5/17/14

CS38
Introduction to Algorithms

Lecture 13
May 13, 2014

Outline

* Network flow
— finishing edge-disjoint paths
—assignment problem

* Linear programming

* slides from Kevin Wayne

May 12, 2014 CS38 Lecture 13 May 12, 2014 CS38 Lecture 13
Edge-disjoint paths
Def. Two paths are edge-disjoint if they have no edge in common.
Disjoint path problem. Given a digraph G = (V, E) and two nodes s and 1,
find the max number of edge-disjoint s~ paths.
digraph G
May 12, 2014 CS38 Lecture 13

5/17/14

Edge-disjoint paths

Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common. Max flow formulation. Assign unit capacity to every edge.
Theorem. Max number edge-disjoint s~ paths equals value of max flow.
Pf. =

* Suppose there are k edge-disjoint s~ paths Py, ..., P;.

* Set f(e) =1 if e participates in some path P;; else set f(e)=0.

* Since paths are edge-disjoint, fis a flow of value k. =

Disjoint path problem. Given a digraph G =(V,E) and two nodes s and 1,
find the max number of edge-disjoint s~t paths.

Ex. Communication networks.

digraph G
2 edge-disjoint paths

Network connectivity

Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge. Def. A set of edges F C E disconnects ¢ from s if every s~¢ path uses at least
one edge in F.
Theorem. Max number edge-disjoint s~ paths equals value of max flow.
Pf. =
* Suppose max flow value is .
* Integrality theorem implies there exists 0-1 flow f of value k.
* Consider edge (s, u) with fis,u)=1.
- by conservation, there exists an edge (u,v) with fliu,v)=1
- continue until reach 1, always choosing a new edge
* Produces k (not necessarily simple) edge-disjoint paths. =

=

Network connectivity. Given a digraph G = (V, E) and two nodes s and 1,
find min number of edges whose removal disconnects ¢ from s.

can eliminate cycles
to get simple paths
in O(mn) time if desired

] /?\
I 1

1 E (flow decomposition)
‘%5_ 1

1
1] 1
3

! 8

—_—
7

%}O

f

5/17/14

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint s~¢ paths
is equal to the min number of edges whose removal disconnects ¢ from s.

Pf. <
* Suppose the removal of F C E disconnects ¢ from s, and | Fl = k.
* Every s~t path uses at least one edge in F.
* Hence, the number of edge-disjoint paths is < k. =

<KP <

e

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint s~t paths
equals the min number of edges whose removal disconnects ¢ from s.

Pf. =

* Suppose max number of edge-disjoint paths is k.

* Then value of max flow = k.

* Max-flow min-cut theorem = there exists a cut (A, B) of capacity k.
Let F be set of edges going from A to B.
|Fl=k and disconnects ¢ from s. =

<K <

Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem in undirected graphs. Given a graph G =(V,E) and
two nodes s and ¢, find the max number of edge-disjoint s-t paths.

e{o ©

@

Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem in undirected graphs. Given a graph G =(V, E) and
two nodes s and ¢, find the max number of edge-disjoint s-t paths.

Gl
digraph G .

(2 edge-disjoint paths) o

5/17/14

Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem in undirected graphs. Given a graph G =(V,E) and
two nodes s and ¢, find the max number of edge-disjoint s-t paths.

digraph G
(3 edge-disjoint paths)

Edge-disjoint paths in undirected graphs

Max flow formulation. Replace each edge with two antiparallel edges and
assign unit capacity to every edge.

Observation. Two paths Pi and P> may be edge-disjoint in the digraph but
not edge-disjoint in the undirected graph.

if P1 uses edge (u, v)
and P uses its antiparallel edge (v, u)

]:’j><‘”?\]
e
SN N .

Edge-disjoint paths in undirected graphs

Max flow formulation. Replace each edge with two antiparallel edges and
assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for
each pair of antiparallel edges ¢ and ¢, either f(e) =0 or f(e') =0 or both.
Moreover, integrality theorem still holds.
Pf. [by induction on number of such pairs of antiparallel edges]

* Suppose f(e) >0 and f(e') >0 for a pair of antiparallel edges e and ¢'.

* Set f(e) =f(e)—d and f(e') =f(e") — &, where & =min { f(e), f(¢") }.

* fis still a flow of the same value but has one fewer such pair. =

I} T
Géj N \?“_3)
N N .

Edge-disjoint paths in undirected graphs

Max flow formulation. Replace each edge with two antiparallel edges and
assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for
each pair of antiparallel edges e and ¢!, either f(e) =0 or f(e') =0 or both.

Moreover, integrality theorem still holds.

Theorem. Max number edge-disjoint s~ paths equals value of max flow.
Pf. Similar to proof in digraphs; use lemma.

]:’j><‘”?\]
%j . '\?—15
SN N .

5/17/14

Assignment problem
a.k.a.
minimum-weight
perfect matching

May 12, 2014 CS38 Lecture 13 17

Assignment problem

Input. Weighted, complete bipartite graph G= (XU Y, E) with IXI=1YI.

Goal. Find a perfect matching of min weight.

N /
S
SO

@éi \

1 O

Assignment problem

Input. Weighted, complete bipartite graph G= (XU Y, E) with IXI=1YL.
Goal. Find a perfect matching of min weight.

min-cost perfect matching
M={0-2',1-0,2-1"}
cost(M) =3 +5+4 =12

Applications

Natural applications.
* Match jobs to machines.
* Match personnel to tasks.
* Match students to writing seminars.

Non-obvious applications.

* Vehicle routing.
Kidney exchange.
* Signal processing.
Earth-mover's distance.
Multiple object tracking.
* Virtual output queueing.
Handwriting recognition.
* Locating objects in space.
Approximate string matching.
Enhance accuracy of solving linear systems of equations.

20

5/17/14

Bipartite matching

Bipartite matching. Can solve via reduction to maximum flow.

Flow. During Ford-Fulkerson, all residual capacities and flows are 0-1;
flow corresponds to edges in a matching M.

Residual graph G,, simplifies to:
* If (v,y) € M, then (x,y) is in Gy.
* If (x,y) EM, then (y,x) is in Gy.

Augmenting path simplifies to:
* Edge from s to an unmatched node x € X,
* Alternating sequence of unmatched and matched edges,
* Edge from unmatched node ye Y to .

Alternating path

Def. An alternating path P with respect to a matching M is an alternating
sequence of unmatched and matched edges, starting from an unmatched
node x € X and going to an unmatched node y € Y.

Key property. Can use P to increase by one the cardinality of the matching.
Pf. SetM'=M® P.

symmetric difference

matching M alternating path P matching M'
22

Assignment problem: successive shortest path algorithm

Cost of alternating path. Pay c(x,y) to match x-y; receive c(x, y) to unmatch.

P=2-2'21-1
cost(P)=2-6+10=6

Shortest alternating path. Alternating path from any unmatched node x € X
to any unmatched node y € Y with smallest cost.

Successive shortest path algorithm.
* Start with empty matching.
* Repeatedly augment along a shortest alternating path.

Finding the shortest alternating path

Shortest alternating path. Corresponds to minimum cost s~ path in G,,.

—0
<

Concern. Edge costs can be negative.

Fact. If always choose shortest alternating path, then G,, contains no
negative cycles = can compute using Bellman-Ford.

Our plan. Avoid negative edge costs (and negative cycles)
= can compute using Dijkstra.

24

5/17/14

Equivalent assignment problem

intuition. Adding a constant p(x) to the cost of every edge
incident to node x € X does not change the min-cost perfect matching(s).

Pf. Every perfect matching uses exactly one edge incident to node x. =

original costs c(x, y)

p(0) =3 15 {0
3 /
3
add 3 to all edges

5 'A incident to node 0
D —

modified costs c'(x, y)
% 8 {0)

&)

Equivalent assignment problem

intuition. Subtracting a constant p(y) to the cost of every edge incident to
node y € Y does not change the min-cost perfect matching(s).

Pf. Every perfect matching uses exactly one edge incident to node y. =

original costs c(x, y)

5 {0 p0)-=5

subtract 5 from all edges
incident to node 0'

—

modified costs c'(x, y)

Y g
s '(o

5
A7\

)

25 26
Reduced costs Compatible prices
Reduced costs. For x€X,y€Y, define c(x,y) = p(x) + c(x,y) - p(y). Compatible prices. For each node v € X U Y, maintain prices p(v) such that:
* e(x,y)= 0 forall (x,y) & M.
Observation 1. Finding a min-cost perfect matching with reduced costs is * er(x,y)= 0 forall (x,y) EM.
equivalent to finding a min-cost perfect matching with original costs.
Observation 2. If prices p are compatible with a perfect matching M,
then M is a min-cost perfect matching.
original costs c(x, y) reduced costs cP(x, y) reduced costs c?(x, y)
Pf. Matching M has O cost. =
p(0) = 0 15 {0) p(0) = 11 4 (0) 5 '0)
7. 1 1
3 0, 0,
5 o 0
e €S ZaVa A VA
KX KX KX
—
9 @, 2)=p(1) +2 - p2) 0 0
P =2 1 D) p2)-3 0 2) - 5)
X Y X Y 27 X Y 28

5/17/14

Successive shortest path algorithm Successive shortest path algorithm
Initialization.
*M=g.
SUCCESSIVE-SHORTEST-PATH (X, Y, ¢) * ForeachvEXUY:p(v) < 0.
M2 prices p are
FOREACHV EX U Y: p(v) < 0. compatible with M

P, y) =clx,y) =0

'WHILE (M is not a perfect matching) p(0) =0 orlginal costs c(x, Y p(0) =0

d < shortest path distances using costs ¢’.
P < shortest alternating path using costs ¢”.
‘M < updated matching after augmenting along P.

FOREACH Y E XU Y : p(v) < p(v) + d(v).

RETURN M.
29 30
Successive shortest path algorithm Successive shortest path algorithm
Initialization. Step 1.
* M=0. * Compute shortest path distances d(v) from s to v using c”(x, y).
* ForeachvEXUY:p() < 0. * Update matching M via shortest path from s to r.
* ForeachveEXUY: p(v) < p(v)+d(v).
reduced costs cP(x, y) shortest path distances d(v)
p(0) =0 p(0) =0 d) =0 do) =5
32

5/17/14

Successive shortest path algorithm

Step 1.
* Compute shortest path distances d(v) from s to v using c’(x, y).
* Update matching M via shortest path from s to .
* ForeachvEXUY: p(v) < p(v)+d(v).

alternating path
d(0) =0 d©) =5

d =1

Successive shortest path algorithm

Step 1.
* Compute shortest path distances d(v) from s to v using c”(x,y).
* Update matching M via shortest path from s to r.
* ForeachveEXUY: p(v) < p(v)+d(v).

reduced costs cP(x, y)
p(0) = 0 p(0) =5

matching matching
2-2' 2-2'
d@) =0 d@) =1 33 p@) =0 p@)=1 34
Successive shortest path algorithm Successive shortest path algorithm
Step 2. Step 2.
* Compute shortest path distances d(v) from s to v using c’(x, y). * Compute shortest path distances d(v) from s to v using c”(x, y).
* Update matching M via shortest path from s to . * Update matching M via shortest path from s to r.
* ForeachvEXUY: p(v) < p(v)+d(v). * ForeachvEXUY: p(v) < p(v)+d(v).
shortest path distances d(v) shortest path distances d(v)
d =0 d(0) =0 d©) =0 d(0) =0
dm =0 ds) =0 d =
%
matching matching
2-2' 2-2' 1-0'
d@) =1 d@) =1 35 d@ =1 d@) = 36

5/17/14

Successive shortest path algorithm

Step 2.
* Compute shortest path distances d(v) from s to v using c’(x, y).
* Update matching M via shortest path from s to .
* ForeachvEXUY: p(v) < p(v)+d(v).

p(0) =0 p0) =5

Successive shortest path algorithm

Step 3.
* Compute shortest path distances d(v) from s to v using c”(x, y).
* Update matching M via shortest path from s to r.
* ForeachvEXUY: p(v) < p(v)+d(v).

shortest path distances d(v)
d) =0 d(0) =6

matching matching
2-2' 1-0' 2-2' 1-0'
p@ =1 p@) =2 37 d@ =1 d@)=1 38
Successive shortest path algorithm Successive shortest path algorithm
Step 3. Step 3.
* Compute shortest path distances d(v) from s to v using c’(x, y). * Compute shortest path distances d(v) from s to v using c”(x, y).
* Update matching M via shortest path from s to . * Update matching M via shortest path from s to r.
* ForeachvEXUY: p(v) < p(v)+d(v). * ForeachvEXUY: p(v) < p(v)+d(v).
shortest path distances d(v) reduced costs cP(x, y)
d =0 d(0) =6 p(0) = 0 p(0) = 11
d(s) =0 o dim =1
matching matching
1-0' 0-2' 2-1' 1-0' 0-2' 2-1'
d@) =1 d@) =1 39 p(2) =2 p)=3 40

10

5/17/14

Successive shortest path algorithm

Termination.
* M is a perfect matching.
* Prices p are compatible with M.

reduced costs cP(x, y)
PO = 0 pO) =11

matching
1-0' 0-2' 2-1'

p@ =2 p@) =3 41

Maintaining compatible prices

Lemma 1. Let p be compatible prices for M. Let d be shortest path distances
in G,, with costs c?. All edges (x,y) on shortest path have c>+d(x, y) =0.
AN

forward or reverse edges

Pf. Let (x,y) be some edge on shortest path.

If (x,y) €M, then (y,x) on shortest path and d(x) = d(y) - c”(x,y);
If (x,y) & M, then (x,y) on shortest path and d(y) = d(x) + c’(x,y).
In either case, d(x) + ¢’(x,y) — d(y) = 0.

By definition, c?(x,y) = p(x) + c(x,y) — p(y).

Substituting for c?(x, y) yields (p(x) + d(x)) + c(x,y) — (p(y) + d(y)) = 0.
In other words, ¢*(x,y)=0. =

Given prices p, the reduced cost of edge (x,y) is
(x,y) = px) + cx,y) = py).

42
Maintaining compatible prices Maintaining compatible prices
Lemma 2. Let p be compatible prices for M. Let d be shortest path distances Lemma 3. Let p be compatible prices for M and let M' be matching obtained
in G,, with costs ¢». Then p' =p +d are also compatible prices for M. by augmenting along a min cost path with respect to ¢**¢. Then p'=p +d are
compatible prices for M'.
Pf. (x,y)EM
* (y,x) is the only edge entering x in G,. Thus, (y,x) on shortest path. Pf.
* By LEMMA 1, c¢’*d(x,y)=0. * By LEMMA 2, the prices p + d are compatible for M.
* Since we augment along a min-cost path, the only edges (x, y) that swap
Pf. &M into or out of the matching are on the min-cost path.
* (x,y)is an edge in Gy, = d(y) < d(x) + c”(x,y). * By LEMMA 1, these edges satisfy c”*(x,y) = 0.
* Substituting c”(x,y) = p(x) + c(x,y) — p(y) = 0 yields * Thus, compatibility is maintained. =
(p(x) +d(x)) + clx,y) = (p(y) +d(y)) = 0.
* In other words, ¢?*d(x,y) = 0. =
Prices p are compatible with matching M: Prices p are compatible with matching M:
* c(x,y) = 0 forall (x,y) & M. * c(x,y) = 0 forall (x,y) & M.
* P(x,y)= 0 for all (x,y)EM. * o(x,y)= 0 for all (x,y) EM.
43 44

11

5/17/14

Successive shortest path algorithm: analysis

Invariant. The algorithm maintains a matching M and compatible prices p.
Pf. Follows from LEMMA 2 and LEMMA 3 and initial choice of prices. =

Theorem. The algorithm returns a min-cost perfect matching.
Pf. Upon termination M is a perfect matching, and p are compatible prices.
Optimality follows from OBSERVATION 2. =

Theorem. The algorithm can be implemented in O(n%) time.
Pf.
* Each iteration increases the cardinality of M by I = n iterations.
* Bottleneck operation is computing shortest path distances d.
Since all costs are nonnegative, each iteration takes O(n2) time
using (dense) Dijkstra. =

Weighted bipartite matching

Weighted bipartite matching. Given a weighted bipartite graph with » nodes
and m edges, find a maximum cardinality matching of minimum weight.

Theorem. [Fredman-Tarjan 1987] The successive shortest path algorithm
solves the problem in O(n? + mnlog n) time using Fibonacci heaps.

Theorem. [Gabow-Tarjan 1989] There exists an O(mn'? log(nC)) time
algorithm for the problem when the costs are integers between 0 and C.

FASTER SCALING ALGORITHMS FOR NETWORK PROBLEMS*

45 46
Linear Programming
Linear programming. Optimize a linear function subject to
linear inequalities.
n
. . (P) max Ycx;
Linear programming i
n
s. t. Ea,.jxj = b lsism
J=1
x; =2 0 lsjsn
(P) max c¢’x
s.t. Ax =
X =
CS38 Lecture 13 47

May 12, 2014

12

5/17/14

Linear Programming

Linear programming. Optimize a linear function subject to
linear inequalities.

Generalizes: Ax=b, 2-person zero-sum games, shortest path,
max flow, assignment problem, matching, multicommodity flow,

MST, min weighted arborescence, ... Llnear prog I"amm | ng
Why significant? running example

= Design poly-time algorithms.
. Design approximation algorithms.
. Solve NP-hard problems using branch-and-cut.

Ranked among most important scientific advances of 20th century.

May 12, 2014 CS38 Lecture 13 50

Brewery Problem Brewery Problem

Small brewery produces ale and beer.
. Production limited by scarce resources: corn, hops, barley malt.

. S . b, fi
. Recipes for ale and beer require different proportions of resources. objective function /
Beverage Corn Hops Malt Profit Ale Beer
9 (pounds) (ounces) (pounds) %)
max < 134 + 23B Profit
2ici(baeD > 4 3 3 st SA + I5B = 480 Com w
Beer (barrel) 15 4 20 23 4A + 4B = 160 Hops j
constraint 480 160 1190 35A + 20B = 1190 Malt v
A, B= 0 = =
-) [p— Pr—
How can brewer maximize profits? constraint | o | “omcesrons
. Devote all resources to ale: 34 barrels of ale

$442 decision variable @

=
. Devote all resources to beer: 32 barrels of beer = $736
=
=

. 7.5 barrels of ale, 29.5 barrels of beer $776 % "/L,’“’_A
$800 s

. 12 barrels of ale, 28 barrels of beer

13

5/17/14

Standard Form LP

"Standard form" LP.

Input: real numbers a;,c;, b;.

Output: real numbers x;.

n = # decision variables, m = # constraints.

Maximize linear objective function subject to linear inequalities.

Linear programming
standard form ® max Sey, ®) max c'x

ik =
s.t. Yagx; = b lsism s.t. Ax = b
J=1 x =
x; =2 0 lsjsn
Linear. No x2, xy, arccos(x), etc.
Programming. Planning (term predates computer programming).
May 12, 2014 €838 Lecture 13 53
s
Brewery Problem: Converting to Standard Form Equivalent Forms
Original input. Easy to convert variants to standard form.
max 134 + 23B
s.t. SA + I5B = 480 (P) max c’x
4A + 4B = 160 s.t. Ax = b
35A + 20B = 1190
A, B = 0 x = 0
Standard form.
. Add slack variable for each inequality. Less than to equality:
. Now a 5-dimensional problem. x+2y-3z < 17 = x+2y-3z+s=17,5>0
Greater than to equality:
e Ao 2R x42=32 > 17 = x+2y-3z—s=17,5>0
s.t. 5A + 15B + §; = 480 Mi .
in to max:
4A + 4B + S, - 160 .
min x+2y-3z = max —x-2y+3z
354 + 20B + S, = 119 U cted o
A . B .S .S .S = 0 nrestricted to nonnegative:
x unrestricted = x=xt-x,x*>0,x" >0
55 56

14

5/17/14

Brewery Problem: Feasible Region

Hops Malt
Linear programming
geometric perspective 0.5

(12, 28)

Corn
SA+15B < 480
(26, 14)

Beer

(0, 0) Ale (34, 0)
May 12, 2014 CS38 Lecture 13 57

Brewery Problem: Objective Function Brewery Problem: Geometry

Brewery problem observation. Regardless of objective function
coefficients, an optimal solution occurs at a vertex.

.32 ©,32)

(12, 28)

Ny 13A + 23B = $1600

vertex

(26, 14)

Beer 13A + 23B = $800 Beer

©,0) Ale (34, 0. ©,0 Ale 34,0)
T 13A+23B=5442

15

5/17/14

Convexity

Convex set. If two points x and y are in the set, then so is
Ax+(l-A)yforo<a<1.

convex combination

Vertex. A point x in the set that can't be written as a strict
convex combination of two distinct points in the set.

vertex N\

.

y

convex not convex

Observation. LP feasible region is a convex set.

Geometric perspective

Theorem. If there exists an optimal solution to (P), then there exists one
that is a vertex.

(P) max c¢’x
s.t. Ax = b

x = 0

Intuition. If x is not a vertex, move in a non-decreasing direction until you
reach a boundary. Repeat.

16

