6/3/2014

CS38
Introduction to Algorithms

Lecture 19
June 3, 2014

June 3, 2014 CS38 Lecture 19 1

Outline

» randomness in algorithms

— max-3-sat approximation algorithm
— universal hashing
—load balancing

» Course summary and review

June 3, 2014 CS38 Lecture 19

Randomization

Algorithmic design patterns.
* Greedy.

Divide-and-conquer.

Dynamic programming.
Network flow.

* Randomization.
in practice, access to a pseudo-random number generator

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for
a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing,
load balancing, Monte Carlo integration, cryptography.

Max-3-SAT
approximation
algorithm

June 3, 2014 CS38 Lecture 19

Expectation

Expectation. Given a discrete random variables X, its expectation E[X]
is defined by: .
E[X]= 3 jPrlX=j]
Iz

Waiting for a first success. Coin is heads with probability p and tails with
probability 1- p. How many independent flips X until first heads?

Ex] = 3/ Pix=j] = 3i0-p"p = P Sjq-py = £ -TF -
0 =N 1 P l-p

j-1tails 1 head

Expectation: two properties

Useful property. If X is a 0/1 random variable, E[X] = Pr{X = 1].

= 1
P E[X] = 3 j-Pr(X=j] =3 j-PrlX=j] = Prlx=1]
=0 =0

not necessarily independent

Linearity of expectation. Given two random variables X and Y defined over
the same probability space, E[X + Y] = E[X] + E[Y].

Benefit. Decouples a complex calculation into simpler pieces.

6/3/2014

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time;
try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's
been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.
Pf. [surprisingly effortless using linearity of expectation]
* Let X; =1 if it" prediction is correct and 0 otherwise.
* Let X = number of correct guesses = X; + ... + X,.
* EX]= PriX;=1] = 1/n.
*EX] = E[X] + ...+ EX)] = 1/n+...+1/n = 1. =
|

linearity of expectation

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time;
try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards
not yet seen.

Claim. The expected number of correct guesses is ©(log n).
Pf.
* Let X; =1 if i" prediction is correct and 0 otherwise.
* Let X = number of correct guesses =X; + ... + X,.
* EX]= PriX;=1] = 1/(n—i-1).
*EX] = E[X] + ... + EX)] = 1/n+...+1/2+1/1 = H(n). =
|

linearity of expectation

In(n+1) <H(n) <1 +Inn

7
Coupon collector Maximum 3-satisfiability
Coupon collector. Each box of cereal contains a coupon. There are n e acthvBldetnclliterablpeiiclauze
different types of coupons. Assuming all boxes are equally likely to contain Maximum 3-satisfiability. Given a 3-Sat formula, find a truth assignment
each coupon, how many boxes before you have = 1 coupon of each type? that satisfies as many clauses as possible.
Claim. The expected number of steps is ©(n log n). G = H VIV
Pf. C = H Vv
* Phase j = time between j and j + 1 distinct coupons. C; = [Vv
* Let X; = number of steps you spend in phase j. C, = [V5V
* Let X = number of steps in total =X+ X; + ... + Xy C = x v vax
na1 nlogp 21
E[X] = TEX;]1=3 .= nY > = nHMn) Remark. NP-hard search problem.
J=0 jon-j i-1 1
| Simple idea. Flip a coin, and set each variable true with probability %,
prob of success = (n-j) /n independently for each variable.
= expected waiting time = n / (n - j)
9 10

Maximum 3-satisfiability: analysis

Claim. Given a 3-SaT formula with k clauses, the expected number of clauses
satisfied by a random assignment is 7k / 8.

L ifclause C; is satisfied

Pf. Consider random variable z =
! 0 otherwise.

.

Let Z = weight of clauses satisfied by assignment Z;.

I3
ElZ]/ = 3 E(z)
-
k
linearity of expectation = 3 Pr[clause C; is satisfied]
=

- Ik

The Probabilistic Method

Corollary. For any instance of 3-SaT, there exists a truth assignment that
satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. =

Probabilistic method. [Paul Erdos] Prove the existence of a non-obvious
property by showing that a random construction produces it with
positive probability!

6/3/2014

Maximum 3-satisfiability: analysis

Q. Can we turn this idea into a 7/8-approximation algorithm?
A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies = 7k / 8 clauses
is at least 1/ (8k).

Pf. Let p; be probability that exactly j clauses are satisfied;
let p be probability that = 7k / 8 clauses are satisfied.

Ik = HZ) = 3 jp,
Jj20

= 2 ip+ Zip
J<Tki8 jeTkI8
= -3 pt+k3p
J<Tki8 JeTki8
= (Gk-D-1 + kp

Rearranging terms yields p 2 1/(8k). =

Maximum 3-satisfiability: analysis

Johnson's algorithm. Repeatedly generate random truth assignments until
one of them satisfies 2 7k / 8 clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.
Pf. By previous lemma, each iteration succeeds with probability > 1/ (8k).

By the waiting-time bound, the expected number of trials to find the
satisfying assignment is at most 8k. =

Universal hashing

June 3, 2014 CS38 Lecture 19 15

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset
S c U so that inserting, deleting, and searching in S is efficient.

Dictionary interface.
* create(): initialize a dictionary with S = .
* insert(u): add elementu€eUto S.
* delete(u): delete u from S (if u is currently in S).
* Tookup(u): isuinS?

Challenge. Universe U can be extremely large so defining an array of
size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums P2P
networks, associative arrays, cryptography, web caching, etc.

Hashing

Hash function. h :U—{0,1,...,n-1}.

Hashing. Create an array H of size n. When processing element u,
access array element H[h(u)].
Collision. When h(u) = h(v) but u #v. i et

* A collision is expected after ©(vn) random insertions.

* Separate chaining: HIi] stores linked list of elements u with h(u) = i.

H[1 ' Jocula — ' seriou

1 rly sly
H[2 null

]
H[3 subur — " untrave considera
1 ban 1led ting

HIn] brows
ing 17

Ad-hoc hash function

Ad hoc hash function.

int hash(String s, int n) {

int hash =

for (int i = 0; i < s.lengthQ; i++)
hash = (31 * hash) + s[il;
return hash % n;
3} hash function ala Java string library

Deterministic hashing. If |[U| 2 n?, then for any fixed hash function h,
thereis a subset S c U of n elements that all hash to same slot.
Thus, ©(n) time per search in worst-case.

Q. Butisn't ad-hoc hash function good enough in practice?

6/3/2014

Algorithmic complexity attacks

When can't we live with ad hoc hash function?
* Obvious situations: aircraft control, nuclear reactors.
* Surprising situations: denial-of-service attacks.

malicious adversary learns your ad hoc hash
function (e.g., by reading Java API) and causes a
big pile-up in a single slot that grinds
performance to a halt
Real world exploits. [Crosby-Wallach 2003]
* Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem
* Perl 5.8.0: insert carefully chosen strings into associative array.
* Linux 2.4.20 kernel: save files with carefully chosen names.

Hashing performance

Ideal hash function. Maps m elements uniformly at random to m hash slots.
* Running time depends on length of chains.
* Average length of chain=a = m/n.
* Choosen = m = on average O(1) per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash
function where you can easily find items where you put them.

Approach. Use randomization in the choice of h.

\

adversary knows the randomized algorithm you're using,
but doesn't know random choices that the algorithm makes

19 20
Universal hashing Universal hashing: analysis
Universal family of hash functions. [Carter-Wegman 1980s] Proposition. Let H be a universal family of hash functions; let h € H be
* Forany pair of elements u, ve U, Pr,,[h(w)=h(v)]s 1/n chosen uniformly at random from H; and let u € U. For any subset S € U
* Can select random h efficiently. \ of size at most n, the expected number of items in S that collide with u
* Can compute h(u) efficiently. e TR S e is at most 1.
Ex. U={a,b,c,d, e, f},n=2. Pf. For any element s € S, define indicator random variable X, = 1 if h(s) =
h(u) and 0 otherwise. Let X be a random variable counting the total number
H= {hy, hp} o i
Priei @ =h@)] = 12 not universal of collisions with u.
Praen(h(@ =h() = 1
Procw (@) =h(d)] = 0 . .
) EycalX) = ElSeX] = 3, BX] = SePriX, =1 5 Sk = 1512 s 1
H={h,he, hs, had linearity of expectation Xs is a 0-1 randomvariable universal
Pren E) =h(o)] = 112 (assumes u ¢ S)
Proen[h(a) = h(©)] = 112 universal
Proen[h@ =h(d)] = 12
Priew[h(a) = h(e)]
Prhen[h@) =h(0] = 0 Q. OK, but how do we design a universal class of hash functions?
21 22
Designing a universal family of hash functions Designing a universal family of hash functions
Theorem. [Chebyshev 1850] There exists a prime between n and 2n. Theorem. H={h,:a€A}is auniversal family of hash functions.
Modulus. Choose a prime number p = N.— 10 need for randomness here Pf. Let X = (Xy, Xp, ..., X)) and y = (y1, Y2, ..., ¥;) be two distinct elements of U.
We need to show that Pr[h,(x) = h,(y)] < 1/n.
Integer encoding. Identify each element u € U with a base-p integer of r * Since x #y, there exists an integer j such that x; # y;.
digits: X = (X1, Xp, .0y X0). * We have hy(x) = hy(y) iff
3y = %) = I ot equatj &% - y) mod p
Hash function. Let A = set of all r-digit, base-p integers. For each
a=(ay, a, ..., a) where 0 < a, < p, define m
* Can assume a was chosen uniformly at random by first selecting all
. coordinates a where i #j, then selecting a; at random. Thus, we can
h(x) = (2 f‘w‘.) mod p assume a;is fixed for all coordinates i #j.
i1
* Since p is prime, a;z=m mod p has at most one solution among p
Hash function family. H={h,:a€A}. possibilities.
* Thus Prlhy(x) = hy(y)] = 1/p < 1/n. =
23

6/3/2014

Load balancing

Chernoff Bounds (above mean)

Theorem. Suppose Xj, ..., X, are independent 0-1 random variables. Let X =
Xi + ... + Xp. Then for any [¢ E[X] and for any ™ > 0, we have

PR
(1+8)'*

sum of independent 0-1 random variables
is tightly centered on the mean

PrLY > (1+8)p] < [
1

Pf. We apply a number of simple transformations.
* Foranyt> 0,
Pr[X > (1+8)] = Pr[e’* >e"“5’*‘] s oML g

|

f(x) = eXis monotone in x Markov's inequality: PriX > a] 6 EIX] / a

« Now Ele™] = Ele'2%] - T E['"]
!

June 3, 2014 Cs38 Lecture 19 25 definition of X independence
26
Chernoff Bounds (above mean) Chernoff Bounds (below mean)
Pf. [continued] Theorem. Suppose X, ..., X, are independent 0-1 random variables.
* Let p;=Pr[X; =1]. Then, Let X=X, + ... + X,. Then for any [<E [X] and for any 0 <& < 1, we have
E[¢] = pe'+(1=p)e" = lep(e =) = e Pr{X <(1-8)u] < 72
A G hoe: Pfidea. Similar.
* Combining everything:
Remark. Not quite symmetric since only makes sense to consider 5 < 1.
PX > (48] = e-r(hb)ul‘l E[crx] < t"“*”“l’[efu(r'-l) < o (HOm uie'-D
|
previous slide inequality above Oipi=EX &
* Finally, choose t=In(1+3). =
28

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to be
processed immediately on n identical processors. Find an assignment that
balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor
receives at most [m ! n]jobs.

Decentralized controller. Assign jobs to processors uniformly at random.
How likely is it that some processor is assigned "too many" jobs?

Load balancing

Analysis.
* Let X; = number of jobs assigned to processor i.
* Let Y;=1if job j assigned to processor i, and 0 otherwise.
* We have E[Y;] = 1/n.
* Thus, X;= 3, Y;;, and p = E[X] = 1. }
* Applying Chernoff bounds with & = ¢ — 1 yields Pr.X; >¢] < €

* Let y(n) be number x such that x* = n, and choose c = e y(n).

erin 2 ()

o .
PALY, >e] < <(‘l: L <[! -1
¢ c/ ¥(n)) vin)) n’
* Union bound ® with probability = 1 —1/n no processor receives more
than e y(n) = ©(log n/ log log n) jobs.
\

Bonus fact: with high probability,
some processor receives ©(logn / log log n) jobs

6/3/2014

Load balancing: many jobs

Theorem. Suppose the number of jobs m =16 nIn n. Then on average,
each of the n processors handles p = 16 In n jobs. With high probability,
every processor will have between half and twice the average load.

Pf.
* Let X;, Y; be as before.
* Applying Chernoff bounds with & = 1 yields

Tt ool)
PriX; > 2u) <{:} a ['} -1 BrLX, <1y < iS00 _ 1
. n 3

€} n*

* Union bound ® every processor has load between half and
twice the average with probability 2 1 -2/n. =

Course summary
and review

June 3, 2014 CS38 Lecture 19 32

Algorithmic design paradigms

» Greedy (see: matroids)

« Divide and Conquer

* Dynamic Programming

* Flows, cuts and matchings
* Linear Programming

more sophisticated/general as go down list

June 3, 2014 CS38 Lecture 19 33

Algorithmic design paradigms

* Many problems are NP-complete
* Unlikely to have solutions in P
+ Coping with intractibility

— special cases

— fixed-parameter algorithms/analysis
— approximation algorithms

June 3, 2014 CS38 Lecture 19 34

Fundamental algorithms

* Graph traversals in O(n + m) time
— Breadth First Search (BFS)
— Depth First Search (DFS)

« applications:
— BSF yields shortest paths in undirected graph

— DFS used for topological sort and strongly
connected components

June 3, 2014 CS38 Lecture 19 35

Fundamental algorithms

* Single source shortest paths
— with non-negative edge weights
Dijkstra’s algorithm O(n + m log n)

— with negative edge weights

Bellman-Ford O(nm) to detect negative cycles
and find shortest paths if no negative cycles

June 3, 2014 CS38 Lecture 19 36

6/3/2014

Fundamental algorithms

* All-pairs shortest paths
— Floyd-Warshall O(n?)

* Minimum cost spanning tree
— Kruskal O(m log m)
—Prim O(m + n log n)

* compression via variable length coding
— Huffman codes O(n log n)

June 3, 2014 CS38 Lecture 19 37

Data structures

* binary min-heap
—INSERT O(log n)
— EXTRACT-MIN O(log n)
— DECREASE-KEY O(log n)
* Fibonacci heap (amortized analysis)
—INSERT O(2)
— EXTRACT-MIN O(log n)
— DECREASE-KEY O(1)

June 3, 2014 CS38 Lecture 19 38

Data structures
* Union-Find data structure
— path compression

— union-by-rank

— amortized analysis:
m find and n union operations in O(m log” n)

June 3, 2014 CS38 Lecture 19 39

Fundamental algorithms

+ Sorting in O(n log n) time
— heapsort
— mergesort

— quicksort with random pivot (expected time)
— lower bound for comparison-based

« selection in O(n) time
—randomized and deterministic

June 3, 2014 CS38 Lecture 19 40

Fundamental algorithms

closest pair of points in plane O(n log n)

« integer multiplication O(n'°92 3)
 matrix multiplication O(n'c927)
* FFT O(n log n)

— polynomial multiplication and division with
remainder O(n log n)

June 3, 2014 CS38 Lecture 19 41

Fundamental algorithms
* two strings of length n, m:

— edit distance O(nm)
— longest-common-subsequence O(nm)

June 3, 2014 CS38 Lecture 19 42

6/3/2014

Fundamental algorithms

» max-flow in a network (= min-cut)
— Ford-Fulkerson method O(m nC)
— capacity-scaling O(m? log C)
— shortest augmenting path O(m? n)
— blocking-flow implementation O(mn?)
— unit-capacity simple graphs O(mn?/2)
— use last for bipartite matching in same time
— min/max weight perfect matching O(n3)

June 3, 2014 CS38 Lecture 19

43

Fundamental algorithms

* Linear programming
— primal/dual and strong duality theorem

— simplex algorithm (worst case exponential)
— ellipsoid algorithm (in P)

—in practice: interior points methods

June 3, 2014 CS38 Lecture 19 44

Fundamental algorithms

» Coping with intractibility
—e.g.: hard graph problems easy on trees
—e.g.: fixed parameter algorithms for VC
« approximation algorithms
—knapsack (1 +¢)
—VC and weighted VC 2 (via LP relaxation)
—setcoverinm+ 1
-TSP 15
— center selection 2

June 3, 2014 CS38 Lecture 19

45

Fundamental algorithms

randomized algorithm for global min-cut
« 8/7 approximation for max-3-sat

« other applications:
— contention resolution
— hashing
— load-balancing

June 3, 2014 CS38 Lecture 19 46

