5/8/2014

CS38
Introduction to Algorithms

Lecture 12
May 8, 2014

May 8, 2014 CS38 Lecture 12

Outline

* Network flow

— finishing capacity-scaling analysis
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— Edmonds-Karp, blocking-flow implementation

Minimum cut problem

Def. A st-cut (cut) is a partition (A, B) of the vertices withs € A and t e B.
Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(4,B) = § c(e)

e ourof A

Min-cut problem. Find a cut of minimum capacity.
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Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:
* Foreache€E: 0= fle) = cle) [capacity]
* ForeachveV-{s,t}: 3Zfle) = 3 f(e) [flow conservation]
eintoy
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Def. The value of a flow f is: val(f)= 3 f(e) .

eoutof s

Max-flow problem. Find a flow of maximum value.
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Residual graph
Original edge: e=(u,v) € E.
* Flow f(2) original graph G
: Q— 817 ——()
* Capacity c(e).
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flow  capacity

Residual edge.
* "Undo" flow sent.
* e=(u,v)and eR = (v, u).

. . . residual graph Gi residual
Residual capacity:

@
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* Residual edges with positive residual capacity.
* Er={e:f(e)< c(e)} U {eR:f(e) > O}. negates flow on a forward edge
* Key property: f'is a flow in G;iff f+f'is aflowin G.

© = cle)- fle) if eEE
1 1o if "EE

Residual graph: G¢=(V, E).

where flow on a reverse edge

Augmenting path

Def. An augmenting path is a simple s~t path P in the residual graph G;.

Def. The bottleneck capacity of an augmenting P is the minimum
residual capacity of any edge in P.

Key property. Letf be a flow and let P be an augmenting path in G;.
Then ' is a flow and val(f") = val(f) + bottleneck(Gr, P).

AUGMENT (f, ¢, P)

b < bottleneck capacity of path P.
FOREACH edge e € P
IF(e€E) f(e) «— f(e) + b.
ELSE f(eR) —f(eR) — b.
RETURN f.
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Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.
* Start with f(e) = 0 for all edge e € E.
* Find an augmenting path P in the residual graph G; .
* Augment flow along path P.
* Repeat until you get stuck.

FORD-FULKERSON (G, s, t, €)

ForeacH edge e € E : f(e) « 0.
Gr « residual graph.
WHILE (there exists an augmenting path P in Gr)
f— AUGMENT (f, ¢, P).
Update Gr.
RETURN f.

Capacity-scaling
algorithm

May 8, 2014 CS38 Lecture 12

Capacity-scaling algorithm

Intuition. Choose augmenting path with highest bottleneck capacity:
it increases flow by max possible amount in given iteration.
* Don't worry about finding exact highest bottleneck path.
* Maintain scaling parameter A.
* Let G¢(A) be the subgraph of the residual graph consisting only of
arcs with capacity 2 A.
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Capacity-scaling algorithm

CAPACITY-SCALING(G, 8, t, €)

FOREACH edge e € E : f(e) < 0.

A « largest power of 2 < C.

WHILE (A = 1)
Gi(A) « A-residual graph
WHILE (there exists an augmenting path P in Gi (A))
f— AuGMENT (f, ¢, P).
Update Gt (A).
Ae—A/2.

RETURN f.

Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.

Theorem. If capacity-scaling algorithm terminates, then fis a max-flow.
Pf.

* By integrality invariant, when A=1 = G;(A) = Gy.

* Upon termination of A = 1 phase, there are no augmenting paths. =

Capacity-scaling algorithm: analysis of running time

Lemma 1. The outer while loop repeats 1 + [Iogzc] times.
Pf. Initially C/2 < A < C; A decreases by a factor of 2 in each iteration. =

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then,
the value of the max-flow < val(f) + m A. — oot on next siide

Lemma 3. There are at most 2m augmentations per scaling phase.
Pf.

* Let f be the flow at the end of the previous scaling phase.

* LEMMA 2 = val(f*) < val(f)+2mA.

* Each augmentation in a A-phase increases val(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to run in O(m? log C) time.
Pf. Follows from LEMMA 1 and LEMMA 3. =
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Capacity-scaling algorithm: analysis of running time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then,
the value of the max-flow < val(f) + m A.
Pf.
* We show there exists a cut (A, B) such that cap(A, B) < val(f) +mA.
* Choose A to be the set of nodes reachable from s in G¢(A).
* By definition of cut A, s € A.
* By definition of flow f, t & A. edge e = (v, W) withv B, w € A

must have fle) < A
original network

val(f) = EMf(E) = 3 \f(e)

eoutol A =

= 3 (c@-8)- 3 A ©

coutof A eintoA

= Tce)- T A- 3FA
coutof A soutofA  eintoA
z cap(A,B) - mA . /

edgee=(v,w) withve A,we B
must have f(e)  c(e) - &

Shortest
augmenting paths
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Shortest augmenting path

Q. Which augmenting path?
A. The one with the fewest number of edges.

can find via BFS.

SHORTEST-AUGMENTING-PATH(G, s, t, )

FOREACH € € E : f(e) < 0.
Gt « residual graph.
WHILE (there exists an augmenting path in Gr)
P « BREADTH-FIRST-SEARCH (G, 5, ).
f «— AuGMENT (f, c, P).
Update Gr.
RETURN f.

Shortest augmenting path: overview of analysis

L1. Throughout the algorithm, length of the shortest path never decreases.

L2. After at most m shortest path augmentations, the length of the
shortest augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm runs in O(m? n) time.
Pf.
* O(m +n) time to find shortest augmenting path via BFS.
* O(m) augmentations for paths of length k.
* If there is an augmenting path, there is a simple one.
= 1<k<n
= O(mn) augmentations. =

Shortest augmenting path: analysis

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:
* {(v) = number of edges in shortest path from s to v.
* Lg=(V, Eg) is the subgraph of G that contains only those edges (v,w) € E
with f(w) = ¢(v) + 1.

o )
graph G A ]
I o ) @
L 4 O O @
Ox Q
level graph Le ~ ~
@ o ) @
&) O O "\
e=0 e=1 e=2 e=3

Shortest augmenting path: analysis

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:
* {(v) = number of edges in shortest path from s to v.
* Lg=(V, Eg) is the subgraph of G that contains only those edges (v,w) € E
with f(w) = ¢(v) + 1.

Property. Can compute level graph in O(m + n) time.
Pf. Run BFS; delete back and side edges.

Key property. P is a shortest s~v path in G iff P is an s~v path Lg.

O P
level graph L g ~
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Shortest augmenting path: analysis

L1. Throughout the algorithm, length of the shortest path never decreases.
* Letfand f' be flow before and after a shortest path augmentation.
* Let L and L' be level graphs of Gt and Gs:.
* Only back edges added to Gy
(any path with a back edge is longer than previous length) =

- O
level graph L O Q.
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Shortest augmenting path: analysis

L2. After at most m shortest path augmentations, the length of the shortest
augmenting path strictly increases.

* The bottleneck edge(s) is deleted from L after each augmentation.

* No new edge added to L until length of shortest path strictly increases. =

~
level graph L O Q
@ ¢ o ®
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level graph L @] Q
G ) ) @
©. o A @ 2

Shortest augmenting path: review of analysis

L1. Throughout the algorithm, length of the shortest path never decreases.

L2. After at most m shortest path augmentations, the length of the shortest
augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm runs in O(m? n) time.
Pf.

* O(m + n) time to find shortest augmenting path via BFS.

* O(m) augmentations for paths of exactly k edges.

* O(m n) augmentations. =

Shortest augmenting path: improving the running time

Note. ©(m n) augmentations necessary on some networks.
* Try to decrease time per augmentation instead.
* Simple idea = O(mn?) [Dinic 1970]
* Dynamictrees = O(mnlogn) [Sleator-Tarjan 1983]

A Data Structure for Dynamic Troes

Blocking flow
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Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

a) a)

A A
. Y ). ft\
L 4 (O O A 4
level graph L.
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Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.
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advance Q Q
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Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.

* Start at s, advance along an edge in Lc until reach t or get stuck.

* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

augment Q. Q.
Q Q

@ c o o)

@ D

level graph Lo

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.
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Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.

* Start at s, advance along an edge in Lc until reach t or get stuck.

* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

retreat Q Q.
) )
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Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

®)
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level graph Le

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.

* Start at s, advance along an edge in Lc until reach t or get stuck.

* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.
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augment @) C
(e e 185)
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level graph Le
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Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

aavance ) o
o

Y [25)
(& Y

level graph Lo

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.
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Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

retreat Q
)
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Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

a)

end of phase Q
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Blocking-flow algorithm

INITIALIZE(G, s, 1, f, €) ADVANCE(V)
Le « level-graph of Gr. IF(v=t)
P «—g AUGMENT(P).

GOTO ADVANCE(S). Remove saturated edges from Le.
P«

GOTO ADVANCE(S).

RETREAT(V)

IF (there exists edge (v, w) € Lc)
IF (v=s) SToP. Add edge (v, w) to P.
ELsE

GOTO ADVANCE(W).

Delete v (and all incident edges) from Le.
Remove last edge (u, v) from P. ELSE GOTO RETREAT(V).
GOTO ADVANCE(U).

Blocking-flow algorithm: analysis

Lemma. A phase can be implemented in O(mn) time.
Pf.
* Initialization happens once per phase. ~—— o) using rs
° At most m augmentations per phase.  —— () ber phase
(because an augmentation deletes at least one edge from Lg)
* At most n retreats per phase.
(because a retreat deletes one node from Lg)
* At most mn advances per phase. ST D
(because at most n advances before retreat or augmentation) =

O(m + n) per phase

Theorem. [Dinic 1970] The blocking-flow algorithm runs in O(mn?) time.
Pf.

* By lemma, O(mn) time per phase.

* At most n phases (as in shortest augment path analysis). =
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Choosing good augmenting paths: summary

Assumption. Integer capacities between 1 and C.

“ AT

augmenting path nC O(mnC)
fattest augmenting path m log (MC) O(m?log n log (mC))
capacity scaling mlog C O(m?log C)
improved capacity scaling mlog C O(mn log C)
shortest augmenting path mn O(m?n)
improved shortest augmenting path mn Oo(mn?)
dynamic trees mn O(mnlogn)

Maximum flow algorithms: theory

1951 simplex o(m?® ¢) Dantzig
1955 augmenting path o(m? C) Ford-Fulkerson
1970 shortest augmenting path o(md) Dinic, Edmonds-Karp
1970 fattestaugmenting path ~ O(m? log m log(m C)) ~ Dinic, Edmonds-Karp
1977 blocking flow o(m5?) Cherkasky
1978 blocking flow o(m73) Galil
1983 dynamic trees o(m? log m) Sleator-Tarjan
1985 capacity scaling o(m? log C) Gabow
1997 length function O(m#2 log m log C) Goldberg-Rao
2012 compact network o(m? / log m) orlin

2 2 o(m) 2

max-flow algorithms for sparse digraphs with m edges, integer capacities between 1 and C

Unit capacity
simple graphs

May 8, 2014 CS38 Lecture 12 40

Bipartite matching

Q. Which max-flow algorithm to use for bipartite matching?
* Generic augmenting path: O(m |f*|)=0(mn).
* Capacity scaling: O(m? log U) = O(m?).
* Shortest augmenting path: O(mn?).

Q. Suggests "more clever" algorithms are not as good as we first thought?
A. No, just need more clever analysis!

Next.

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY®
SHIMON EVEN® axo R. ENDRE TARIAN]

Abstract. An algorithm of Dinic for finding the mavimum flow in 8 network is deseribed. It is
then shown thatf the ities ar all cqual (0 one, the algorithn rquices ot mos -
tiane, and f the edge capcities are all cqual 1o o, the algorithm requires at most O V1
jht or Dinic’s algorithn.

1 1o test the vertes sonnectiviy of a graph in 0¥1"7. 1) time and the
edge conmectivity in OV1* |8 time.

i

Unit-capacity simple networks

Def. A network is a unit-capacity simple network if:
* Every edge capacity is 1.
* Every node (other than s or t) has either (i) at most one entering edge
or (i) at most one leaving edge.
Property. Let G be a simple unit-capacity network and let f be a 0-1 flow,
then Gt is a unit-capacity simple network.

=2

T

We will prove a running time

of O(mn'/2)

Unit-capacity simple networks

Shortest augmenting path algorithm.
* Normal augmentation: length of shortest path does not change.
* Special augmentation: length of shortest path strictly increases.

Theorem. [Even-Tarjan 1975] In unit-capacity simple networks, the shortest
augmenting path algorithm computes a maximum flow in O(m n'?) time.
Pf.

* L1. Each phase of normal augmentations takes O(m) time.

* L2. After at most n'? phases, | f| 2 |f* — n2

* L3. After at most n'2 additional augmentations, flow is optimal. =
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Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. e I A i e e
* If get stuck, delete node from Lg and go to previous node.

advance

y

level graph Le

Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. AT QS D A o e
* If get stuck, delete node from Lg and go to previous node.

augment

level graph Le

Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. il s AU [k G [
* If get stuck, delete node from L and go to previous node.

advance

level graph Lo

Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. delete all edges in augmenting path from Ls
* If get stuck, delete node from Lg and go to previous node.

retreat

level graph Lo

Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. el (U e e e e
* If get stuck, delete node from Lg and go to previous node.

advance

N_ . — ~_ 7

level graph Lo

Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. e S (g e e (e 16
* If get stuck, delete node from Lg and go to previous node.

augment

N_ . — ~_ .~

level graph Lo
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Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. e I A i e e
* If get stuck, delete node from Lg and go to previous node.

end of phase

level graph Le

Unit-capacity simple networks: analysis

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

LEMMA 1. A phase of normal augmentations takes O(m) time.

Pf.
* O(m) to create level graph Lg.
* O(1) per edge since each edge traversed and deleted at most once.
* O(1) per node since each node deleted at most once. =

Unit-capacity simple networks: analysis

LEMMA 2. After at most n¥2 phases, | f| 2 |f* — nt2.
* After n2 phases, length of shortest augmenting path is > nl2.
* Level graph has more than n2 |evels.
* Let1 < h< n'2be layer with min number of nodes: |Vn|< n¥2,

level graph L for flow f

Unit-capacity simple networks: analysis

LEMMA 2. After at most n¥2 phases, | f| = |f* — nV2.
* After n2 phases, length of shortest augmenting path is > n¥2.

Level graph has more than n'2 levels.
* Let1 < h< n'2be layer with min number of nodes: |Vn|< n'2
Let A = {v:{v)< h}u{v:¥v)=handv has <1 outgoing residual edge}.

* capi(A, B) £ |Vnh| € n¥2 = |f| 2 |f* - nt2 «

residual graph Gr residual edges

\—

Vo A Vi v, Vo A v, v,
52 53
Matching
Def. Given an undirected graph G = (V, E) a subset of edges M S E is
a matching if each node appears in at most one edge in M.
Max matching. Given a graph, find a max cardinality matching.
May 8, 2014 Cs38 Lecture 12 54
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Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets
L and R such that every edge connects a node in L to one in R.

Bipartite matching. Given a bipartite graph G = (L U R, E), find a max
cardinality matching.

matching: 1-2, 3-1', 4-5'

Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets
L and R such that every edge connects a node in L to one in R.

Bipartite matching. Given a bipartite graph G = (L U R, E), find a max
cardinality matching.

matching: 1-1, 2-2', 3-4', 4-5'

56 57
Bipartite matching: max flow formulation Max flow formulation: proof of correctness
* Create digraph G'=(LURU{s, t}, E'). Theorem. Max cardinality of a matching in G = value of max flow in G'.
* Direct all edges from L to R, and assign infinite (or unit) capacity. Pf. &
* Add source s, and unit capacity edges from s to each node in L. * Given a max matching M of cardinality k.
* Add sink t, and unit capacity edges from each node in R to t. * Consider flow f that sends 1 unit along each of k paths.
* fis a flow, and has value k. =
t
&
59
Max flow formulation: proof of correctness Perfect matching in a bipartite graph
Theorem. Max cardinality of a matching in G = value of max flow in G'. Def. Given a graph G = (V, E) a subset of edges M c E is a perfect matching
Pf. if each node appears in exactly one edge in M.
* Letf be a max flow in G' of value k.
* Integrality theorem implies k is integral and can assume f is 0-1. Q. When does a bipartite graph have a perfect matching?
* Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M A. Hall’s Theorem. Let G= (LU R, A be a bipartite graph with | | =| R|.
- [M|=k: consider cut(LUs,RuUt) = Ghas a perfect matching iff | M$)| > | S| for all subsets S< L
On problem set!
G
60 61

10
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Bipartite matching running time

Theorem. The Ford-Fulkerson algorithm solves the bipartite matching
problem in O(m n) time.

Theorem. [Hopcroft-Karp 1973] The bipartite matching problem can be
solved in O(m n*2) time.

Key wa
matching

Nonbipartite matching

Nonbipartite matching. Given an undirected graph (not necessarily
bipartite), find a matching of maximum cardinality.

* Structure of nonbipartite graphs is more complicated.

* But well-understood. [Tutte-Berge, Edmonds-Galai]

* Blossom algorithm: O(n%).  [Edmonds 1965]

* Best known: O(m n%/2), [Micali-Vazirani 1980, Vazirani 1994]

FATHS, TREES, AND FLOWERS P

62 63
Edge-disjoint paths
Def. Two paths are edge-disjoint if they have no edge in common.
Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s~t paths.
@ ©)
© ©) ® ®
digraph G
May 8, 2014 Cs38 Lecture 12 64 @ @
65
Edge-disjoint paths Edge-disjoint paths
Def. Two paths are edge-disjoint if they have no edge in common. Max flow formulation. Assign unit capacity to every edge.
Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t, Theorem. Max number edge-disjoint s~t paths equals value of max flow.
find the max number of edge-disjoint s~t paths. Pf. <
* Suppose there are k edge-disjoint s~t paths Py, ..., Py.
* Setf(e) = 1if e participates in some path P;; else set f(e) = 0.
Ex. Communication networks. * Since paths are edge-disjoint, f is a flow of value k. =
/o\
f . /?%<
digraph G 1
2 edge-disjoint paths @
66 67

11



Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint s~t paths equals value of max flow.
Pf. ¢
* Suppose max flow value is k.
* Integrality theorem implies there exists 0-1 flow f of value k.
* Consider edge (s, u) with f(s, u) = 1.
- by conservation, there exists an edge (u, v) with f(u, v) = 1
- continue until reach t, always choosing a new edge
* Produces k (not necessarily simple) edge-disjoint paths. =

o can eliminate cycles
/l 1 t to get simple paths
in O(mn) time if desired

1 i U 1
4 1 ... (flow decomposition)
| —— \(57 ;=
g T~ : T
1 1 1
~ \(‘5/
O—— 1 ——

68
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