CS38
Introduction to Algorithms

Outline

« graph traversals (BFS, DFS)

* connectivity

» topological sort

» strongly connected components

Lecture 2
April 3, 2014 * heaps and heapsort
* greedy algorithms...
Graphs Graphs

* Graph G =(V, E)
— directed or undirected
— notation: n = |V|, m = |E| (note: m < n?)
— adjacency list or adjacency matrix

aa“ @
@

1|1
0|0 e.o
11]0

(¢}

0
b| o
0

April 3, 2014 CS38 Lecture 2

* Graphs model many things...
— physical networks (e.g. roads)
— communication networks (e.g. internet)
— information networks (e.g. the web)
— social networks (e.g. friends)
— dependency networks (e.g. topics in this course)

... s0 many fundamental algorithms operate
on graphs

April 3, 2014 CS38 Lecture 2

Graphs

* Graph terminology:
—an undirected graph is connected if there is a
path between each pair of vertices

—atree is a connected, undirected graph with
no cycles; a forest is a collection of disjoint
trees

—a directed graph is strongly connected if there
is a path from x to y and from y to x, V x,yeV

—a DAG is a Directed Acyclic Graph

April 3, 2014 CS38 Lecture 2 5

Graph traversals

» Graph traversal algorithm: visit some or all
of the nodes in a graph, labeling them with
useful information
— breadth-first: useful for undirected, yields

connectivity and shortest-paths information

— depth-first: useful for directed, yields
numbering used for
* topological sort
« strongly-connected component decomposition

April 3, 2014 CS38 Lecture 2 6

Breadth first search

BFS(undirected graph G, starting vertex s)

1. for each vertex v, v.color = white, v.dist = oo, v.pred = nil
2. s.color = grey, s.dist = 0, s.pred = nil
3. Q=0; ENQUEUE(Q, s)

4. WHILE Q is not empty u = DEQUEUE(Q)
5. for each v adjacent to u
6.
.
8.
9.

IF v.color = white THEN
v.color = grey, v.dist = u.dist + 1, v.pred = u
ENQUEUE(Q, v)

u.color = black

Lemma: BFS runs in time O(m + n), when G is represented
by an adjacency list.

April 3, 2014 CS38 Lecture 2 7

BF\S e>ﬂ<amp|e from,QLRS
5027 e Mg 478

Breadth first search

Lemma: for all v € V, v.dist = distance(s, v), and a
shortest path from s to v is a shortest path from
s to v.pred followed by edge (v.pred,v)

Proof: partition V into levels
- Lo={s}
— Li={v:3Jue L suchthat(uyv) € E}
— Observe: distance(s,v) =i < v e L

._

0

edges only within
layers or between
adjacent layers

Breadth first search

U S edges only within
layers or between
adjacent layers
L L, L, [

0

Claim: at any point in operation of algorithm:
1. black/grey vertices exactly L, L,, ..., L;and part of L,

2.Q = (v, Vq, Vy, Vg, ...,) and all have v.dist = level of v

leveli level i+1

holds initially: s.color = grey, s.dist=0, Q = (s)

April 3, 2014 CS38 Lecture 2 10

Breadth first search

edges only within
layers or between
adjacent layers
L, L L, L,

0

Claim: at any point in operation of algorithm:
1. black/grey vertices exactly L, Ly, ..., L;and part of L,
2.Q =(Vg, V4, Vy, V3, ..., V) and all have v.dist = level of v

. = level > i+1
level i level i+1 = level < i+1

1 step: dequeue v,; add white nbrs of v, w/ dist = v,.dist + 1

April 3, 2014 CS38 Lecture 2 u

Depth first search

DFS(directed graph G)

1. for each vertex v, v.color = white, v.pred = nil

2. time=0

3. for each vertex u, IF u.color = white THEN DFS-VISIT(G, u)
DFS-VISIT(directed graph G, starting vertex u)

1. time = time +1, u.discovered = time, u.color = grey

2. for each v adjacent to u, IF v.color = white THEN

3. v.pred = u, DFS-VISIT(G, v)

4. u.color = black; time = time + 1; u.finished = time

Lemma: DFS runs in time O(m + n), when G is represented
by an adjacency list.

Proof?

April 3, 2014 CS38 Lecture 2 12

Depth first search

DFS(directed graph G)

1. for each vertex v, v.color = white, v.pred = nil

2. time=0

3. for each vertex u, IF u.color = white THEN DFS-VISIT(G, u)
DFS-VISIT(directed graph G, starting vertex u)

1. time = time +1, u.discovered = time, u.color = grey

2. for each v adjacent to u, IF v.color = white THEN

3. v.pred = u, DFS-VISIT(G, v)

4. u.color = black; time = time + 1; u.finished = time

Lemma: DFS runs in time O(m + n), when G is represented
by an adjacency list.

Proof: DFS-VISIT called for each vertex exactly once; its
adj. list scanned once; O(1) work

April 3, 2014 CS38 Lecture 2 13

Depth first search

* DFS yields a forest: “the DFS forest”

» each vertex labeled with discovery time
and finishing time

» edges of G classified as
—tree edges
— back edges (point back to an ancestor)
— forward edges (point forward to a descendant)
— cross edges (all others)

April 3, 2014 CS38 Lecture 2 14

DFS example from CLRS

it -EF - i -y

J ‘:.I
11 ﬁ

DFS application: topological sort

+ Given DAG, list vertices v, vy,, V, SO
that no edges from v; to v, (j < i)

example:

G- Q—@—0 >0

April 3, 2014 CS38 Lecture 2 16

DFS application: topological sort

Theorem: listing vertices in reverse order of
DFS finishing times yields a topological sort
of DAG G

(can implement in linear time; how?)

Proof: claim for all (u,v) € E, v.finish < u.finish

— when (u,v) explored, v not grey since then G
would have a cycle [back-edge]
— v white = descendent of u so v finishes first

— Vv black = already done, so v.finish is set and
u.finish will be set with a later time

April 3, 2014 CS38 Lecture 2 17

Strongly connected components

» say that x ~ y if there is a directed path
from x toy and fromy to xin G

* equivalence relation, equivalence classes
are strongly connected components of G
— also, maximal strongly connected subsets

* SCC structure is a DAG (why?)

April 3, 2014 CS38 Lecture 2 18

Strongly connected components

* DFS tree from v in G: all nodes reachable
from v [G with edges reversed |

« DFS tree from v in GT: all nodes that can
reach v

» Key: in sink SCC, this is exactly the SCC

April 3, 2014 CS38 Lecture 2 19

Strongly connected components

» given v in a sink SCC, run DFS starting there,
then move to next in reverse topological order...

— DFS forest would give the SCCs

» Key #2: topological ordering consistent
with SCC DAG structure! (why?)

April 3, 2014 CS38 Lecture 2 20

Strongly connected components

SCC(directed graph G)
1. run DFS(G)
2. construct GT from G

3. run DFS(GT) but in line 3, consider vertices in decreasing
order of finishing times from the first DFS

* running time O(n + m) if G in ad;. list
—note: step 2 can be done in O(m + n) time

* trees in DFS forest of the second DFS are
the SCCs of G

April 3, 2014 CS38 Lecture 2 21

Strongly connected components

SCC(directed graph G)
1. run DFS(G)
2. construct GT from G

3. run DFS(GT) but in line 3, consider vertices in decreasing
order of finishing times from the first DFS

Correctness (sketch):

— first vertex is in sink SCC, DFS-VISIT colors
black, effectively removes

— next unvisited vertex is in sink after removal
—andsoon...

April 3, 2014 CS38 Lecture 2 22

Summary

* O(m + n) time algorithms for
— computing BFS tree from v in undirected G
— finding shortest paths from v in undirected G
— computing DFS forest in directed G
— computing a topological ordering of a DAG

— identifying the strongly connected
components of a directed G

(all assume G given in adjacency list format)

April 3, 2014 CS38 Lecture 2 23

Heaps

» A basic data structure beyond stacks and
gueues: heap
— array of n elt/key pairs in special order
— min-heap or max-heap
operations:
INSERT(H, elt)
INCREASE-KEY(H, i)
EXTRACT-MAX(H)

April 3, 2014 CS38 Lecture 2 24

Heaps

A basic data structure beyond stacks and
queues: heap

Heaps

* array A represents a binary tree that is full
except for possibly last “row”

— array of n elt/key pairs in special order @ lF;éf‘t'(ei)”‘z(i); /2]
— min-heap or max-heap P TN right(i) = 2i+1
il i he‘ght: a2y 5 2 1 2 3 4 5 6 7 8) 0
operations: time: Staan| f\?\ : \./U\ﬁ'\ [ESyry E
INSERT(H, elt) O(log n) /N‘-"’u\ f_j,z—" - e —
INCREASE-KEY(H,i)) O(logn) @00 N
EXTRACT-MAX(H) O(log n) « heap property: A[parent(i)] > A[i] for all i
April 3, 2014 CS38 Lecture 2 25 April 3, 2014 CS38 Lecture 2 26
Heaps Heaps
 key operation: HEAPIFY-DOWN(H, i) * key operation: HEAPIFY-UP(H, i)
Ali] may violate heap property) \
— repeatedly swap with larger child ./_/'“’_ 4_/'”!_‘
— running time?]“b e 9

A[i] may violate heap property
— repeatedly swap with larger child
— running time?

April 3, 2014 CS38 Lecture 2 27 April 3, 2014 Cgi’iﬂ Lecture 2 v 28
Heaps Heaps

* How do you implement + BUILD-HEAP(A): re-orders array A s0 that it
operations: time: satisfies heap property (E‘
INSERT(H, elt) O(log) - call HEAPIFY-DOWN(H,) A NG
INCREASE-KEY(H,i) O(log n) fori from n downto 1 /‘ \G\ 9/‘ \,
EXTRACT-MAX(H) O(log n) - runningtime O(nlog n) /%,

@@ @

using HEAPIFY-UP and HEAPIFY-DOWN?

» BUILD-HEAP(A): re-orders array A so that it
satisfies heap property
— how do we do this? running time?

April 3, 2014 CS38 Lecture 2 29

— more careful analysis: O(n)

logn

& h
Z ’727114-‘ =0(n)- z o= O(n)

h=0

April 3, 2014 CS38 Lecture 2 30

Heaps

logn log n

Z [QJL-‘ O(h) = O(n) - Z % = 0(n)

h=0 h=0

suffices to show 3., h/2" = O(1)

note: X,., c"=0(1) forc<1
observe: (h+1)/2M1 = h/(2") . (1+1/h)/2
(A+1/h)/2<1forh>1

April 3, 2014 CS38 Lecture 2 31

Heapsort
 Sorting n numbers using a heap
— BUILD-HEAP(A) Oo(n)
— repeatedly EXTRACT-MIN(H) n-O(log n)

—total O(n log n)

» Can we do better? O(n)?
— observe that only ever compare values
— no decisions based on actual values of keys

April 3, 2014 CS38 Lecture 2 32

Sorting lower bound

comparison-based sort: only information
about A used by algorithm comes from
pairwise comparisons
— heapsort, mergesort, quicksort, ...

visualize sequence of com- s | s Al < Al
parisons in tree: /‘*' >

233 13)

) gED

* each root-leaf path S]/ N =N

consistent with 1 perm. | {123 gED 2.13) 23>
>

Greedy
Algorithms

it B R
April 3, 2014 CS38 Lecture 2 33 April 3, 2014 CS38 Lecture 2 34
Greedy algorithms Dijkstra’s algorithm

» Greedy algorithm paradigm
— build up a solution incrementally
— at each step, make the “greedy” choice

Example: in undirected graph G = (V,E), a vertex
cover is a subset of V that touches every edge
— a hard problem: find the smallest vertex cover

&._® 0 _@
o'~°e° gP ©

April 3, 2014 CS38 Lecture 2 35

* given
— directed graph G = (V,E) with non-negative
edge weights
— starting vertex s € V
» find shortest paths from s to all nodes v
— note: unweighted case solved by BFS

April 3, 2014 CS38 Lecture 2 36

Dijkstra’s algorithm

« shortest paths exhibit “optimal substructure”
property

— optimal solution contains within it optimal
solutions to subproblems

— a shortest path from x to y via z contains a shortest
path from x to z

shortest paths from s form a tree rooted at s
* Main idea:

— maintain set S C V with correct distances
— add nbr u with smallest “distance estimate”

April 3, 2014

CS38 Lecture 2

