 Outline

• graph traversals (BFS, DFS)
• connectivity
• topological sort
• strongly connected components
• heaps and heapsort
• greedy algorithms…

Graphs

• Graph G = (V, E)
 – directed or undirected
 – notation: n = |V|, m = |E| (note: m ≤ n²)
 – adjacency list or adjacency matrix

Graph traversals

• Graph traversal algorithm: visit some or all of the nodes in a graph, labeling them with useful information
 – breadth-first: useful for undirected, yields connectivity and shortest-paths information
 – depth-first: useful for directed, yields numbering used for
 • topological sort
 • strongly-connected component decomposition
Breadth first search

BFS(undirected graph G, starting vertex s)

1. for each vertex v, v.color = white, v.dist = ∞, v.pred = nil
2. s.color = grey, s.dist = 0, s.pred = nil
3. Q = (); ENQUEUE(Q, s)
4. WHILE Q is not empty
 4. u = DEQUEUE(Q)
 5. for each v adjacent to u
 6. IF v.color = white
 7. v.color = grey, v.dist = u.dist + 1, v.pred = u
 8. ENQUEUE(Q, v)
 9. u.color = black

Lemma: BFS runs in time O(m + n), when G is represented by an adjacency list.

April 3, 2014

Breadth first search

Lemma: for all v ∈ V, v.dist = distance(s, v), and a shortest path from s to v is a shortest path from s to v.pred followed by edge (v.pred, v)

Proof: partition V into levels
- L₀ = {s}
- Lᵢ = {v : ∃ u ∈ Lᵢ₋₁ such that (u, v) ∈ E}
- Observe: distance(s, v) = i ⇔ v ∈ Lᵢ

edges only within layers or between adjacent layers

Claim: at any point in operation of algorithm:
1. black/grey vertices exactly L₀, L₁, ..., Lᵢ and part of Lᵢ₊₁
2. Q = (v₀, v₁, v₂, v₃, ..., vᵦ) and all have v.dist = level of v
 - level i
 - level i + 1

holds initially: s.color = grey, s.dist = 0, Q = (s)

April 3, 2014

Breadth first search

Claim: at any point in operation of algorithm:
1. black/grey vertices exactly L₀, L₁, ..., Lᵢ and part of Lᵢ₊₁
2. Q = (v₀, v₁, v₂, v₃, ..., vᵦ) and all have v.dist = level of v
 - level i
 - level i + 1

1 step: dequeue v₀; add white nbrs of v₀ w/ dist = v₀.dist + 1

April 3, 2014

Depth first search

DFS(directed graph G)

1. for each vertex v, v.color = white, v.pred = nil
2. time = 0
3. for each vertex u, IF u.color = white THEN DFS-VISIT(G, u)

DFS-VISIT(directed graph G, starting vertex u)

1. time = time + 1, u.discovered = time, u.color = grey
2. for each v adjacent to u, IF v.color = white
 3. v.pred = u, DFS-VISIT(G, v)
 4. u.color = black; time = time + 1; u.finished = time

Lemma: DFS runs in time O(m + n), when G is represented by an adjacency list.

Proof?
Depth first search

Lemma: DFS runs in time $O(m + n)$, when G is represented by an adjacency list.

Proof: DFS-VISIT called for each vertex exactly once; its adj. list scanned once; $O(1)$ work.

DFS example from CLRS

DFS application: topological sort

- Given DAG, list vertices $v_0, v_1, ..., v_n$ so that no edges from v_j to v_i ($j < i$)

- **example:**

Strongly connected components

- say that $x \sim y$ if there is a directed path from x to y and from y to x in G
- equivalence relation, equivalence classes are **strongly connected components** of G
 - also, maximal strongly connected subsets
- **SCC** structure is a DAG (why?)
Strongly connected components

- DFS tree from v in G: all nodes reachable from v
- DFS tree from v in G^T: all nodes that can reach v

Key: in sink SCC, this is exactly the SCC

April 3, 2014 CS38 Lecture 2

Strongly connected components

- given v in a sink SCC, run DFS starting there, then move to next in reverse topological order…
 - DFS forest would give the SCCs
- **Key #2**: topological ordering consistent with SCC DAG structure! (why?)

April 3, 2014 CS38 Lecture 2

Strongly connected components

SCC (directed graph G)
1. run DFS(G)
2. construct G^T from G
3. run DFS(G^T) but in line 3, consider vertices in decreasing order of finishing times from the first DFS

- running time $O(n + m)$ if G in adj. list
 - note: step 2 can be done in $O(m + n)$ time
- trees in DFS forest of the second DFS are the SCCs of G

April 3, 2014 CS38 Lecture 2

Summary

- $O(m + n)$ time algorithms for
 - computing BFS tree from v in undirected G
 - finding shortest paths from v in undirected G
 - computing DFS forest in directed G
 - computing a topological ordering of a DAG
 - identifying the strongly connected components of a directed G
 (all assume G given in adjacency list format)

Heaps

- A basic data structure beyond stacks and queues: heap
 - array of n elt/key pairs in special order
 - min-heap or max-heap operations:
 - INSERT(H, elt)
 - INCREASE-KEY(H, i)
 - EXTRACT-MAX(H)

April 3, 2014 CS38 Lecture 2
Heaps

• A basic data structure beyond stacks and queues: heap
 – array of n elt/key pairs in special order
 – min-heap or max-heap

operations: time:
INSERT(H, elt) O(log n)
INCREASE-KEY(H, i) O(log n)
EXTRACT-MAX(H) O(log n)

April 3, 2014 CS38 Lecture 2 25

Heaps

• array A represents a binary tree that is full except for possibly last "row"

height = \lfloor \log n \rfloor + 1

\begin{align*}
& \text{parent}(i) = \lfloor i/2 \rfloor \quad \text{left}(i) = 2i \quad \text{right}(i) = 2i+1 \\
& \text{heap property: } A[\text{parent}(i)] \geq A[i] \text{ for all } i
\end{align*}

April 3, 2014 CS38 Lecture 2 26

Heaps

• key operation: HEAPIFY-DOWN(H, i)

A[i] may violate heap property
– repeatedly swap with larger child
– running time?

April 3, 2014 CS38 Lecture 2 27

Heaps

• key operation: HEAPIFY-UP(H, i)

A[i] may violate heap property
– repeatedly swap with larger child
– running time?

April 3, 2014 CS38 Lecture 2 28

Heaps

• How do you implement
 operations: time:
 INSERT(H, elt) O(log n)
 INCREASE-KEY(H, i) O(log n)
 EXTRACT-MAX(H) O(log n)

 using HEAPIFY-UP and HEAPIFY-DOWN?

• BUILD-HEAP(A): re-orders array A so that it satisfies heap property
 – call HEAPIFY-DOWN(H, i)
 for i from n downto 1
 – running time O(n log n)

 – more careful analysis: O(n)

\[\sum_{k=0}^{\log n} \left(\frac{n}{2^{k+1}} \right) = O(n) \cdot \sum_{k=0}^{\log n} \frac{1}{2^k} = O(n) \]

April 3, 2014 CS38 Lecture 2 29

Heaps

• BUILD-HEAP(A): re-orders array A so that it satisfies heap property
 – call HEAPIFY-DOWN(H, i)
 for i from n downto 1
 – running time O(n log n)

 – more careful analysis: O(n)

\[\sum_{k=0}^{\log n} \left(\frac{n}{2^{k+1}} \right) = O(n) \cdot \sum_{k=0}^{\log n} \frac{1}{2^k} = O(n) \]

April 3, 2014 CS38 Lecture 2 30
Heaps

\[
\sum_{h=0}^{\log n} \left\lfloor \frac{n}{2^{h+1}} \right\rfloor \cdot O(h) = O(n) \cdot \sum_{h=0}^{\log n} \frac{n}{2^h} = O(n)
\]

• suffices to show \(\sum_{h>0} h/2^h = O(1) \)

• note: \(\sum_{h>0} c^h = O(1) \) for \(c < 1 \)

• observe: \((h+1)/2^{h+1} = h/(2^h) \cdot (1+1/h)/2 \)

• \((1+1/h)/2 < 1 \) for \(h > 1 \)

Heapsort

• Sorting \(n \) numbers using a heap
 – BUILD-HEAP(A) \(O(n) \)
 – repeatedly EXTRACT-MIN(H) \(nO(\log n) \)
 – total \(O(n \log n) \)

• Can we do better? \(O(n) ? \)
 – observe that only ever compare values
 – no decisions based on actual values of keys

Sorting lower bound

comparison-based sort: only information about \(A \) used by algorithm comes from pairwise comparisons
 – heapsort, mergesort, quicksort, …

 visualize sequence of comparisons in tree:

 • each root-leaf path consistent with 1 perm.
 • maximum path length \(\geq \log(n!) = (n \log n) \)

Greedy algorithms

• Greedy algorithm paradigm
 – build up a solution incrementally
 – at each step, make the “greedy” choice

Example: in undirected graph \(G = (V,E) \), a vertex cover is a subset of \(V \) that touches every edge

 – a hard problem: find the smallest vertex cover

Dijkstra’s algorithm

• given
 – directed graph \(G = (V,E) \) with non-negative edge weights
 – starting vertex \(s \in V \)
 – find shortest paths from \(s \) to all nodes \(v \)

 – note: unweighted case solved by BFS
Dijkstra’s algorithm

• shortest paths exhibit "optimal substructure" property
 – optimal solution contains within it optimal solutions to subproblems
 – a shortest path from x to y via z contains a shortest path from x to z
• shortest paths from s form a tree rooted at s
• Main idea:
 – maintain set $S \subseteq V$ with correct distances
 – add nbr u with smallest "distance estimate"