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Outline 

• coping with intractibility 

– NP-completeness 

– special cases 

– fixed parameter complexity 

– approximation algorithms 
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Hardness and completeness 

• Reasonable that can efficiently transform 

one problem into another. 

 

• Surprising: 

–  can often find a special language L so that 

every language in a given complexity class 

reduces to L! 

– powerful tool  
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Hardness and completeness 

• Recall: 

– a language L is a set of strings 

– a complexity class C is a set of languages 

 

Definition: a language L is C-hard if for 

every language A  C, A poly-time 

reduces to L; i.e., A ≤P
 L. 

meaning: L is at least as “hard” as anything in C 
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Hardness and completeness 

• Recall: 

– a language L is a set of strings 

– a complexity class C is a set of languages 

 

Definition: a language L is C-complete if L 

is C-hard and L  C 

meaning: L is a “hardest” problem in C 
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Lots of NP-complete problems 

• logic problems 
– 3-SAT = {φ : φ is a satisfiable 3-CNF formula} 

– NAE3SAT, (3,3)-SAT 

– Max-2-SAT 

• finding objects in graphs 

– independent set 

– vertex cover 

– clique 

• sequencing 

– Hamilton Path 

– Hamilton Cycle and TSP 

• problems on numbers 

– subset sum 

– knapsack 

– partition 

• splitting things up 

– max cut 

– min/max bisection 
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Example: Integer programming 

Definition: Integer Linear Program (ILP)  = 

{LPs with integer variables that have a 

feasible solution} 

Theorem: ILP is NP-complete. 

• Proof: 

– Part 1: ILP  NP. Proof? (try just for 0/1) 

– Part 2: ILP is NP-hard. 

• reduce from? 
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Integer programming 

• We are reducing from the language: 

 

3-SAT = {φ : φ is a satisfiable 3-CNF formula} 

 

to the language: 
 

ILP = {LPs with integer variables that have a 

feasible solution} 
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Integer programming 

φ = (x  y  z)  ( x  w  z)  …  (…) 

 

• ILP variable x for each Boolean variable x 

• 0 · x · 1 

• represent : x by (1 – x) 

• each clause has a natural linear expression: 

– e.g. (x  y  z) ! (x + y + (1 – z)) 

• constrain each such expression to be ¸ 1 

is this reduction polynomial time?  
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Integer programming 

φ = (x  y  z)  ( x  w  z)  …  (…) 

 

• ILP variable x for each Boolean variable x 

• 0 · x · 1 

• represent : x by (1 – x) 

• each clause has a natural linear expression: 

– e.g. (x  y  z) ! (x + y + (1 – z)) 

• constrain each such expression to be ¸ 1 

YES maps to YES? 
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Integer programming 

φ = (x  y  z)  ( x  w  z)  …  (…) 

 

• ILP variable x for each Boolean variable x 

• 0 · x · 1 

• represent : x by (1 – x) 

• each clause has a natural linear expression: 

– e.g. (x  y  z) ! (x + y + (1 – z)) 

• constrain each such expression to be ¸ 1 

NO maps to NO? 
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Coping with intractability 

• NP-complete problem cannot have a 

polynomial-time algorithm, unless P = NP 

– considered unlikely 

 

NP-complete problems are everywhere! 

 

we need strategies to deal with them 

 

May 27, 2014 CS38 Lecture 17 12 



5/27/2014 

3 

Coping with intractability 

• Strategies for coping with intractability 

– consider special case or more restrictive 

version of the problem 

– parameterized complexity 

• problem size n, parameter k 

• find O(exp(k)¢ poly(n)) instead of O(nk) algorithm 

– approximation algorithms: for optimization 

problems, find an approximate solution 

– heuristics… 
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Special case 

example 
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Independent set on trees 

Independent set on trees.  Given a tree, find a maximum cardinality subset 

of nodes such that no two are adjacent. 

 

Fact.  A tree has at least one node that is a leaf (degree = 1). 

 

 

 

 

Key observation.  If node v is a leaf, there exists 

a max cardinality independent set containing v. 

Pf.  [exchange argument] 

・Consider a max cardinality independent set S. 

・If v ∈ S, we're done. 

・Let (u, v) be some edge. 

- if u ∉ S and v ∉ S, then S ∪  { v } is independent  ⇒  S not maximum 

- if u ∈ S and v ∉ S, then S ∪  { v } − { u } is independent  ▪ 

v 

u 
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Independent set on trees:  greedy algorithm 

Theorem.  The following greedy algorithm finds a max cardinality 

independent set in forests (and hence trees). 

 

Pf.  Correctness follows from the previous key observation.  ▪ 

 

 

 

 

 

 

 

 

 

 

 

Remark.  Can implement in O(n) time by considering nodes in postorder. 

INDEPENDENT-SET-IN-A-FOREST (F)                           
_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

S ← ∅. 

WHILE (F has at least 1 edge) 

e ← (u, v) such that v is a leaf. 

S ← S ∪ { v }. 

F ← F  – { u, v }. 

RETURN S. 


delete u and v and all incident edges 
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Weighted independent set on trees 

Weighted independent set on trees.  Given a tree and node weights wv > 0, 

find an independent set S that maximizes Σv ∈ S wv.  

 

Dynamic programming solution.  Root tree at some node, say r. 

・OPTin (u)  = max weight independent set of subtree rooted at u, 

containing u. 

・OPTout (u) = max weight independent set of subtree rooted at u, 

not containing u. 

・OPT  = max { OPTin (r),  OPTout (r) }.   

      

children(u) = { v, w, x } 

r 

u 

v w x 

Theorem.  The dynamic programming algorithm finds a max weighted 

independent set in a tree in O(n) time. 

WEIGHTED-INDEPENDENT-SET-IN-A-TREE (T)                           


Root the tree T at a node r. 

S ← ∅. 

FOREACH (node u of T in postorder) 

IF (u is a leaf) 

Min[u] = wu. 

Mout[u] = 0. 

ELSE 

Min[u]  = wu + Σv ∈ children(u) Mout[v]. 

Mout[u] = Σv ∈ children(u)  max { Min[v],  Mout[v] }. 

RETURN  max { Min[r],  Mout[r] }. 
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Weighted independent set on trees:  dynamic programming algorithm 

ensures a node is visited 

after all its children 

can also find independent set itself 

(not just value) 
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NP-hard problems on trees:  context 

Independent set on trees.  Tractable because we can find a node that breaks 

the communication among the subproblems in different subtrees. 

 

 

 

 

 

 

 

 

 

Linear-time on trees.  VERTEX-COVER, DOMINATING-SET, GRAPH-ISOMORPHISM, ... 

u 

 

 

Parameterized complexity 

example 
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Vertex cover 

Given a graph G = (V, E) and an integer k, is there a subset of vertices S ⊆ V 

such that | S | ≤  k, and for each edge (u, v) either u ∈ S or v ∈ S or both? 

3 

6 

10 

7 

1 

5 

8 

2 

4 9 

S = { 3, 6, 7, 10 } is a vertex cover of size k = 4 
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Finding small vertex covers 

Q.  VERTEXCOVER is NP-complete. But what if k is small? 

 

Brute force.  O(k n
k+1). 

・Try all C(n, k) = O(nk) subsets of size k. 

・Takes O(k n) time to check whether a subset is a vertex cover. 

 

 

Goal.  Limit to exponential dependency on k, say to O(2k k n).  

 

Ex.  n = 1,000, k = 10. 

Brute.    k n
k+1  = 1034   ⇒  infeasible. 

Better.  2k k n = 107    ⇒  feasible. 

 

Remark.  If k is a constant, then the algorithm is poly-time; 

if k is a small constant, then it's also practical. 
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Finding small vertex covers 

Claim.  Let (u, v) be an edge of G.  G has a vertex cover of size ≤  k iff 

at least one of G − { u } and G − { v } has a vertex cover of size ≤  k − 1. 

 

Pf.  ()) 

・Suppose G has a vertex cover S of size ≤ k. 

・S contains either u or v (or both).  Assume it contains u. 

・S − { u } is a vertex cover of G − { u }. 

 

Pf.  (() 

・Suppose S is a vertex cover of G − { u } of size ≤  k − 1. 

・Then S [ { u } is a vertex cover of G.  ▪ 

 

 

Claim.  If G has a vertex cover of size k, it has ≤ k (n − 1) edges. 

Pf.  Each vertex covers at most n − 1 edges.  ▪ 

delete v and all incident edges 
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Finding small vertex covers:  algorithm 

Claim.  The following algorithm determines if G has a vertex cover of 

size ≤  k in O(2k kn) time. 

 

 

 

 

 

 

 

 

 

Pf. 

・Correctness follows from previous two claims. 

・There are ≤ 2k+1
 nodes in the recursion tree; each invocation 

takes O(kn) time.  ▪ 

Vertex-Cover(G, k) { 

   if (G contains no edges)   return true 

   if (G contains ≥ kn edges) return false 

    

   let (u, v) be any edge of G 

   a = Vertex-Cover(G - {u}, k-1) 

   b = Vertex-Cover(G - {v}, k-1) 

   return a or b 

} 
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Finding small vertex covers:  recursion tree 

k 

k-1 k-1 

k-2 k-2 k-2 k-2 

0 0 0 0 0 0 0 0 

k - i 

 

 

Approximation algorithms 
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Optimization Problems 

• many hard problems (especially NP-hard) 

are optimization problems 

– e.g. find shortest TSP tour 

– e.g. find smallest vertex cover  

– e.g. find largest clique 

 

– may be minimization or maximization problem 

– “OPT” = value of optimal solution 
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Approximation Algorithms 

• often happy with approximately optimal 

solution 

– warning: lots of heuristics 

– we want approximation algorithm with 

guaranteed approximation ratio of r 

– meaning: on every input x, output is 

guaranteed to have value  

   at most r*opt for minimization 

   at least opt/r for maximization 

CS38 Lecture 17 
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Approximation Algorithms 

• Example approximation algorithm: 

Vertex Cover (VC): given a graph G, what is the 

smallest subset of vertices that touch every 

edge? 

Theorem: decision version of VC is NP-

complete 

Proof: in NP (why?) 

– reduce from?  
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Approximation Algorithms 

• Approximation algorithm for VC: 

– pick an edge (x, y), add vertices x and y to VC 

– discard edges incident to x or y; repeat. 

• Claim: approximation ratio is 2. 

• Proof:  

– an optimal VC must include at least one 

endpoint of each edge considered  

– therefore 2¢OPT  actual 

CS38 Lecture 17 
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Weighted vertex cover 

Given a graph G = (V, E) with vertex weights wi ≥ 0, find a min weight subset 

of vertices S ⊆ V such that every edge is incident to at least one vertex in S. 

3 

6 

10 

7 

10 

7 

9 

16 

23 33 

6 

9 

32 

10 

total weight = 6 + 23 + 7 + 9 + 10 = 55 
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Weighted vertex cover:  IP formulation 

Given a graph G = (V, E) with vertex weights wi ≥ 0, find a min weight subset 

of vertices S ⊆ V such that every edge is incident to at least one vertex in S. 

 

Integer programming formulation. 

・Model inclusion of each vertex i using a 0/1 variable xi. 

 

 

 

Vertex covers in 1–1 correspondence with 0/1 assignments: 

 S = { i ∈ V : xi = 1}.  

 

・Objective function:  maximize Σi wi xi.  

 

・Must take either vertex i or j (or both):  xi + xj  ≥ 1. 
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Weighted vertex cover:  IP formulation 

Weighted vertex cover.  Integer programming formulation. 

 

 

 

 

 

 

 

 

Observation.  If x* is optimal solution to (ILP), then S = { i ∈ V : xi* = 1} 

is a min weight vertex cover. 
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Integer programming 

Given integers aij, bi, and cj, find integers xj that satisfy: 
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Linear programming 

Given integers aij, bi, and cj, find real numbers xj that satisfy: 

 

 

 

 

 

 

 

 

Simplex algorithm.  [Dantzig 1947]  Can solve LP in practice. 

Ellipsoid algorithm.  [Khachian 1979]  Can solve LP in poly-time. 
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LP feasible region 

LP geometry in 2D. 

x1 + 2x2 = 6 

2x1 + x2 = 6 

x2 = 0 

x1 = 0 
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Weighted vertex cover:  LP relaxation 

Linear programming relaxation. 

 

 

 

 

 

 

 

Observation.  Optimal value of (LP) is    optimal value of (ILP). 

Pf.  LP has fewer constraints.  

 

Note.  LP is not equivalent to vertex cover.  

 

 

Q.  How can solving LP help us find a small vertex cover? 

A.  Solve LP and round fractional values. 

½ ½ 

½ 
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Weighted vertex cover:  LP rounding algorithm 

Lemma.  If x* is optimal solution to (LP), then S = { i ∈ V  : xi* ≥ ½} is a 

vertex cover whose weight is at most twice the min possible weight. 

 

Pf.  [S is a vertex cover] 

・Consider an edge (i, j) ∈ E. 

・Since xi* + xj*  ≥  1, either xi* ≥ ½ or  xj* ≥ ½   ⇒  (i, j) covered. 

 

Pf.  [S has desired cost] 

・Let S* be optimal vertex cover. Then 

 

 

 

 

 

Theorem.  The rounding algorithm is a 2-approximation algorithm. 

Pf.  Lemma + fact that LP can be solved in poly-time. 

LP is a relaxation 
xi*  ≥  ½ 

May 27, 2014 39 

Approximation Algorithms 

• diverse array of ratios achievable 

• some examples: 

– (min) Vertex Cover: 2  

– MAX-3-SAT (satisfy max # clauses): 8/7  

– (min) Set Cover: ln n 

– (max) Clique: n/log2n 

– (max) Knapsack: (1 + ε) for any ε > 0 

• many known to be “correct” unless P=NP 
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Approximation Algorithms 

(max) Knapsack: (1 + ε) for any ε > 0  

 

• called Polynomial Time Approximation 

Scheme (PTAS) 

– algorithm runs in poly time for every fixed ε>0 

– poor dependence on ε allowed 

• If all NP optimization problems had a 

PTAS, almost like P = NP (!) 

CS38 Lecture 17 
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Knapsack problem 

Knapsack problem. 

・Given n objects and a knapsack. 

・Item i has value vi  > 0 and weighs wi  >  0. 

・Knapsack has weight limit W. 

・Goal:  fill knapsack so as to maximize total value. 

 

Ex:  { 3, 4 } has value 40. 

we assume wi ≤ W for each i 

original instance (W = 11) 

item value weight 

1 1 1 

2 6 2 

3 18 5 

4 22 6 

5 28 7 
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Knapsack is NP-complete 

KNAPSACK.  Given a set X, weights wi  ≥ 0, values vi  ≥ 0, a weight limit W, and a 

target value V, is there a subset S  ⊆ X such that: 

 

 

 

 

SUBSET-SUM.  Given a set X, values ui  ≥ 0, and an integer U, is there a subset S  

⊆ X whose elements sum to exactly U ? 

 

Theorem.  SUBSET-SUM ≤ P  KNAPSACK. 

Pf.  Given instance (u1, …, un, U) of SUBSET-SUM, create KNAPSACK instance: 
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Knapsack problem:  dynamic programming I 

Def.  OPT(i, w) = max value subset of items 1,..., i with weight limit w. 

 

Case 1.  OPT does not select item i. 

・OPT selects best of 1, …, i – 1 using up to weight limit w. 

 

Case 2.  OPT selects item i. 

・New weight limit = w – wi. 

・OPT selects best of 1, …, i – 1 using up to weight limit w – wi. 

 

 

 

 

 

Theorem.  Computes the optimal value in O(n W) time. 

・Not polynomial in input size. 

・Polynomial in input size if weights are small integers. 
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Knapsack problem:  dynamic programming II 

Def.  OPT(i, v) = min weight of a knapsack for which we can obtain a solution 

of value ≥ v using a subset of items 1,..., i. 

 

Note.  Optimal value is the largest value v such that OPT(i, v)  ≤  W. 

 

Case 1.  OPT does not select item i. 

・OPT selects best of 1, …, i – 1 that achieves value  v. 

 

Case 2.  OPT selects item i. 

・Consumes weight wi, need to achieve value v – vi. 

・OPT selects best of 1, …, i – 1 that achieves value v – vi. 
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Knapsack problem:  dynamic programming II 

Theorem.  Dynamic programming algorithm II computes the optimal value 

in O(n2 vmax) time, where vmax is the maximum of any value. 

Pf. 

・The optimal value V* ≤  n vmax. 

・There is one subproblem for each item and for each value v ≤ V*. 

・It takes O(1) time per subproblem. ▪ 

 

Remark 1.  Not polynomial in input size! 

Remark 2.  Polynomial time if values are small integers. 

46 

Knapsack problem:  polynomial-time approximation scheme 

Intuition for approximation algorithm. 

・Round all values up to lie in smaller range. 

・Run dynamic programming algorithm II on rounded instance. 

・Return optimal items in rounded instance. 

original instance (W = 11) 

item value weight 

1 934221 1 

2 5956342 2 

3 17810013 5 

4 21217800 6 

5 27343199 7 

rounded instance (W = 11) 

item value weight 

1 1 1 

2 6 2 

3 18 5 

4 22 6 

5 28 7 
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Knapsack problem:  polynomial-time approximation scheme 

Round up all values:   

・vmax = largest value in original instance. 

・ε = precision parameter. 

・θ =  scaling factor = ε vmax / n. 

 

 

Observation.  Optimal solutions to problem with    are equivalent to 

optimal solutions to problem with    . 

 

Intuition.     close to v so optimal solution using    is nearly optimal; 

   small and integral so dynamic programming algorithm II is fast. 
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Knapsack problem:  polynomial-time approximation scheme 

Round up all values:   

 

 

Theorem.  If S is solution found by rounding algorithm and S* is any other 

feasible solution, then 

 

Pf.  Let S* be any feasible solution satisfying weight constraint.  

always round up 

solve rounded instance optimally 

never round up by more than θ 

| S | ≤ n 

n θ = ε vmax,  vmax  ≤  Σi ∈ S vi 

DP alg can take vmax 



5/27/2014 

9 

49 

Knapsack problem:  polynomial-time approximation scheme 

Theorem. For any ε > 0, the rounding algorithm computes a feasible solution 

whose value is within a  (1 + ε) factor of the optimum in O(n3 / ε) time.  

 

Pf. 

・We have already proved the accuracy bound. 

・Dynamic program II running time is                ,  where 

 

 

 

 

PTAS.  (1 + ε)-approximation algorithm for any constant ε > 0.  

・Produces arbitrarily high quality solution. 

・Trades off accuracy for time. 

・But such algorithms are unlikely to exist for certain problems... 


