Outline

• coping with intractibility
 – approximation algorithms
 • set cover
 • TSP
 • center selection

• randomness in algorithms

Optimization Problems

• many hard problems (especially \textbf{NP}-hard) are optimization problems
 – e.g. find shortest TSP tour
 – e.g. find smallest vertex cover
 – e.g. find largest clique

– may be minimization or maximization problem
– “OPT” = value of optimal solution

Approximation Algorithms

• often happy with \textit{approximately optimal} solution
 – warning: lots of heuristics
 – we want \textit{approximation algorithm} with guaranteed approximation ratio of \(r \)
 – meaning: on every input \(x \), output is guaranteed to have value
 at most \(r \times \text{opt} \) for minimization
 at least \(\text{opt} / r \) for maximization

Set Cover

• Given subsets \(S_1, S_2, \ldots, S_n \) of a universe \(U \) of size \(m \), and an integer \(k \)
 – is there a cover \(J \) of size \(k \)
 – “cover”: \(\bigcup_{j \in J} S_j = U \)

\textbf{Theorem:} set-cover is \textbf{NP}-complete
 – in \textbf{NP} (why?)
 – reduce from vertex cover (how?)

\textbf{Theorem:} greedy set cover algorithm achieves an approximation ratio of \(\left(\ln m + 1 \right) \)
Set cover

Theorem: greedy set cover algorithm achieves an approximation ratio of \((\ln m + 1)\)

Proof:
- let \(r_i\) be # of items remaining after iteration \(i\)
- \(r_0 = |U| = m\)
- Claim: \(r_i \leq (1 - 1/OPT)r_{i-1}\)
 - proof: OPT sets cover all remaining items so some set covers at least 1/OPT fraction

May 29, 2014 CS38 Lecture 18 7

TSP approximation algorithm

Theorem: this approximation algorithm achieves approximation ratio 2

Proof:
- optimal tour includes a MST, so \(wt(T) \leq OPT\)
- tour we output has weight at most 2 \(wt(T)\)

May 29, 2014 CS38 Lecture 18 11
Christofide’s algorithm

- Second approximation algorithm:
 - find a Minimum Spanning Tree \(T \)
 - even number of odd-degree vertices (why?)
 - find a min-weight matching \(M \) on these
 - output an Euler tour on \(M \cup T \) (with short-circuiting)

Theorem: this approximation algorithm achieves approximation ratio 1.5

Theorem: this approximation algorithm achieves approximation ratio 1.5

Proof:
- as before \(\text{OPT} \geq \text{wt}(T) \)
- let \(R \) be opt. tour on odd deg. vertices \(W \) only
- even/odd edges of \(R \) both constitute perfect matchings on \(W \)
- thus \(\text{wt}(M) \leq \text{wt}(R)/2 \leq \text{OPT}/2 \)
- total: \(\text{wt}(M) + \text{wt}(T) \leq 1.5 \cdot \text{OPT} \)

Center selection problem

Input. Set of \(n \) sites \(s_1, \ldots, s_n \) and an integer \(k > 0 \).

Center selection problem. Select set of \(k \) centers \(C \) so that maximum distance \(r(C) \) from a site to nearest center is minimized.

Notation.
- \(\text{dist}(x, y) = \) distance between sites \(x \) and \(y \).
- \(\text{dist}(s_i, C) = \min_{c \in C} \text{dist}(s_i, c) = \) distance from \(s_i \) to closest center.
- \(r(C) = \max \text{dist}(s, C) = \) smallest covering radius.

Goal. Find set of centers \(C \) that minimizes \(r(C) \), subject to \(|C| = k \).

Distance function properties.
- \(\text{dist}(x, x) = 0 \) [identity]
- \(\text{dist}(x, y) = \text{dist}(y, x) \) [symmetry]
- \(\text{dist}(x, y) \leq \text{dist}(x, z) + \text{dist}(z, y) \) [triangle inequality]

Greedy algorithm: a false start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!
Center selection: greedy algorithm

Repeatedly choose next center to be site farthest from any existing center.

Algorithm

```
CENTER-SELECTION (K, n, s1, s2, ..., sn)
C ← Ø
REPEAT k times
    Select a site s with maximum distance dist(s, C).
    C ← C ∪ {s}
RETURN C
```

Property. Upon termination, all centers in C are pairwise at least \(r(C) \) apart.

Proof. By construction of algorithm.

Center selection: analysis of greedy algorithm

Theorem. Let \(C^* \) be an optimal set of centers. Then \(r(C) \leq 2r(C^*) \).

Proof. (by contradiction) Assume \(r(C) < \frac{3}{2} r(C^*) \).

- For each site \(c \in C \), consider ball of radius \(\frac{1}{2} r(C) \) around it.
- Exactly one \(c^* \) in each ball; let \(c \) be the site paired with \(c^* \).
- Consider any site \(s \) and its closest center \(c^* \in C^* \).
- \(dist(s, C) \leq dist(s, c) \leq dist(s, c^*) + dist(c^*, C) \leq 2r(C^*) \).
- Thus, \(r(C) \leq 2r(C^*) \).

Randomness in algorithms

May 29, 2014

Randomization

Algorithmic design patterns.

- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.
Contestion resolution in a distributed system

Contestion resolution. Given n processes $P_1, ... , P_n$, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

Contention Resolution: randomized protocol

Claim. The probability that process i fails to access the database in en rounds is at most $1/n$. After $o(n \log n)$ rounds, the probability is n^{-e}.

Proof. Let $P_i[t]$ be the event that process i fails to access the database in rounds 1 through t. By independence and previous claim, we have

\[Pr[P_i[t]] \leq (1 - 1/n)^t. \]

* Choose $t = \epsilon n \ln n$:

\[Pr[P_i[t]] \leq (1 - 1/n)^{\epsilon n \ln n} = \frac{1}{n^{\epsilon}}. \]

* Choose $t = \lceil \frac{\epsilon n \ln n}{c} \rceil$:

\[Pr[P_i[t]] \leq \left(\frac{1}{n^c} \right)^{\epsilon n \ln n} = n^{-1}. \]

Global minimum cut

Global min cut. Given a connected, undirected graph $G = (V, E)$, find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.

* Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).

* Pick some vertex s and compute min $s-v$ cut separating s from each other vertex $v \in V$.

False intuition. Global min-cut is harder than min $s-t$ cut.
Contraction algorithm

[Contraction algorithm. [Karger 1995]]

- Pick an edge $e = (u, v)$ uniformly at random.
- Contract edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_1 and v_1'
- Return the cut (all nodes that were contracted to form v_1).

Reference: Thore Husfeldt

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G.

- Let F^* be edges with one endpoint in A^* and the other in B^*.
- Let $k = |F^*| = $ size of min cut.
- Let G' be graph after j iterations. There are $n' = n - j$ supernodes.
- Suppose no edge in F^* has been contracted. The min-cut in G' is still k.
- Since value of min cut is k, $|E'| \geq 1/2 k n'$.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2/n$.

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm $n^2 \ln n$ times, then the probability of failing to find the global min cut is $\leq 1/n^2$.

Pf. By independence, the probability of failure is at most

$$\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} \leq \left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} \leq \frac{1}{n^2}$$

with independent random choices.

Contraction algorithm: example execution

References: [Thore Husfeldt]
Global min cut: context

Remark. Overall running time is slow since we perform $O(n^2 \log n)$ iterations and each takes $O(m)$ time.

Improvement. [Karger-Stein 1996] $O(n^2 \log^3 n)$.
- Early iterations are less risky than later ones: probability of contracting an edge in min-cut hits 50% when $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm until $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^7 n)$.

\[\text{faster than best known max flow algorithm or deterministic global min cut algorithm} \]

37