
1

CS38

Introduction to Algorithms

Lecture 2

April 3, 2014

April 3, 2014 CS38 Lecture 2 2

Outline

• graph traversals (BFS, DFS)

• connectivity

• topological sort

• strongly connected components

• heaps and heapsort

• greedy algorithms…

Graphs

• Graph G = (V, E)

– directed or undirected

– notation: n = |V|, m = |E| (note: m · n2)

– adjacency list or adjacency matrix

April 3, 2014 CS38 Lecture 2 3

a

b

c

a

b

c

c b

b

0 1 1

0 0 0

0 1 0

a b c

a

b

c

Graphs

• Graphs model many things…

– physical networks (e.g. roads)

– communication networks (e.g. internet)

– information networks (e.g. the web)

– social networks (e.g. friends)

– dependency networks (e.g. topics in this course)

… so many fundamental algorithms operate

on graphs

April 3, 2014 CS38 Lecture 2 4

Graphs

• Graph terminology:

– an undirected graph is connected if there is a

path between each pair of vertices

– a tree is a connected, undirected graph with

no cycles; a forest is a collection of disjoint

trees

– a directed graph is strongly connected if there
is a path from x to y and from y to x, 8 x,y2V

– a DAG is a Directed Acyclic Graph

April 3, 2014 CS38 Lecture 2 5

Graph traversals

• Graph traversal algorithm: visit some or all

of the nodes in a graph, labeling them with

useful information

– breadth-first: useful for undirected, yields

connectivity and shortest-paths information

– depth-first: useful for directed, yields

numbering used for

• topological sort

• strongly-connected component decomposition

April 3, 2014 CS38 Lecture 2 6

2

Breadth first search
BFS(undirected graph G, starting vertex s)

1. for each vertex v, v.color = white, v.dist = 1, v.pred = nil

2. s.color = grey, s.dist = 0, s.pred = nil

3. Q = ;; ENQUEUE(Q, s)

4. WHILE Q is not empty u = DEQUEUE(Q)

5. for each v adjacent to u

6. IF v.color = white THEN

7. v.color = grey, v.dist = u.dist + 1, v.pred = u

8. ENQUEUE(Q, v)

9. u.color = black

Lemma: BFS runs in time O(m + n), when G is represented

by an adjacency list.

April 3, 2014 7 CS38 Lecture 2

BFS example from CLRS

8

s

Breadth first search

Lemma: for all v 2 V, v.dist = distance(s, v), and a

shortest path from s to v is a shortest path from

s to v.pred followed by edge (v.pred,v)

Proof: partition V into levels

– L0 = {s}

– Li = {v : 9 u 2 Li-1 such that (u,v) 2 E}

– Observe: distance(s,v) = i , v 2 Li

L0 L1 L2 Ln

edges only within

layers or between

adjacent layers

Breadth first search

Claim: at any point in operation of algorithm:

 1. black/grey vertices exactly L0, L1, …, Li and part of Li+1

 2. Q = (v0, v1, v2, v3, …, vk) and all have v.dist = level of v

 holds initially: s.color = grey, s.dist = 0, Q = (s)

April 3, 2014 CS38 Lecture 2 10

s

L0 L1 L2 Ln

edges only within

layers or between

adjacent layers

level i level i+1

Breadth first search

Claim: at any point in operation of algorithm:

 1. black/grey vertices exactly L0, L1, …, Li and part of Li+1

 2. Q = (v0, v1, v2, v3, …, vk) and all have v.dist = level of v

1 step: dequeue v0; add white nbrs of v0 w/ dist = v0.dist + 1

April 3, 2014 CS38 Lecture 2 11

s

L0 L1 L2 Ln

edges only within

layers or between

adjacent layers

level i level i+1
) level ¸ i+1

) level · i+1

Depth first search

Lemma: DFS runs in time O(m + n), when G is represented

by an adjacency list.

Proof?

DFS(directed graph G)

1. for each vertex v, v.color = white, v.pred = nil

2. time = 0

3. for each vertex u, IF u.color = white THEN DFS-VISIT(G, u)

DFS-VISIT(directed graph G, starting vertex u)

1. time = time +1, u.discovered = time, u.color = grey

2. for each v adjacent to u, IF v.color = white THEN

3. v.pred = u, DFS-VISIT(G, v)

4. u.color = black; time = time + 1; u.finished = time

April 3, 2014 12 CS38 Lecture 2

3

Depth first search

Lemma: DFS runs in time O(m + n), when G is represented

by an adjacency list.

Proof: DFS-VISIT called for each vertex exactly once; its

adj. list scanned once; O(1) work

DFS(directed graph G)

1. for each vertex v, v.color = white, v.pred = nil

2. time = 0

3. for each vertex u, IF u.color = white THEN DFS-VISIT(G, u)

DFS-VISIT(directed graph G, starting vertex u)

1. time = time +1, u.discovered = time, u.color = grey

2. for each v adjacent to u, IF v.color = white THEN

3. v.pred = u, DFS-VISIT(G, v)

4. u.color = black; time = time + 1; u.finished = time

April 3, 2014 13 CS38 Lecture 2

Depth first search

• DFS yields a forest: “the DFS forest”

• each vertex labeled with discovery time

and finishing time

• edges of G classified as

– tree edges

– back edges (point back to an ancestor)

– forward edges (point forward to a descendant)

– cross edges (all others)

April 3, 2014 CS38 Lecture 2 14

DFS example from CLRS
DFS application: topological sort

• Given DAG, list vertices v0, v1, …., vn so

that no edges from vi to vj (j < i)

 example:

April 3, 2014 CS38 Lecture 2 16

a

b

c

d

f

e

c e d f b a

DFS application: topological sort

Theorem: listing vertices in reverse order of
DFS finishing times yields a topological sort
of DAG G

(can implement in linear time; how?)

Proof: claim for all (u,v) 2 E, v.finish < u.finish

– when (u,v) explored, v not grey since then G
would have a cycle [back-edge]

– v white) descendent of u so v finishes first

– v black) already done, so v.finish is set and
u.finish will be set with a later time

April 3, 2014 CS38 Lecture 2 17

Strongly connected components

• say that x » y if there is a directed path

from x to y and from y to x in G

• equivalence relation, equivalence classes

are strongly connected components of G

– also, maximal strongly connected subsets

• SCC structure is a DAG (why?)

April 3, 2014 CS38 Lecture 2 18

4

Strongly connected components

• DFS tree from v in G: all nodes reachable

from v

• DFS tree from v in GT: all nodes that can

reach v

• Key: in sink SCC, this is exactly the SCC

April 3, 2014 CS38 Lecture 2 19

G with edges reversed

v

Strongly connected components

• given v in a sink SCC, run DFS starting there,

then move to next in reverse topological order…

– DFS forest would give the SCCs

• Key #2: topological ordering consistent

with SCC DAG structure! (why?)

April 3, 2014 CS38 Lecture 2 20

v

Strongly connected components

• running time O(n + m) if G in adj. list

– note: step 2 can be done in O(m + n) time

• trees in DFS forest of the second DFS are

the SCCs of G

April 3, 2014 CS38 Lecture 2 21

SCC(directed graph G)

1. run DFS(G)

2. construct GT from G

3. run DFS(GT) but in line 3, consider vertices in decreasing

order of finishing times from the first DFS

Strongly connected components

Correctness (sketch):

– first vertex is in sink SCC, DFS-VISIT colors
black, effectively removes

– next unvisited vertex is in sink after removal

– and so on…

April 3, 2014 CS38 Lecture 2 22

SCC(directed graph G)

1. run DFS(G)

2. construct GT from G

3. run DFS(GT) but in line 3, consider vertices in decreasing

order of finishing times from the first DFS

Summary

• O(m + n) time algorithms for

– computing BFS tree from v in undirected G

– finding shortest paths from v in undirected G

– computing DFS forest in directed G

– computing a topological ordering of a DAG

– identifying the strongly connected

components of a directed G

(all assume G given in adjacency list format)

April 3, 2014 CS38 Lecture 2 23

Heaps

• A basic data structure beyond stacks and

queues: heap

– array of n elt/key pairs in special order

– min-heap or max-heap

 operations:

 INSERT(H, elt)

 INCREASE-KEY(H, i)

 EXTRACT-MAX(H)

April 3, 2014 CS38 Lecture 2 24

5

Heaps

• A basic data structure beyond stacks and

queues: heap

– array of n elt/key pairs in special order

– min-heap or max-heap

 operations: time:

 INSERT(H, elt) O(log n)

 INCREASE-KEY(H, i) O(log n)

 EXTRACT-MAX(H) O(log n)

April 3, 2014 CS38 Lecture 2 25

Heaps

• array A represents a binary tree that is full

except for possibly last “row”

• heap property: A[parent(i)] ¸ A[i] for all i

April 3, 2014 CS38 Lecture 2 26

parent(i) = bi/2c

left(i) = 2i
right(i) = 2i+1

height =

O(log n)

Heaps

• key operation: HEAPIFY-DOWN(H, i)

April 3, 2014 CS38 Lecture 2 27

A[i] may violate heap property

– repeatedly swap with larger child

– running time? O(log n) or O(ht)

Heaps

• key operation: HEAPIFY-UP(H, i)

April 3, 2014 CS38 Lecture 2 28

A[i] may violate heap property

– repeatedly swap with larger child

– running time? O(log n) or O(ht)

Heaps

• How do you implement

 operations: time:

 INSERT(H, elt) O(log n)

 INCREASE-KEY(H, i) O(log n)

 EXTRACT-MAX(H) O(log n)

using HEAPIFY-UP and HEAPIFY-DOWN?

• BUILD-HEAP(A): re-orders array A so that it

satisfies heap property

– how do we do this? running time?

April 3, 2014 CS38 Lecture 2 29

Heaps

• BUILD-HEAP(A): re-orders array A so that it

satisfies heap property

– call HEAPIFY-DOWN(H, i)

 for i from n downto 1

– running time O(n log n)

– more careful analysis: O(n)

April 3, 2014 CS38 Lecture 2 30

6

Heaps

• suffices to show h¸0 h/2h = O(1)

• note: h¸0 c
h = O(1) for c < 1

• observe: (h+1)/2h+1 = h/(2h) ¢ (1+1/h)/2

• (1+1/h)/2 < 1 for h > 1

April 3, 2014 CS38 Lecture 2 31

Heapsort

• Sorting n numbers using a heap

– BUILD-HEAP(A) O(n)

– repeatedly EXTRACT-MIN(H) n¢O(log n)

– total O(n log n)

• Can we do better? O(n)?

– observe that only ever compare values

– no decisions based on actual values of keys

April 3, 2014 CS38 Lecture 2 32

Sorting lower bound

comparison-based sort: only information

about A used by algorithm comes from

pairwise comparisons

– heapsort, mergesort, quicksort, …

April 3, 2014 CS38 Lecture 2 33

visualize sequence of com-

parisons in tree:
“is A[i] · A[j]?”

• each root-leaf path

consistent with 1 perm.

• maximum path length
¸ log(n!) = (n log n)

Greedy

Algorithms

April 3, 2014 CS38 Lecture 2 34

Greedy algorithms

• Greedy algorithm paradigm

– build up a solution incrementally

– at each step, make the “greedy” choice

Example: in undirected graph G = (V,E), a vertex

cover is a subset of V that touches every edge

– a hard problem: find the smallest vertex cover

April 3, 2014 CS38 Lecture 2 35

a

b

c

d

f

e

a

b

c

d

f

Dijkstra’s algorithm

• given

– directed graph G = (V,E) with non-negative

edge weights

– starting vertex s 2 V

• find shortest paths from s to all nodes v

– note: unweighted case solved by BFS

April 3, 2014 CS38 Lecture 2 36

7

Dijkstra’s algorithm

• shortest paths exhibit “optimal substructure”
property

– optimal solution contains within it optimal
solutions to subproblems

– a shortest path from x to y via z contains a shortest
path from x to z

• shortest paths from s form a tree rooted at s

• Main idea:
– maintain set S µ V with correct distances

– add nbr u with smallest “distance estimate”

April 3, 2014 CS38 Lecture 2 37

