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Outline 

• graph traversals (BFS, DFS) 

• connectivity  

• topological sort  

• strongly connected components 

 

• heaps and heapsort 

• greedy algorithms… 

Graphs 

• Graph G = (V, E)  

– directed or undirected 

– notation: n = |V|, m = |E|  (note: m · n2) 

– adjacency list or adjacency matrix 
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Graphs 

• Graphs model many things… 

– physical networks (e.g. roads) 

– communication networks (e.g. internet) 

– information networks (e.g. the web) 

– social networks (e.g. friends) 

– dependency networks (e.g. topics in this course) 

… so many fundamental algorithms operate 

on graphs 
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Graphs 

• Graph terminology: 

– an undirected graph is connected if there is a 

path between each pair of vertices 

– a tree is a connected, undirected graph with 

no cycles; a forest is a collection of disjoint 

trees 

– a directed graph is strongly connected if there 
is a path from x to y and from y to x,  8 x,y2V 

– a DAG is a Directed Acyclic Graph 
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Graph traversals 

• Graph traversal algorithm: visit some or all 

of the nodes in a graph, labeling them with 

useful information 

– breadth-first: useful for undirected, yields 

connectivity and shortest-paths information 

– depth-first: useful for directed, yields 

numbering used for 

• topological sort 

• strongly-connected component decomposition  
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Breadth first search 
BFS(undirected graph G,  starting vertex s) 

1. for each vertex v, v.color = white, v.dist = 1, v.pred = nil 

2. s.color = grey, s.dist = 0, s.pred = nil 

3. Q = ;; ENQUEUE(Q, s) 

4. WHILE Q is not empty u = DEQUEUE(Q) 

5.        for each v adjacent to u 

6.              IF v.color = white THEN 

7.                  v.color = grey, v.dist = u.dist + 1, v.pred = u 

8.                  ENQUEUE(Q, v) 

9.              u.color = black   

Lemma: BFS runs in time O(m + n), when G is represented 

by an adjacency list. 
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BFS example from CLRS 

8 

s 

Breadth first search 

Lemma: for all v 2 V, v.dist = distance(s, v), and a 

shortest path from s to v is a shortest path from 

s to v.pred followed by edge (v.pred,v) 

Proof: partition V into levels 

– L0 = {s} 

– Li = {v : 9 u 2 Li-1 such that (u,v) 2 E} 

– Observe: distance(s,v) = i , v 2 Li 

  

  

L0 L1 L2 Ln 

edges only within 

layers or between 

adjacent layers 

Breadth first search 

Claim: at any point in operation of algorithm: 

 1. black/grey vertices exactly L0, L1, …, Li and part of Li+1 

 2. Q = (v0, v1, v2, v3, …, vk)  and all have v.dist = level of v 

 

 

 holds initially: s.color = grey, s.dist = 0, Q = (s) 
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L0 L1 L2 Ln 

edges only within 

layers or between 

adjacent layers 

level i level i+1 

Breadth first search 

Claim: at any point in operation of algorithm: 

 1. black/grey vertices exactly L0, L1, …, Li and part of Li+1 

 2. Q = (v0, v1, v2, v3, …, vk)  and all have v.dist = level of v 

 

 

1 step: dequeue v0; add white nbrs of v0 w/ dist = v0.dist + 1 
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layers or between 
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) level ¸ i+1 

) level · i+1 

Depth first search 

Lemma: DFS runs in time O(m + n), when G is represented 

by an adjacency list. 

Proof? 

DFS(directed graph G) 

1. for each vertex v, v.color = white, v.pred = nil 

2. time = 0 

3. for each vertex u, IF u.color = white THEN DFS-VISIT(G, u) 

DFS-VISIT(directed graph G, starting vertex u) 

1. time = time +1, u.discovered = time, u.color = grey 

2. for each v adjacent to u, IF v.color = white THEN 

3.           v.pred = u, DFS-VISIT(G, v) 

4.  u.color = black; time = time + 1; u.finished = time 
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Depth first search 

Lemma: DFS runs in time O(m + n), when G is represented 

by an adjacency list. 

Proof: DFS-VISIT called for each vertex exactly once; its 

adj. list scanned once; O(1) work 

DFS(directed graph G) 

1. for each vertex v, v.color = white, v.pred = nil 

2. time = 0 

3. for each vertex u, IF u.color = white THEN DFS-VISIT(G, u) 

DFS-VISIT(directed graph G, starting vertex u) 

1. time = time +1, u.discovered = time, u.color = grey 

2. for each v adjacent to u, IF v.color = white THEN 

3.           v.pred = u, DFS-VISIT(G, v) 

4.  u.color = black; time = time + 1; u.finished = time 
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Depth first search 

• DFS yields a forest: “the DFS forest” 

• each vertex labeled with discovery time 

and finishing time 

• edges of G classified as 

– tree edges 

– back edges (point back to an ancestor) 

– forward edges (point forward to a descendant) 

– cross edges (all others) 
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DFS example from CLRS 
DFS application: topological sort 

• Given DAG, list vertices v0, v1, …., vn so 

that no edges from vi to vj (j < i) 

 

        example:  
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DFS application: topological sort 

Theorem: listing vertices in reverse order of 
DFS finishing times yields a topological sort 
of DAG G 

(can implement in linear time; how?) 

Proof: claim for all (u,v) 2 E, v.finish < u.finish 

– when (u,v) explored, v not grey since then G 
would have a cycle   [back-edge] 

– v white ) descendent of u so v finishes first 

– v black ) already done, so v.finish is set and 
u.finish will be set with a later time 
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Strongly connected components 

• say that x » y if there is a directed path 

from x to y and from y to x in G 

• equivalence relation, equivalence classes 

are strongly connected components of G 

–  also, maximal strongly connected subsets 

• SCC structure is a DAG (why?) 
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Strongly connected components 

• DFS tree from v in G: all nodes reachable 

from v 

• DFS tree from v in GT: all nodes that can 

reach v 

 

 

 

• Key: in sink SCC, this is exactly the SCC 
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G with edges reversed 

v 

Strongly connected components 

• given v in a sink SCC, run DFS starting there, 

then move to next in reverse topological order… 

– DFS forest would give the SCCs 

• Key #2: topological ordering consistent 

with SCC DAG structure!  (why?) 
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v 

Strongly connected components 

• running time O(n + m) if G in adj. list  

– note: step 2 can be done in O(m + n) time  

• trees in DFS forest of the second DFS are 

the SCCs of G  
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SCC(directed graph G) 

1. run DFS(G) 

2. construct GT from G 

3. run DFS(GT) but in line 3, consider vertices in decreasing 

order of finishing times from the first DFS  

Strongly connected components 

Correctness (sketch): 

– first vertex is in sink SCC, DFS-VISIT colors 
black, effectively removes 

– next unvisited vertex is in sink after removal 

– and so on…  
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SCC(directed graph G) 

1. run DFS(G) 

2. construct GT from G 

3. run DFS(GT) but in line 3, consider vertices in decreasing 

order of finishing times from the first DFS  

Summary 

• O(m + n) time algorithms for 

– computing BFS tree from v in undirected G 

– finding shortest paths from v in undirected G 

– computing DFS forest in directed G 

– computing a topological ordering of a DAG 

– identifying the strongly connected 

components of a directed G 

(all assume G given in adjacency list format)  
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Heaps 

• A basic data structure beyond stacks and 

queues: heap 

– array of n elt/key pairs in special order 

– min-heap or max-heap 

           operations:  

     INSERT(H, elt) 

   INCREASE-KEY(H, i) 

   EXTRACT-MAX(H) 
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Heaps 

• A basic data structure beyond stacks and 

queues: heap 

– array of n elt/key pairs in special order 

– min-heap or max-heap 

              operations:   time: 

   INSERT(H, elt)  O(log n) 

   INCREASE-KEY(H, i) O(log n) 

   EXTRACT-MAX(H)  O(log n) 

 

April 3, 2014 CS38 Lecture 2 25 

Heaps 

• array A represents a binary tree that is full 

except for possibly last “row” 

 

 

 

 

• heap property: A[parent(i)] ¸ A[i] for all i 
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parent(i) = bi/2c 

left(i) = 2i 
right(i) = 2i+1 

height = 

O(log n) 

Heaps 

• key operation: HEAPIFY-DOWN(H, i) 
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A[i] may violate heap property  

– repeatedly swap with larger child 

– running time? O(log n) or O(ht) 

Heaps 

• key operation: HEAPIFY-UP(H, i) 
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A[i] may violate heap property  

– repeatedly swap with larger child 

– running time? O(log n) or O(ht) 

 

Heaps 

• How do you implement 

   operations:   time: 

   INSERT(H, elt)  O(log n) 

   INCREASE-KEY(H, i) O(log n) 

   EXTRACT-MAX(H)  O(log n) 

using HEAPIFY-UP and HEAPIFY-DOWN? 

• BUILD-HEAP(A): re-orders array A so that it 

satisfies heap property 

– how do we do this? running time?  
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Heaps 

• BUILD-HEAP(A): re-orders array A so that it 

satisfies heap property 

– call HEAPIFY-DOWN(H, i) 

   for i from n downto 1 

– running time O(n log n) 

 

– more careful analysis: O(n) 
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Heaps 

• suffices to show h¸0 h/2h = O(1) 

 

• note: h¸0 c
h = O(1)  for c < 1 

• observe: (h+1)/2h+1 = h/(2h) ¢ (1+1/h)/2 

• (1+1/h)/2 < 1 for h > 1 

 

 

April 3, 2014 CS38 Lecture 2 31 

Heapsort 

• Sorting n numbers using a heap 

– BUILD-HEAP(A)    O(n) 

– repeatedly EXTRACT-MIN(H)  n¢O(log n) 

– total O(n log n) 

 

• Can we do better? O(n)? 

– observe that only ever compare values  

– no decisions based on actual values of keys 
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Sorting lower bound 

comparison-based sort: only information 

about A used by algorithm comes from 

pairwise comparisons 

– heapsort, mergesort, quicksort, … 
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visualize sequence of com-

parisons in tree: 
“is A[i] · A[j]?” 

• each root-leaf path 

consistent with 1 perm. 

• maximum path length 
¸ log(n!) = (n log n) 

Greedy  

Algorithms 
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Greedy algorithms 

• Greedy algorithm paradigm 

– build up a solution incrementally 

– at each step, make the “greedy” choice 

Example: in undirected graph G = (V,E), a vertex 

cover is a subset of V that touches every edge 

– a hard problem: find the smallest vertex cover 
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Dijkstra’s algorithm 

• given 

– directed graph G = (V,E) with non-negative 

edge weights 

– starting vertex s 2 V 

• find shortest paths from s to all nodes v 

– note: unweighted case solved by BFS 
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Dijkstra’s algorithm 

• shortest paths exhibit “optimal substructure” 
property 

– optimal solution contains within it optimal 
solutions to subproblems 

– a shortest path from x to y via z contains a shortest 
path from x to z 

• shortest paths from s form a tree rooted at s 

• Main idea: 
– maintain set S µ V with correct distances 

– add nbr u with smallest “distance estimate” 
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