5/23/2014

Outline

* Linear programming
CSs38 — LP duality
. . — ellipsoid algorith
Introduction to Algorithms cipsoid afgerim

* slides from Kevin Wayne

Lecture 16
May 22, 2014 + coping with intractibility
— NP-completeness

May 22, 2014 Cs38 Lecture 16 1 May 22, 2014 CS38 Lecture 16 2
LP Duality LP Duals
Primal problem. ®) max 134 + 238 Canonical form.
st 54 + 1SB < 480
44 + 4B < 160 (P) maxc'x (D) miny'b
354 + 20B < 1190 stoA < b st ATy 2 ¢
4 ., Bz 0 x =0 y 20
Idea. Add nonnegative combination (C, H, M) of the constraints s.t.
134+23B < (5C+4H+35M) A + (15C+4H+20M) B
< 480C+160H +1190M
Dual problem. Find best such upper bound.
(D) min 480C + 160H + 1190M
st 5C + 4H + 35M > 13
I15C + 4H + 20M = 23
@ , H M = 0
2 s
Double Dual Taking Duals
Canonical form. LP dual recipe.
(P) maxc’x (D) miny'b
st A < b sit. A7y 2 ¢
x>0 Yy =0 Primal (P) maximize minimize Dual (D)
ax=b; , unrestricted
constraints ax <b >0 variables
ax >b; »=0
Property. The dual of the dual is the primal. X <0 aly>¢
G <
Pf. Rewrite (D) as a maximization problem in canonical form; take dual. variables %520 ”'T"S‘/ constraints
unrestricted A=,
(D') max —y'h (DD) min —¢'z
st ATy < —¢ st Az 2 b Pf. Rewrite LP in standard form and take dual.
y = 0 z 2 0
s 5




5/23/2014

Strong duality

May 22, 2014

CS38 Lecture 16 7

LP Strong Duality

Theorem. [Gale-Kuhn-Tucker 1951, Dantzig-von Neumann 1947]
For 4 € Rmxn b € R, ¢ € Ry, if (P) and (D) are nonempty, then max = min.

(P) maxc'x
st Ax
x

(D) miny'b
b sit. ATy
¥y

VA
o
Vv
o

Generalizes:

. Dilworth's theorem.

. Konig-Egervary theorem.

. Max-flow min-cut theorem.

- von Neumann's minimax theorem.

Pf. [ahead]

LP Weak Duality

Theorem. For 4 € Rm Xn b € R, ¢ € R, if (P) and (D) are nonempty, then max
< min.

(P) max c’x
s.t Ax
x

(D) miny'h
b st ATy
y

VA
o
Vv
o

Pf. Suppose x € R” is feasible for (P) and y € R* is feasible for (D).
. y>0,Ax<b = )Tdx < b
C x>0, ATy > ¢ = JAx > Tx

Combine: ¢'x < yTdx < yTh.

Projection Lemma

Weierstrass' theorem. Let X be a compact set, and let f{x) be a continuous
function on X. Then min {flx):x € X} exists.

Projection lemma. Let.X C R” be a nonempty closed convex set, and take y
not in X. Then there exists x* € X with minimum distance from y.
Moreover, for all x € X we have (y —x*)T(x —x*) < 0. /

/ /

obtuse angle ly-x|

Projection Lemma

Weierstrass' theorem. Let X be a compact set, and let f{x) be a continuous
function on X. Then min {fix):x € X'} exists.

Projection lemma. Let.¥ C R” be a nonempty closed convex set, and take y
not in X. Then there exists x* € X with minimum distance from y.
Moreover, for all x € X we have (y —x*)T(x —x*) < 0.

Pf.
Define fix) = ||y - x|l.

. Want to apply Weierstrass, but X not
necessarily bounded.

. X not empty = there exists x’ € X. *
Define X'= {xe X:|ly-x|l < lly-x'l } i i
so that X" is closed, bounded, and
min {fix):x € X} =min {fix):x € X"}.

By Weierstrass, min exists.

Projection Lemma

Weierstrass' theorem. Let X be a compact set, and let fix) be a continuous
function on X. Then min {fix):x € X} exists.

Projection lemma.
Moreover, for all x € X we have (y —x*)T(x —x*) < 0.

Pf.
. x*min distance = |ly-x'[|2 < |[y-x]|?forallx € X.
. By convexity: if x € X, then x* +¢ (x -x*) € Xforall 0<e< 1.
Ay =M < ly-at - e a2
= 24 €2 = %)) 2= 26 (v = )T (x - %)
. Thus, (y -x®)T(r-x*) < Y e ll(x—x®)|2
. Letting e — 0%, we obtain the desired result.




5/23/2014

Separating Hyperplane Theorem

Theorem. Let X C R™ be a nonempty closed convex set, and take y not in
X. Then there exists a hyperplane H={x € R":a"x=a } wherea € R",
a € R that separates y from X.

a'x>aforallxex
a'y < a

Pf.

. Let x* be closest point in X to y.

. By projection lemma,
-x9Tx-x*<0forallxex

Choose a=x"-y not equal 0 and a = a’x*.
If x € X, then a"(x —x*) > 0;
thus = d'x > ax*=a.
. Also, a")

y

a" (- a)= a—|lal <a - Cs

H={xeR":ax=qa}

Farkas' Lemma
Theorem. For 4 € Rmx» | b € R™ exactly one of the following
two systems holds:

@ IxeR"
st Ax

I Jyen”
sst. ATy =2 0
Vb < 0

1
o

x

v
o

Pf. [not both] Suppose x satisfies (I) and y satisfies (II).
Then 0 > yTh = yT4x > 0, a contradiction.

Pf. [at least one] Suppose (I) infeasible. We will show (l1) feasible.

. Consider S={A4x:x >0} and note that b not in S.

. Letye€ R", ac R be a hyperplane that separates » from S:
y™h<a, s> aforallses.

s 0eS = a<0= yb<0

. y4x > aforallx >0 = »4 >0 since x can be arbitrarily large.

Another Theorem of the Alternative

Corollary. For 4 € Rmxn b € R" exactly one of the following two systems
holds:

LP Strong Duality

Theorem. [strong duality] For 4 € Rmxn, b € R, ¢ € Ry, if (P) and (D) are
nonempty then max = min.

3 a an JyeR” . .
O 3Ixe st Ay = 0 (P) maxc’x (D) miny’b
s.toAx < b Vb < 0 st A < b st ATy = ¢
x 20 v 20 x =0 y 20
Pf. [max < min] Weak LP duality.
Pf. [min < max] Suppose max < a. We show min < a.
Pf. Apply Farkas'lemma to:
@O IxeR" () JyeR”, zeR
(I) JxeR',seN" ) Iyen” st A < b s.t. ATy-cz 2 0
st Ax+1s = b st ATy = 0 —'x < -a Yb-az < 0
xs 20 Iy =2 0 x = 0 »z =20
Vb < 0
. By definition of «, (I) infeasible = (ll) feasible by Farkas' Corollary.
s 16
LP Strong Duality
) JyeN", zeNR
st A'y-cz 2 0
Vib-az < 0
»z 2 0 . R R
Let y, z be a solution to (II).
Case 1. [z=0]
. Then, {yeR": 4"y >0, y"h<0,y >0} is feasible.
. Farkas Corollary = {x € R": Ax <b,x >0} is infeasible.
. Contradiction since by assumption (P) is nonempty.
Case 2. [z>0]
. Scale y, z so that y satisfies (Il) and z = 1.
. Resulting y feasible to (D) and y™» < a.
May 22, 2014 CS38 Lecture 16 18




5/23/2014

Geometric Divide-and-Conquer

To find a point in P:

Geometric Divide-and-Conquer

To find a point in P:
. Maintain ellipsoid E containing P.

Geometric Divide-and-Conquer

To find a point in P;
. Maintain ellipsoid £ containing P.
. If center of ellipsoid z is in P stop;
otherwise find hyperplane separating z from P.

and consider corresponding
half-ellipsoid 2 E=EnNH

separating
hyperplane

Geometric Divide-and-Conquer

To find a point in P:
. Maintain ellipsoid E containing P.
. If center of ellipsoid z is in P stop;
otherwise find hyperplane separating z from P.
. Find sLnaIIest ellipsoid E’ containing half-ellipsoid.
e

LJ ellipsoid separating
hyperplane

Geometric Divide-and-Conquer

To find a point in P:
. Maintain ellipsoid E containing P.
. If center of ellipsoid z is in P stop;
otherwise find hyperplane separating z from P.
. Find smallest ellipsoid E' containing half-ellipsoid.
. Repeat.

Optimization to Feasibility

Standard form.

max ¢’ x
st Ax = b
x 20
Ax < b form. 3y
s.t Ax < b
Ax < b
—-Ax < -b
-x < 0 x>0
ATy < ¢ dual feasible
dx—-by < 0 optimal




5/23/2014

Ellipsoid Algorithm Shrinking Lemma

Goal. Given 4 € R and b € R, find x € R" such that Ax < b. Ellipsoid. Given D € R»" positive definite and z € R, then
[l

» E={xe®R:(x-2)D'(x-2) <1}

Ellipsoid algorithm.
. Let £, be an ellipsoid containing P. unit sphere
- k=0. enumerate constraints
. While center z* of ellipsoid Ef is notin P:

- find a constraint, say a - x < 3, that is violated by z*

is an ellipsoid centered on z with vol(E) = +/det(D) x vol(B(0, 1))
AN

Key lemma. Every half-ellipsoid % E is contained in an ellipsoid £’ with

- let E#'! be min volume ellipsoid containing £ N {x :a-x < a-z*%} VOl(E") / vol(E) < e~ 1@, "
k=k+1 — ;
easy to compute half-ellipsoid % £
ax<p

ax<a-z

Shrinking Lemma: Unit Sphere Shrinking Lemma: Unit Sphere

Special case. E = unit sphere, H={x:x,20}. Special case. E = unit sphere, H= {x:x,20}.

E=ix S <11 B = {x: @)@ 20" +2 Sy < 1)
i=1 " i=2

E={x: E@) <1} B o= {(x @) ) v S < 1)
= i
Claim. E'is an ellipsoid containing %2 E = EN H.

Claim. E'is an ellipsoid containing % E = E N H.
Pf. Volume of ellipsoid is proportional to side lengths:

Pf. If x € L E:

( ﬂ]z(( Sy vol(E") ot

G ) . o - ) &) )
_ el ' vol(E) ' o '
=T R - (1, 1) H

n+l)
_ anzx‘l B < e"’\\\\
T N , N
SN+ -

[
l+x<er

Shrinking Lemma Shrinking Lemma

Shrinking lemma. The min volume ellipsoid containing the

Shrinking lemma. The min volume ellipsoid containing the
half-ellipsoid 2 E=EnN {x: a-x<a-z} is defined by:

half-ellipsoid 2 £ = EN {x: a-x<a-z} is defined by:

s, L Da W [Di 2 Daa'D] oo, L Do, [Di 2 Daa'D]
n+l a'Da -1 n+1 a Da “ 7w+l NaDa -1 n+1 d'Da

E' = {xeW: (x=2) (D)'(x-2) <1} E' = {xeW: (x-2) (D) (x-2) <1}

Pf sketch. Corollary. Ellipsoid algorithm terminates after at most
. We proved E = unit sphere, H= {x:x, >0} ‘ 2(n+1) In (vol(Ey) / vol(P)) steps.
Ellipsoids are affine transformations of unit spheres.
Volume ratios are preserved under affine transformations.

Moreover, vol(£") / vol(E) < e - V@D, Moreover, vol(E*) / vol(E) < e - /D),




5/23/2014

Ellipsoid Algorithm

Theorem. Linear Programming problems can be solved in polynomial
time.

Pf sketch.

. Shrinking lemma.

. Set initial ellipsoid E, so that vol(E,) < 2¢L.

. Perturb Ax <bto Ax < b +e = either P is empty or vol(P) > 2L,
. Bit complexity (to deal with square roots).

. Purify to vertex solution.

Caveat. This is a theoretical result. Do not implement.
\
N\

O(mn* L) arithmetic ops on numbers of size O(L),
where L = number of bits to encode input

Coping with
intractability

May 22, 2014 CS38 Lecture 16 32

Decision problems + languages

* A problem is a function:
fiz'— %"
+ Simple. Can we make it simpler?
* Yes. Decision problems:
f:2"— {accept, reject}

* Does this still capture our notion of
problem, or is it too restrictive?

May 22, 2014 CS38 Lecture 16 33

Decision problems + languages

« Example: factoring:
—given an integer m, find its prime factors
ffactor: {0,1Y - {0,1y
+ Decision version:

—given 2 integers m,k, accept iff m has a prime
factor p <k

» Can use one to solve the other and vice
versa. True in general.

May 22, 2014 CS38 Lecture 16 34

Decision problems + languages

* For most complexity settings a problem is
a decision problem:

f:2"— {accept, reject}
« Equivalent notion: language
LcX
the set of strings that map to “accept”
« Example: L = set of pairs (m,k) for which
m has a prime factor p <k

May 22, 2014 CS38 Lecture 16 35

Search vs. Decision

« Definition: given a graph G = (V, E), an
independent set in G is a subset V'c V
such that foralluw € V' (u,w) ¢ E

* A problem:
given G, find the largest independent set

» This is called a search problem
— searching for optimal object of some type
— comes up frequently

May 22, 2014 CS38 Lecture 16 36




5/23/2014

Search vs. Decision

* We want to talk about languages (or
decision problems)

* Most search problems have a natural,
related decision problem by adding a
bound “k”; for example:

— search problem: given G, find the largest
independent set

— decision problem: given (G, k), is there an
independent set of size at least k

May 22, 2014 CS38 Lecture 16 37

The class NP
Definition: TIME(t(n)) = {L : there exists a
TM M that decides L in time O(t(n))}

P = U, TIME(nK)
Definition: NTIME(t(n)) = {L : there exists a
NTM M that decides L in time O(t(n))}

NP = U, »; NTIME(nK)

May 22, 2014 CS38 Lecture 16 38

Poly-time verifiers

* NP ={L : L decided by poly-time NTM}

» Very useful alternate definition of NP:

Theorem: language L is in NP if and only if
it is expressible as:

L={x|3y, IvI<IX (x,y) € R}
where R is a language in P.
* poly-time TM Mg deciding R is a “verifier”

May 22, 2014 CS38 Lecture 16 39

Poly-time verifiers

* NP ={L : L decide] “yiness” or |€ NTM}
“certificate”
+ Very useful alternate definitio ef'ficiently

Theorem: language L is in NP ii verifiable f
it is expressible/as:

L={x|3y, Iyl <Ixk (x,y) € R}
where R is a language in P.
+ poly-time TM Mg deciding R is a “verifier”

May 22, 2014 CS38 Lecture 16 40

Poly-time verifiers

* Example: 3SAT expressible as

3SAT ={p : @ is a 3-CNF formula for which
3 assignment A for which (@, A) € R}

R ={(p, A) : Ais a sat. assign. for ¢}

— satisfying assignment A is a “witness” of the
satisfiability of @ (it “certifies” satisfiability of ¢)
— R is decidable in poly-time

May 22, 2014 CS38 Lecture 16 41

Poly-time reductions

» Type of reduction we will use:
— “many-one” poly-time reduction

A £ B
yes yes .
reduction from
f language A to
no no
language B

May 22, 2014 CS38 Lecture 16 42




5/23/2014

Poly-time reductions

A £ B
yes yes

no no

« function f should be poly-time computable

Definition: f: 2*— Z* is poly-time
computable if for some g(n) = n°®Y there
exists a g(n)-time TM M; such that on
every we 2*, M; halts with f(w) on its tape.

May 22, 2014 CS38 Lecture 16 43

Poly-time reductions

Definition: A <, B (“A reduces to B”) if there
is a poly-time computable function f such
that for all w

weAsflw)eB
« condition equivalent to:
—YES maps to YES and NO maps to NO
* meaning is:
— B is at least as “hard” (or expressive) as A

May 22, 2014 CS38 Lecture 16 44

Poly-time reductions

Theorem:ifA<sp,Band B € Pthen A € P.

Proof:
— a poly-time algorithm for deciding A:
—on input w, compute f(w) in poly-time.
— run poly-time algorithm to decide if f(w) € B
—if it says “yes”, output “yes”
—if it says “no”, output “no”

May 22, 2014 CS38 Lecture 16 45

Hardness and completeness

+ Reasonable that can efficiently transform
one problem into another.

* Surprising:
— can often find a special language L so that

every language in a given complexity class
reduces to L!

— powerful tool

May 22, 2014 CS38 Lecture 16 46

Hardness and completeness

* Recall:
—alanguage L is a set of strings
—a complexity class C is a set of languages

Definition: a language L is C-hard if for
every language A € C, A poly-time
reducestolL;i.e, A<, L.

meaning: L is at least as “hard” as anything in C

May 22, 2014 CS38 Lecture 16 47

Hardness and completeness

* Recall:
—alanguage L is a set of strings
—a complexity class C is a set of languages

Definition: a language L is C-complete if L

isC-hardand L € C
meaning: L is a “hardest” problem in C

May 22, 2014 CS38 Lecture 16 48




Lots of NP-complete problems

* logic problems

— 3-SAT ={¢: @ is a satisfiable 3-CNF formula}
— NAES3SAT, (3,3)-SAT

- Max-2-SAT
- finding objects in graphs * problems on numbers
— independent set — subset sum
— vertex cover — knapsack
— clique — partition
* sequencing « splitting things up
— Hamilton Path

— max cut

— Hamilton Cycle and TSP — min/max bisection

May 22, 2014

CS38 Lecture 16 49

5/23/2014



