CS38
Introduction to Algorithms

Lecture 17
May 27, 2014

May 27, 2014 CS38 Lecture 17

5/27/2014

Outline

« coping with intractibility
— NP-completeness
— special cases
— fixed parameter complexity
— approximation algorithms

May 27, 2014 CS38 Lecture 17

Hardness and completeness

+ Reasonable that can efficiently transform
one problem into another.

 Surprising:

— can often find a special language L so that

every language in a given complexity class
reduces to L!

— powerful tool

May 27, 2014 CS38 Lecture 17

Hardness and completeness

* Recall:
—alanguage L is a set of strings
—a complexity class C is a set of languages

Definition: a language L is C-hard if for
every language A € C, A poly-time
reducestolL;ie, AL,

meaning: L is at least as “hard” as anything in C

May 27, 2014 CS38 Lecture 17

Hardness and completeness

* Recall:

—alanguage L is a set of strings
—a complexity class C is a set of languages

Definition: a language L is C-complete if L
isC-hardandL € C

meaning: L is a “hardest” problem in C

May 27, 2014 CS38 Lecture 17

Lots of NP-complete problems

* logic problems

— 3-SAT ={¢: ¢ is a satisfiable 3-CNF formula}
— NAES3SAT, (3,3)-SAT

— Max-2-SAT
« finding objects in graphs * problems on numbers
— independent set — subset sum
— vertex cover — knapsack
— clique — partition
+ sequencing + splitting things up
— Hamilton Path — max cut

— Hamilton Cycle and TSP — min/max bisection

May 27, 2014 CS38 Lecture 17

5/27/2014

Example: Integer programming

Definition: Integer Linear Program (ILP) =
{LPs with integer variables that have a
feasible solution}

Theorem: ILP is NP-complete.

* Proof:

—Part 1: ILP € NP. Proof? (try just for 0/1)

— Part 2: ILP is NP-hard.
* reduce from?

May 27, 2014 CS38 Lecture 17

Integer programming
» We are reducing from the language:
3-SAT ={¢ : ¢ is a satisfiable 3-CNF formula}

to the language:

ILP = {LPs with integer variables that have a
feasible solution}

May 27, 2014 CS38 Lecture 17 8

Integer programming
P=(XVYyV-aZ)A(=XVWVZ)A..A(.)

« ILP variable x for each Boolean variable x

e0<x<1

* represent - x by (1 —x)

« each clause has a natural linear expression:
-eg. (xvyv=z) > (x+y+(1-2)

« constrain each such expression to be > 1

is this reduction polynomial time?

May 27, 2014 CS38 Lecture 17

Integer programming
O=(XVYV-Z)A(=XVWVZ)A .. .A(..)

* ILP variable x for each Boolean variable x

c0<x<1

* represent — x by (1 —x)

« each clause has a natural linear expression:
—eg. (Xvyv-z) > (x+y+(1-2)

» constrain each such expression to be > 1

YES maps to YES?

May 27, 2014 CS38 Lecture 17 10

Integer programming
P=(Xvyv-zZ)Aa(=Xvwvz)a..Al(..)

* ILP variable x for each Boolean variable x

c0<x<1

* represent — x by (1 —x)

« each clause has a natural linear expression:
-eg. (Xvyv—z) = (X+y+(1-2)

« constrain each such expression to be > 1

NO maps to NO?

May 27, 2014 CS38 Lecture 17

11

Coping with intractability

* NP-complete problem cannot have a
polynomial-time algorithm, unless P = NP
— considered unlikely

NP-complete problems are everywhere!

we need strategies to deal with them

May 27, 2014 CS38 Lecture 17 12

5/27/2014

Coping with intractability

« Strategies for coping with intractability

— consider special case or more restrictive
version of the problem

— parameterized complexity
* problem size n, parameter k
« find O(exp(k)- poly(n)) instead of O(n¥) algorithm
— approximation algorithms: for optimization
problems, find an approximate solution
— heuristics...

May 27, 2014 CS38 Lecture 17 13

Special case
example

May 27, 2014 CS38 Lecture 17 14

Independent set on trees

Independent set on trees. Given a tree, find a maximum cardinality subset
of nodes such that no two are adjacent.

Fact. A tree has at least one node that is a leaf (degree = 1).

N

Key observation. If node v is a leaf, there exists

a max cardinality independent set containing v. /“1

Pf. [exchange argument] ‘\
* Consider a max cardinality independent set S. v

* Ifve s, we're done.

* Let (u, v) be some edge.
- ifugSandvegs, then Su {v}isindependent = S not maximum
- ifueSandvegs, thenSu {v}-{u}isindependent =

Independent set on trees: greedy algorithm

Theorem. The following greedy algorithm finds a max cardinality
independent set in forests (and hence trees).

Pf. Correctness follows from the previous key observation. =

INDEPENDENT-SET-IN-A-FOREST (F)

S—@.
WHILE (F has at least 1 edge)
€« (u, V) such that v is a leaf.

S—Su{v}
F—F -{uv}
delete uand v and all incident edges
RETURN S.

Remark. Can implement in O(n) time by considering nodes in postorder.

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights w, >0,
find an independent set S that maximizes Z,cs W,.

Dynamic programming solution. Root tree at some node, say r.
* OPT;,(u) = max weight independent set of subtree rooted at u,
containing u.
* OPT,, (u) = max weight independent set of subtree rooted at u,
not containing u.
* OPT = max { OPT, (r), OPTou (1) }.

/|l

OPT,() - w+ 0PT,,(¥)
de\Erﬁu(u} g 1\
OPLG) = 3 max{OPT,(), OPT,,(} VAR
¥ € children(u) v \T X

children(u) = { v, w, x}

Weighted independent set on trees: dynamic programming algorithm

Theorem. The dynamic programming algorithm finds a max weighted
independent set in a tree in O(n) time. can also find independent set itself
(not just value)

'WEIGHTED-INDEPENDENT-SET-IN-A-TREE (T)

Root the tree T at a node r.

S« 0.
FOREACH (node u of T in postorder)
IF (u is a leaf) AN
Min[u] = . ensures a node is visited
Moul] = 0. after all its children
ELsE

Min[u] = Wu + Zv € chidren(u) Mout[V].
Mou[u] = Zv e chiidrenw) Max { Min[v], MoutV] }.
RETURN max { Min[r], Mout[r] }.

5/27/2014

NP-hard problems on trees: context

Independent set on trees. Tractable because we can find a node that breaks
the communication among the subproblems in different subtrees.

A A

Linear-time on trees. VERTEX-COVER, DOMINATING-SET, GRAPH-ISOMORPHISM, ...

Parameterized complexity
example

May 27, 2014 Cs38 Lecture 17 20
19
Vertex cover Finding small vertex covers
Given a graph G = (V, E) and an integer k, is there a subset of vertices ScV Q. VERTEXCOVER is NP-complete. But what if k is small?
such that | S| < k, and for each edge (u, v) eitheru € S or v e S or both?
Brute force. O(knk*1).
* Try all C(n, k) = O(n¥) subsets of size k.
* Takes O(kn) time to check whether a subset is a vertex cover.
1 ®
2 L J Goal. Limit to exponential dependency on k, say to O(2<kn).
{] 8 Ex. n=1,000, k = 10.
Brute. kn*1=10% = infeasible.
4 9 Better. 2kkn=10" = feasible.
s . Remark. If k is a constant, then the algorithm is poly-time;
if k is a small constant, then it's also practical.
S={3,6,7,10}is a vertex cover of size k=4
21 22
Finding small vertex covers Finding small vertex covers: algorithm
Claim. Let (u, v) be an edge of G. G has a vertex cover of size < k iff Claim. The following algorithm determines if G has a vertex cover of
at least one of G - {u} and G - {v} has a vertex cover of size < k- 1. size < k in O(2 kn) time.
N
delete v and all incident edges
Pf. (=) Vertex-Cover(G, k) {
* Suppose G has a vertex cover S of size sk. if (G contains no edges) return true
* S contains either u or v (or both). Assume it contains u. if (G contains > kn edges) return false
* S-{u}is avertex cover of G - {u}.
let (u, v) be any edge of G
Pf. (=) a = Vertex-Cover(G - {u}, k-1)
* Suppose S is a vertex cover of G - {u} of size < k- 1. b = Vertex-Cover(G - {v}, k-1
* Then SuU{u}is avertex cover of G. = return a or b
Pf. ¥
* Correctness follows from previous two claims.
Claim. If G has a vertex cover of size k, it has <k (n - 1) edges. * There are < 2¥*1 nodes in the recursion tree; each invocation
Pf. Each vertex covers at most n - 1 edges. = takes O(kn) time. =
23

5/27/2014

Finding small vertex covers: recursion tree

¢ ifk=0
T(n,k) s | cn ifk=1 = T(n,k)s2'ckn
2T(nk-1+ckn ifk>1

Approximation algorithms

May 27, 2014 CS38 Lecture 17 26

Optimization Problems

* many hard problems (especially NP-hard)
are optimization problems
—e.g. find shortest TSP tour
—e.g. find smallest vertex cover
—e.g. find largest clique

— may be minimization or maximization problem
—“OPT” = value of optimal solution

May 27, 2014 CS38 Lecture 17 27

Approximation Algorithms

+ often happy with approximately optimal
solution

—warning: lots of heuristics

—we want approximation algorithm with
guaranteed approximation ratio of r

— meaning: on every input X, output is
guaranteed to have value
at most r*opt for minimization
at least opt/r for maximization

May 27, 2014 CS38 Lecture 17 28

Approximation Algorithms

* Example approximation algorithm:

Vertex Cover (VC): given a graph G, what is the
smallest subset of vertices that touch every
edge?

Theorem: decision version of VC is NP-
complete

Proof: in NP (why?)
—reduce from?

May 27, 2014 CS38 Lecture 17 29

Approximation Algorithms

» Approximation algorithm for VC:
— pick an edge (X, y), add vertices x and y to VC
—discard edges incident to x or y; repeat.

 Claim: approximation ratio is 2.
* Proof:

—an optimal VC must include at least one
endpoint of each edge considered
—therefore 2-OPT= actual

May 27, 2014 CS38 Lecture 17 30

5/27/2014

Weighted vertex cover

Given a graph G = (V, E) with vertex weights w; 2 0, find a min weight subset
of vertices S € V such that every edge is incident to at least one vertex in S.

® ®
© @ @

® @ o
®

@

total weight = 6 + 23 +7 + 9 + 10 = 55

Weighted vertex cover: IP formulation

Given a graph G = (V, E) with vertex weights w; 2 0, find a min weight subset
of vertices S € V such that every edge is incident to at least one vertex in S.

Integer programming formulation.
* Model inclusion of each vertex i using a 0/1 variable x;.
x =

i

0 if vertex i is not in vertex cover
1 if vertex i is in vertex cover

Vertex covers in 1-1 correspondence with 0/1 assignments:
S={ieV:ix=1}

Objective function: maximize Z;w;x;.

* Must take either vertex i or j (or both): x;+x; 2 1.

31 32
Weighted vertex cover: IP formulation Integer programming
Weighted vertex cover. Integer programming formulation. Given integers aj, bj, and cj, find integers x; that satisfy:
. n
(LP) min 3 wx, max ¢'x Sayx; = b lsism
eV =l
S.L X +x; = 1 (.NEE st Ax = b xy =0 lsjsn
ntey o .
x, € {01} i€V x integrl x; integral 1s jsn
Observation. If x* is optimal solution to (ILP), then S={ie V:x*=1}
is a min weight vertex cover.
33 34
Linear programming LP feasible region
Given integers aj, bj, and c;, find real numbers x; that satisfy: LP geometry in 2D.
n x=0
®) max c'x & = Yag (The region satisfying the inequalities |
st Ax = b 3 %20,020
= 0 s.t. Yayx; = b lsism 6 X+ 2526
& . 2+ 1,26
x =2 0 lsjsn 4
Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.
35 36

5/27/2014

Weighted vertex cover: LP relaxation

Linear programming relaxation.

(LP) min ¥ wx,
iev
S.Lox+x; =1 (ij)EE
X, = 0 iEV

Observation. Optimal value of (LP) is & optimal value of (ILP).
Pf. LP has fewer constraints.
Note. LP is not equivalent to vertex cover. * C O *

Q. How can solving LP help us find a small vertex cover? i
A. Solve LP and round fractional values.

Weighted vertex cover: LP rounding algorithm

Lemma. If x* is optimal solution to (LP), then S={ieV :x*2%}is a
vertex cover whose weight is at most twice the min possible weight.

Pf. [Sis a vertex cover]
* Consider an edge (i, j) € E.
* Since x* + x* 2 1, either x*2%o0r x*2% = (i,) covered.

Pf. [S has desired cost]
* Let S* be optimal vertex cover. Then

+
Ew,o oz Zwx = 3w
i€y i€s | CiEs

LPis a relaxation Xz %

Theorem. The rounding algorithm is a 2-approximation algorithm.
Pf. Lemma + fact that LP can be solved in poly-time.

Approximation Algorithms

« diverse array of ratios achievable
* some examples:
— (min) Vertex Cover: 2
— MAX-3-SAT (satisfy max # clauses): 8/7
— (min) Set Cover: Inn
— (max) Clique: n/log®n
— (max) Knapsack: (1 + €) forany € >0
* many known to be “correct” unless P=NP

May 27, 2014 CS38 Lecture 17 39

Approximation Algorithms

(max) Knapsack: (1 + €) forany € >0

« called Polynomial Time Approximation
Scheme (PTAS)

— algorithm runs in poly time for every fixed €>0
— poor dependence on ¢ allowed

« If all NP optimization problems had a
PTAS, almost like P = NP (!)

May 27, 2014 CS38 Lecture 17 40

Knapsack problem

Knapsack problem.
* Given n objects and a knapsack.
* Item i has value v; > 0 and weighs w; > 0. ~— e assume wi < W for each i
* Knapsack has weight limit W.
* Goal: fill knapsack so as to maximize total value.

Ex: {3, 4} has value 40.

1 1 1

2 6 2
3 18 5
4 22 6
5 28 7

original instance (W = 11)

Knapsack is NP-complete

KNAPSACK. Given a set X, weights wi 2 0, values vi 20, a weight limit W, and a
target value V, is there a subset S < X such that:

Sw o= W
iEes

Sv, = ¥

=

SuBseT-Sum. Given a set X, values ui 20, and an integer U, is there a subset S
< X whose elements sum to exactly U?

Theorem. SUBSET-SUM <p KNAPSACK.
Pf. Given instance (u, ..., un, U) of SUBSET-SuM, create KNAPSACK instance:

V=W =i Su, s U
i€s
V=W=U 3w 2z U

ies

42

5/27/2014

Knapsack problem: dynamic programming |

Def. OPT(j, w) = max value subset of items 1,..., i with weight limit w.

Case 1. OPT does not select item i.
* OPT selects best of 1, ..., i— 1 using up to weight limit w.

Case 2. OPT selects item i.
* New weight limit =w — w;.

* OPT selects best of 1, ..., i—1 using up to weight limit w — w;.
0 if i=0
OPT(i,w)={ OPT(i-1,w) it w>w

[max{ OPT(i—1,w), v,+ OPT(i-1,w-w,)} otherwise

Theorem. Computes the optimal value in O(n W) time.
* Not polynomial in input size.
* Polynomial in input size if weights are small integers.

Knapsack problem: dynamic programming Il

Def. OPT(i, v) = min weight of a knapsack for which we can obtain a solution

of value 2 v using a subset of items 1,..., i.

Note. Optimal value is the largest value v such that OPT(i, v) < W.

Case 1. OPT does not select item i.
* OPT selects best of 1, ..., i—1 that achieves value v.

Case 2. OPT selects item i.
* Consumes weight w;, need to achieve value v —v;.

* OPT selects best of 1, ..., i—1 that achieves value v —v;.
0 ifo<0
OPT(i,v) = { o ifi=0and v>0

min {OPT(i — 1,v), wi + OPT(i—1,v—w)} otherwise

43 44
Knapsack problem: dynamic programming Il Knapsack problem: polynomial-time approximation scheme
Theorem. Dynamic programming algorithm Il computes the optimal value Intuition for approximation algorithm.
in O(n? Vmax) time, where vmax is the maximum of any value. * Round all values up to lie in smaller range.
Pf. * Run dynamic programming algorithm Il on rounded instance.
* The optimal value V* < n Vmax. * Return optimal items in rounded instance.
* There is one subproblem for each item and for each value v < Vv*.
* It takes O(1) time per subproblem. =
Remark 1. Not polynomial in input size! m
Remark 2. Polynomial time if values are small integers. ! 934221 ! 7 1 1
2 5956342 2
2 6 2
3 17810013 5
3 18 5
4 21217800 6
4 22 6
5 27343199 7
5 28 7
original instance (W = 11) rounded instance (W = 11)
45 46

Knapsack problem: polynomial-time approximation scheme

Round up all values:

* Vmax = largest value in original instance. s2[%le 5 v,
* € = precision parameter. = 0l %= -]
* 0 = scaling factor = € Vg, / .

Observation. Optimal solutions to problem with ¥ are equivalent to
optimal solutions to problem with .

Intuition. ¥ close to v so optimal solution using ¥ is nearly optimal;
¥ small and integral so dynamic programming algorithm Il is fast.

Knapsack problem: polynomial-time approximation scheme
HE
]

Theorem. If S is solution found by rounding algorithm and S* is any other

feasible solution, then Y v = T,
ics &g

Round up all values:

Pf. Let S* be any feasible solution satisfying weight constraint.

Sv o= Iy always round up
ics* iESs*
= gs“x solve rounded instance optimally
= T+ 0) never round up by more than 6
ies
s Yv+nb |Sslsn
iEs 0P alg can take Vi

= (1+8)3 v -
F) N0 = €Vima, Vmax S ZiesVi

48

Knapsack problem: polynomial-time approximation scheme

Theorem. For any € > 0, the rounding algorithm computes a feasible solution
whose value is withina (1 + €) factor of the optimum in O(n3/¢) time.

Pf.
* We have already proved the accuracy bound.

* Dynamic program Il running time is O(n’v

max)s
=[] - [2]
Viax = =
] €

PTAS. (1 + ¢)-approximation algorithm for any constant € > 0.
* Produces arbitrarily high quality solution.
* Trades off accuracy for time.
* But such algorithms are unlikely to exist for certain problems...

where

49

5/27/2014

