CS38 Introduction to Algorithms

Lecture 15 May 20, 2014

May 20, 2014

CS38 Lecture 15

Outline

- · Linear programming
 - simplex algorithm
 - LP duality
 - ellipsoid algorithm

* slides from Kevin Wayne

May 20, 2014 CS38 Lecture 15

Linear programming

May 20, 2014

CS38 Lecture 15

Standard Form LP

"Standard form" LP.

- Input: real numbers a_{ip} , c_{j} , b_{i} .
- Output: real numbers x_i
- n = # decision variables, m = # constraints.
- . Maximize linear objective function subject to linear inequalities.

(P)
$$\max \sum_{j=1}^{n} c_j x_j$$

s. t. $\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$
 $x_j \ge 0 \quad 1 \le j \le n$

(P) $\max c^T x$ s. t. Ax = b $x \ge 0$

Linear. No x^2 , xy, $\arccos(x)$, etc.

Programming. Planning (term predates computer programming).

Brewery Problem: Converting to Standard Form

Original input.

Standard form.

- . Add slack variable for each inequality.
- Now a 5-dimensional problem.

Equivalent Forms

Easy to convert variants to standard form.

(P) $\max c^T x$ s. t. Ax = b $x \ge 0$

Less than to equality:

 $x + 2y - 3z \le 17$ $\Rightarrow x + 2y - 3z + s = 17, s \ge 0$

Greater than to equality:

 $x + 2y - 3z \ge 17$ $\Rightarrow x + 2y - 3z - s = 17, s \ge 0$

Min to max:

 $\min x + 2y - 3z \qquad \Rightarrow \quad \max -x - 2y + 3z$

Unrestricted to nonnegative:

x unrestricted $\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$

Geometric perspective

Theorem. If there exists an optimal solution to (P), then there exists one that is a vertex.

Pf.

- Suppose x is an optimal solution that is not a vertex.
- . There exist direction $d \cot \theta \cot \lambda \cot 0$ such that $x \pm d \in P$.
- Ad = 0 because $A(x \pm d) = b$.
- Assume $c^T d \ge 0$ (by taking either d or -d).
- Consider $x + \lambda d$, $\lambda > 0$:

Case 1. [there exists j such that $d_j < 0$]

- Increase λ to λ^* until first new component of $x + \lambda d$ hits 0.
- $x + \lambda^* d$ is feasible since $A(x + \lambda^* d) = Ax = b$ and $x + \lambda^* y \ge 0$.
- $x + \lambda^* d$ has one more zero component than x.
- $\bullet \quad c^\mathsf{T} x' = c^\mathsf{T} \ (x + \lambda^* d) = c^\mathsf{T} \ x + \lambda^* \ c^\mathsf{T} \ d \! \geq \! c^\mathsf{T} \ x.$

 d_k = 0 whenever x_k = 0 because $x \pm d \in P$

15

Geometric perspective

Theorem. If there exists an optimal solution to (P), then there exists one that is a vertex

Pf.

- Suppose x is an optimal solution that is not a vertex.
- . There exist direction $d \cot \epsilon \theta \cot \lambda \cot 0$ such that $x \pm d \in P$.
- Ad = 0 because $A(x \pm d) = b$.
- Assume $c^T d \ge 0$ (by taking either d or -d).
- Consider $x + \lambda d$. $\lambda > 0$:

Case 2. $[d_j \ge 0 \text{ for all } j]$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$.
- $\text{ As } \lambda \to \infty, \ c^{\rm T}\!(x+\lambda \ d) \to \infty \ \text{because} \ c^{\rm T} \, d \! > \! 0.$

if $c^{T}d = 0$, choose d so that case 1 applies

Linear programming linear algebraic perspective

May 20, 2014

CS38 Lecture 15

Intuition

Intuition. A vertex in R^a is uniquely specified by m linearly independent equations. $4A + 4B \le 160 \qquad 35A + 20B \le 1190$ 4A + 4B = 160 35A + 20B = 1190

Basic Feasible Solution

Theorem. Let $P=\{x: Ax=b, x\geq 0\}$. For $x\in P$, define $B=\{j: x_j>0\}$. Then x is a vertex iff A_B has linearly independent columns.

Notation. Let B= set of column indices. Define A_B to be the subset of columns of A indexed by B.

$$A = \begin{bmatrix} 2 & 1 & 3 & 0 \\ 7 & 3 & 2 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}, b = \begin{bmatrix} 7 \\ 16 \\ 0 \end{bmatrix}$$

$$x = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}, B = \{1, 3\}, A_B = \begin{bmatrix} 2 & 3 \\ 7 & 2 \\ 0 & 0 \end{bmatrix}$$

Basic Feasible Solution

Theorem. Let $P=\{x:Ax=b,x\geq 0\}$. For $x\in P$, define $B=\{j:x_j\geq 0\}$. Then x is a vertex iff A_B has linearly independent columns.

Pf. ←

- . Assume x is not a vertex.
- . There exist direction d not equal to 0 such that $x \pm d \in P$.
- Ad = 0 because $A(x \pm d) = b$.
- Define $B' = \{j : d_i \text{ vot } \varepsilon\theta va\lambda \text{ to } 0 \}.$
- $A_{B'}$ has linearly dependent columns since d not equal to 0.
- . Moreover, $d_j = 0$ whenever $x_j = 0$ because $x \pm d \ge 0$.
- . Thus $B' \subseteq B$, so $A_{B'}$ is a submatrix of A_B .
- . Therefore, $A_{\it B}$ has linearly dependent columns.

Basic Feasible Solution

Theorem. Let $P=\{x:Ax=b,x\geq 0\}$. For $x\in P$, define $B=\{j:x_j>0\}$. Then x is a vertex iff A_B has linearly independent columns.

Pf. =

- . Assume A_B has linearly dependent columns.
- . There exist d not equal to 0 such that A_B d=0.
- Extend d to \mathbb{R}^n by adding 0 components.
- Now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$.
- . For sufficiently small $\lambda, \ x \pm \lambda \ d \in P \Rightarrow x$ is not a vertex.

Basic Feasible Solution Theorem. Given $P = \{x : Ax = b, x \ge 0\}$, x is a vertex iff there exists $B \subseteq \{1, ..., n\}$ such |B| = m and: • A_B is nonsingular. • $x_B = A_B^{-1}b \ge 0$. • $x_N = 0$. Desic feasible solution Pf. Augment A_B with linearly independent columns (if needed). • $A = \begin{bmatrix} 2 & 1 & 3 & 0 \\ 7 & 3 & 2 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}$, $b = \begin{bmatrix} 7 \\ 16 \\ 0 \end{bmatrix}$ • $x = \begin{bmatrix} 2 & 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $B = \{1, 3, 4\}$, $A_B = \begin{bmatrix} 2 & 3 & 0 \\ 7 & 2 & 1 \\ 0 & 0 & 5 \end{bmatrix}$

Assumption. $A \in \mathbb{R}^{m \times n}$ has full row rank.

Primal problem. (P) $\max_{S.L.} 13.4 + 23B$ $s.L. 5.4 + 15B \le 480$ $4A + 4B \le 160$ $35.4 + 20B \le 1190$ $A - B \ge 0$ Goal. Find a lower bound on optimal value. Easy. Any feasible solution provides one. Ex 1. (A, B) = (34.0) $\Rightarrow z^* \ge 442$ Ex 2. (A, B) = (0, 32) $\Rightarrow z^* \ge 736$ Ex 3. (A, B) = (7.5, 29.5) $\Rightarrow z^* \ge 776$ Ex 4. (A, B) = (12, 28) $\Rightarrow z^* \ge 800$

LP Strong Duality

Theorem. [Gale-Kuhn-Tucker 1951, Dantzig-von Neumann 1947] For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^n$, if (P) and (D) are nonempty, then max = min.

Generalizes:

- . Dilworth's theorem.
- . König-Egervary theorem.
- . Max-flow min-cut theorem.
- von Neumann's minimax theorem.
-

Pf. [ahead]