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Outline 

• randomness in algorithms 

 

– max-3-sat approximation algorithm 

– universal hashing 

– load balancing 

 

• Course summary and review 
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Randomization 

Algorithmic design patterns. 

・Greedy. 

・Divide-and-conquer. 

・Dynamic programming. 

・Network flow. 

・Randomization. 

 

Randomization.  Allow fair coin flip in unit time. 

 

Why randomize?  Can lead to simplest, fastest, or only known algorithm for 

a particular problem. 

 

Ex.  Symmetry breaking protocols, graph algorithms, quicksort, hashing, 

load balancing, Monte Carlo integration, cryptography. 

in practice, access to a pseudo-random number generator 

 

 

Max-3-SAT 

approximation  

algorithm 
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Expectation 

Expectation.  Given a discrete random variables X, its expectation E[X] 

is defined by: 

 

 

 

Waiting for a first success.  Coin is heads with probability p and tails with 

probability 1– p.  How many independent flips X until first heads? 

j –1 tails 1 head 
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Expectation:  two properties 

Useful property.  If X is a 0/1 random variable, E[X]  =  Pr[X = 1]. 

 

Pf.  

 

 

 

 

Linearity of expectation.  Given two random variables X and Y defined over 

the same probability space, E[X + Y]  =  E[X]  +  E[Y]. 

 

 

Benefit.  Decouples a complex calculation into simpler pieces.  

not necessarily independent 
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Guessing cards 

Game.  Shuffle a deck of n cards; turn them over one at a time; 

try to guess each card. 

 

Memoryless guessing.  No psychic abilities; can't even remember what's 

been turned over already.  Guess a card from full deck uniformly at random. 

 

Claim.  The expected number of correct guesses is 1. 

Pf.  [ surprisingly effortless using linearity of expectation ] 

・Let Xi = 1 if ith prediction is correct and 0 otherwise. 

・Let X = number of correct guesses = X1 + … + Xn. 

・E[Xi] =  Pr[Xi = 1]  =  1 / n. 

・E[X]  =  E[X1]  +  …  +  E[Xn]  =  1 / n + … + 1 / n  =  1.  ▪ 

linearity of expectation 
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Guessing cards 

Game.  Shuffle a deck of n cards; turn them over one at a time; 

try to guess each card. 

 

Guessing with memory. Guess a card uniformly at random from cards 

not yet seen. 

 

Claim.  The expected number of correct guesses is Θ(log n). 

Pf. 

・Let Xi = 1 if ith prediction is correct and 0 otherwise. 

・Let X = number of correct guesses = X1 + … + Xn. 

・E[Xi] =  Pr[Xi = 1]  =  1 / (n – i – 1). 

・E[X]  =  E[X1]  +  …  +  E[Xn]  =  1 / n + … + 1 / 2 + 1 / 1  =  H(n).  ▪  

ln(n+1) < H(n)  < 1 + ln n 
linearity of expectation 
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Coupon collector 

Coupon collector.  Each box of cereal contains a coupon. There are n 

different types of coupons. Assuming all boxes are equally likely to contain 

each coupon, how many boxes before you have ≥ 1 coupon of each type? 

 

Claim.  The expected number of steps is Θ(n log n). 

Pf. 

・Phase j = time between j and j + 1 distinct coupons. 

・Let Xj = number of steps you spend in phase j. 

・Let X  = number of steps in total = X0 + X1 + … + Xn–1. 

prob of success = (n – j) / n 

⇒ expected waiting time = n / (n – j) 
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Maximum 3-satisfiability 

 

Maximum 3-satisfiability.  Given a 3-SAT formula, find a truth assignment 

that satisfies as many clauses as possible. 

 

 

 

 

 

 

 

 

Remark.  NP-hard search problem. 

 

Simple idea.  Flip a coin, and set each variable true with probability ½, 

independently for each variable. 

exactly 3 distinct literals per clause 
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Claim.  Given a 3-SAT formula with k clauses, the expected number of clauses 

satisfied by a random assignment is 7k / 8. 

 

Pf.  Consider random variable 

 

 

・Let Z = weight of clauses satisfied by assignment Zj. 

Maximum 3-satisfiability:  analysis 

linearity of expectation 
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Corollary.  For any instance of 3-SAT, there exists a truth assignment that 

satisfies at least a 7/8 fraction of all clauses. 

 

Pf.  Random variable is at least its expectation some of the time.   ▪ 

 

 

 

 

Probabilistic method.  [Paul Erdös]  Prove the existence of a non-obvious 

property by showing that a random construction produces it with 

positive probability! 

The Probabilistic Method 
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Maximum 3-satisfiability:  analysis 

Q.  Can we turn this idea into a 7/8-approximation algorithm? 

A.  Yes (but a random variable can almost always be below its mean). 

 

Lemma.  The probability that a random assignment satisfies ≥ 7k / 8 clauses 

is at least 1 / (8k). 

 

Pf.  Let pj be probability that exactly j clauses are satisfied; 

let p be probability that ≥ 7k / 8 clauses are satisfied. 

 

 

 

 

 

 

 

Rearranging terms yields  p  ≥  1 / (8k).    ▪ 
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Maximum 3-satisfiability:  analysis 

Johnson's algorithm.  Repeatedly generate random truth assignments until 

one of them satisfies ≥ 7k / 8 clauses. 

 

Theorem.  Johnson's algorithm is a 7/8-approximation algorithm. 

 

Pf.  By previous lemma, each iteration succeeds with probability ≥ 1 / (8k). 

By the waiting-time bound, the expected number of trials to find the 

satisfying assignment is at most 8k.   ▪ 

 

 

Universal hashing 
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Dictionary data type 

Dictionary.  Given a universe U of possible elements, maintain a subset 

S  ⊆  U so that inserting, deleting, and searching in S is efficient. 

 

Dictionary interface. 

・create():  initialize a dictionary with S = φ. 

・insert(u):  add element u ∈ U to S. 

・delete(u):  delete u from S (if u is currently in S). 

・lookup(u):  is u in S ? 

 

 

Challenge.  Universe U can be extremely large so defining an array of 

size | U | is infeasible. 

 

Applications.  File systems, databases, Google, compilers, checksums P2P 

networks, associative arrays, cryptography, web caching, etc. 

Hash function.  h  : U → { 0, 1, …, n – 1 }. 

 

Hashing.  Create an array H of size n. When processing element u, 

access array element H[h(u)]. 

 

Collision.  When h(u) = h(v) but u ≠ v. 

・A collision is expected after Θ(√n) random insertions. 

・Separate chaining:  H[i] stores linked list of elements u with h(u) = i. 
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Ad-hoc hash function 

Ad hoc hash function. 

 

 

 

 

 

 

 

 

Deterministic hashing.  If | U |  ≥  n2
, then for any fixed hash function h, 

there is a subset S  ⊆  U of n elements that all hash to same slot. 

Thus, Θ(n) time per search in worst-case. 

 

Q.  But isn't ad-hoc hash function good enough in practice? 

int hash(String s, int n) { 

   int hash = 0; 

   for (int i = 0; i < s.length(); i++) 

      hash = (31 * hash) + s[i]; 

   return hash % n; 

} 
hash function ala Java string library 
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Algorithmic complexity attacks 

When can't we live with ad hoc hash function? 

・Obvious situations:  aircraft control, nuclear reactors. 

・Surprising situations:  denial-of-service attacks. 

 

 

 

 

Real world exploits.  [Crosby-Wallach 2003] 

・Bro server:  send carefully chosen packets to DOS the server, 

using less bandwidth than a dial-up modem 

・Perl 5.8.0:  insert carefully chosen strings into associative array. 

・Linux 2.4.20 kernel:  save files with carefully chosen names. 

malicious adversary learns your ad hoc hash 

function (e.g., by reading Java API) and causes a 

big pile-up in a single slot that grinds 

performance to a halt 
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Hashing performance 

Ideal hash function.  Maps m elements uniformly at random to m hash slots. 

・Running time depends on length of chains. 

・Average length of chain =  α  =  m / n. 

・Choose n  ≈  m  ⇒  on average O(1) per insert, lookup, or delete. 

 

 

Challenge.  Achieve idealized randomized guarantees, but with a hash 

function where you can easily find items where you put them. 

 

Approach.  Use randomization in the choice of h. 

adversary knows the randomized algorithm you're using, 

but doesn't know random choices that the algorithm makes 
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Universal hashing 

Universal family of hash functions.  [Carter-Wegman 1980s] 

・For any pair of elements u, v ∈ U, 

・Can select random h efficiently. 

・Can compute h(u) efficiently. 

 

Ex.  U = { a, b, c, d, e, f }, n = 2. 

chosen uniformly at random 

a b c d e f 

0 1 0 1 0 1 

0 0 0 1 1 1 

h1(x) 

h2(x) 

H = {h1, h2} 

Pr h ∈ H [h(a) = h(b)]  =  1/2 

Pr h ∈ H [h(a) = h(c)]  =  1 

Pr h ∈ H [h(a) = h(d)]  =  0 

. . . 

a b c d e f 

0 0 1 0 1 1 

1 0 0 1 1 0 

h3(x) 

h4(x) 

H = {h1, h2 , h3 , h4} 

Pr h ∈ H [h(a) = h(b)]  =  1/2 

Pr h ∈ H [h(a) = h(c)]  =  1/2 

Pr h ∈ H [h(a) = h(d)]  =  1/2 

Pr h ∈ H [h(a) = h(e)]  =  1/2 

Pr h ∈ H [h(a) = h(f)]  =  0 

. . . 

0 1 0 1 0 1 

0 0 0 1 1 1 

h1(x) 

h2(x) 

not universal 

universal 
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Universal hashing:  analysis 

Proposition.  Let H be a universal family of hash functions; let h ∈ H be 

chosen uniformly at random from H; and let u ∈ U.  For any subset S ⊆ U 

of size at most n, the expected number of items in S that collide with u 

is at most 1. 

 

Pf.  For any element s ∈ S, define indicator random variable Xs = 1 if h(s) = 

h(u)  and 0 otherwise. Let X be a random variable counting the total number 

of collisions with u. 

 

 

 

 

 

 

 

Q.  OK, but how do we design a universal class of hash functions? 

linearity of expectation Xs is a 0-1 random variable universal 

(assumes u ∉ S) 

23 

Designing a universal family of hash functions 

Theorem.  [Chebyshev 1850]  There exists a prime between n and 2n. 

 

Modulus.  Choose a prime number p ≈ n.   

 

Integer encoding.  Identify each element u ∈ U with a base-p integer of r 

digits:  x = (x1, x2, …,  xr). 

 

Hash function.  Let A = set of all r-digit, base-p integers. For each 

a = (a1, a2, …, ar) where 0 ≤ ai < p, define 

 

 

 

 

Hash function family.  H = { ha : a ∈ A }. 

no need for randomness here 
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Designing a universal family of hash functions 

Theorem.  H = { ha : a ∈ A } is a universal family of hash functions. 

 

Pf.  Let x = (x1, x2, …, xr) and y = (y1, y2, …, yr) be two distinct elements of U. 

We need to show that Pr[ha(x) = ha(y)]  ≤  1 / n. 

・Since x ≠ y, there exists an integer j such that xj ≠ yj. 

・We have ha(x) = ha(y) iff 

a
j
(y

j
 – x

j
) = 

i not equal j ai(xi – yi) mod p 

 

 

・Can assume a was chosen uniformly at random by first selecting all 

coordinates ai where i ≠ j, then selecting aj at random. Thus, we can 

assume ai is fixed for all coordinates i ≠ j. 

・Since p is prime, aj z = m mod p has at most one solution among p 

possibilities. 

・Thus Pr[ha(x) = ha(y)]  =  1 / p  ≤  1 / n.  ▪ 

z 
m 
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Chernoff Bounds (above mean) 

Theorem.  Suppose X1, …, Xn are independent 0-1 random variables. Let X = 

X1 + … + Xn. Then for any   E[X] and for any  > 0, we have 

 

 

 

 

 

 

Pf.  We apply a number of simple transformations. 

・For any t > 0, 

 

 

 

 

・Now 

sum of independent 0-1 random variables 

is tightly centered on the mean 

f(x) = e
tX 

is monotone in x Markov's inequality:  Pr[X > a]  E[X] / a 

definition of X independence 
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Chernoff Bounds (above mean) 

Pf.  [ continued ] 

・Let pi = Pr [Xi = 1]. Then, 

 

 

 

 

・Combining everything: 

 

 

 

 

 

 

・Finally, choose t = ln(1 + δ).   ▪ 

for any   0, 1+   e
 

previous slide inequality above i pi = E[X]      
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Chernoff Bounds (below mean) 

Theorem.  Suppose X1, …, Xn are independent 0-1 random variables. 

Let X = X1 + … + Xn. Then for any  ≤ E [X ] and for any 0 < δ < 1, we have 

 

 

 

Pf idea.  Similar. 

 

Remark.  Not quite symmetric since only makes sense to consider δ < 1. 
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Load Balancing 

Load balancing.  System in which m jobs arrive in a stream and need to be 

processed immediately on n identical processors.  Find an assignment that 

balances the workload across processors. 

 

Centralized controller.  Assign jobs in round-robin manner. Each processor 

receives at most ⎡ m / n ⎤ jobs. 

 

Decentralized controller.  Assign jobs to processors uniformly at random. 

How likely is it that some processor is assigned "too many" jobs? 

Analysis. 

・Let Xi = number of jobs assigned to processor i. 

・Let Yij = 1 if job j assigned to processor i, and 0 otherwise. 

・We have E[Yij] = 1/n. 

・Thus, Xi = ∑j Yi j , and μ = E[Xi] = 1. 

・Applying Chernoff bounds with δ = c – 1 yields 

 

・Let γ(n) be number x such that xx = n, and choose c = e γ(n). 

 

 

 

・Union bound   with probability ≥ 1 – 1/n no processor receives more 

than e γ(n) = Θ(log n / log log n) jobs. 
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Load balancing 

Bonus fact: with high probability, 

some processor receives Θ(logn / log log n) jobs  



6/3/2014 

6 

31 

Load balancing:  many jobs 

Theorem.  Suppose the number of jobs m = 16 n ln n. Then on average, 

each of the n processors handles μ = 16 ln n jobs. With high probability, 

every processor will have between half and twice the average load. 

 

Pf. 

・Let Xi , Yij be as before.  

・Applying Chernoff bounds with δ = 1 yields 

 

 

 

 

・Union bound   every processor has load between half and 

twice the average with probability ≥ 1 – 2/n.  ▪ 

 

 

Course summary  

and review 
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Algorithmic design paradigms 

• Greedy (see: matroids) 

• Divide and Conquer 

• Dynamic Programming 

• Flows, cuts and matchings 

• Linear Programming 

 

more sophisticated/general as go down list 
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Algorithmic design paradigms 

• Many problems are NP-complete 

• Unlikely to have solutions in P 

• Coping with intractibility 

– special cases 

– fixed-parameter algorithms/analysis 

– approximation algorithms 
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Fundamental algorithms 

• Graph traversals in O(n + m) time 

– Breadth First Search (BFS)  

– Depth First Search (DFS) 

 

• applications: 

– BSF yields shortest paths in undirected graph 

– DFS used for topological sort and strongly 

connected components 
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Fundamental algorithms 

• Single source shortest paths 

– with non-negative edge weights 

 Dijkstra’s algorithm O(n + m log n) 

 

– with negative edge weights 

Bellman-Ford O(nm) to detect negative cycles 

and find shortest paths if no negative cycles 
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Fundamental algorithms 

• All-pairs shortest paths 

– Floyd-Warshall O(n3) 

• Minimum cost spanning tree 

– Kruskal O(m log m) 

– Prim O(m + n log n) 

 

• compression via variable length coding  

– Huffman codes O(n log n) 
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Data structures 

• binary min-heap 

– INSERT O(log n) 

– EXTRACT-MIN O(log n) 

– DECREASE-KEY O(log n) 

• Fibonacci heap (amortized analysis) 

– INSERT O(1) 

– EXTRACT-MIN O(log n) 

– DECREASE-KEY O(1) 
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Data structures 

• Union-Find data structure 

– path compression 

– union-by-rank 

 

– amortized analysis:  

m find and n union operations in O(m log* n) 

 

 

 

 
June 3, 2014 CS38 Lecture 19 39 

Fundamental algorithms 

• Sorting in O(n log n) time 

– heapsort 

– mergesort 

– quicksort with random pivot (expected time) 

– lower bound for comparison-based 

 

• selection in O(n) time 

– randomized and deterministic  
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Fundamental algorithms 

• closest pair of points in plane O(n log n) 

 

• integer multiplication O(nlog2 3) 

• matrix multiplication O(nlog2 7) 

• FFT O(n log n) 

– polynomial multiplication and division with 

remainder O(n log n) 
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Fundamental algorithms 

• two strings of length n, m: 

– edit distance O(nm) 

– longest-common-subsequence O(nm) 
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Fundamental algorithms 

• max-flow in a network (= min-cut) 

– Ford-Fulkerson method O(m nC) 

– capacity-scaling O(m2 log C) 

– shortest augmenting path O(m2 n) 

– blocking-flow implementation O(mn2) 

– unit-capacity simple graphs O(mn1/2) 

– use last for bipartite matching in same time 

– min/max weight perfect matching O(n3) 
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Fundamental algorithms 

• Linear programming 

– primal/dual and strong duality theorem 

 

– simplex algorithm (worst case exponential) 

– ellipsoid algorithm (in P) 

 

– in practice: interior points methods  
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Fundamental algorithms 

• Coping with intractibility 

– e.g.: hard graph problems easy on trees 

– e.g.: fixed parameter algorithms for VC 

• approximation algorithms 
– knapsack  (1 + ²) 

– VC and weighted VC   2 (via LP relaxation) 

– set cover ln m + 1 

– TSP 1.5 

– center selection 2  
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Fundamental algorithms 

• randomized algorithm for global min-cut 

• 8/7 approximation for max-3-sat 

 

• other applications: 

– contention resolution 

– hashing 

– load-balancing 

– … 
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