized) 

– any sequence of n UNIONs and m FINDs: 

O(n log* m) 
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Improvements to running times 

• using Fibonacci heaps (vs. binary heaps): 

– Dijkstra: O(n) INSERT + EXTRACT-MIN; 

O(m) DECREASE-KEY 

– Prim: O(n) INSERT + EXTRACT-MIN,       

O(m) DECREASE-KEY 

• using union-find  

– Kruskal: time to sort m items and then         

O(m) FIND + UNION  

April 15, 2014 CS38 Lecture 5 21 

O(m + n log n) 

vs. O(m log n) 

O(m log m + m log* n) 

Union-find  

data structure 

 
Kevin Wayne’s slides 

based on Kleinberg + Tardos text and  

Dasgupta, Papadimitriou,Vazirani text 
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