Greedy algorithms

- **Greedy algorithm** paradigm
 - build up a solution incrementally
 - at each step, make the “greedy” choice
- **Example**: in undirected graph $G = (V,E)$, a vertex cover is a subset of V that touches every edge
 - a hard problem: find the smallest vertex cover

Dijkstra’s algorithm

- given
 - directed graph $G = (V,E)$ with non-negative edge weights
 - starting vertex $s \in V$
- find shortest paths from s to all nodes v
 - note: unweighted case solved by BFS

Dijkstra’s algorithm

- shortest paths exhibit “optimal substructure” property
 - optimal solution contains within it optimal solutions to subproblems
 - a shortest path from x to y via z contains a shortest path from x to z
- shortest paths from s form a tree rooted at s
- **Main idea**:
 - maintain set $S \subseteq V$ with correct distances
 - add nbr u with smallest “distance estimate”

Lemma: can be implemented to run in $O(m)$ time plus n EXTRACT-MIN and m DECREASE-KEY calls.

Proof?
Dijkstra’s algorithm

Lemma: can be implemented to run in \(O(m) \) time plus \(n \) \text{EXTRACT-MIN} and \(m \) \text{DECREASE-KEY} calls.

Proof: each vertex added to \(H \) once, adj. list scanned once, \(O(1) \) work apart from \text{min-heap} calls.

Dijkstra’s algorithm

Lemma: invariant of algorithm: for all \(v \in S \) it \(v\.dist = \text{distance}(s, v) \).

Proof: induction on size of \(S \)
- base case: \(S = \emptyset \), trivially true
- case \(|S| = k\):

Dijkstra’s example from CLRS

Dijkstra’s algorithm

Theorem (Dijkstra): there is an \(O(n \log n + m) \) time algorithm that is given
- a directed graph with nonnegative weights
- a starting vertex \(s \)
and finds
- distances from \(s \) to every other vertex
- (and produces a shortest path tree from \(s \))

\(\quad \text{later: Fibonacci heaps: } O(n \log n + m) \) time

We proved: