5/8/2014

CS38
Introduction to Algorithms

Lecture 12
May 8, 2014

May 8, 2014 CS38 Lecture 12

Outline

* Network flow

— finishing capacity-scaling analysis

— unit-capacity simple graphs
— bipartite matching

— edge-disjoint paths

— assignment problem

* slides from Kevin Wayne

May 8, 2014 CS38 Lecture 12

— Edmonds-Karp, blocking-flow implementation

Minimum cut problem

Def. A st-cut (cut) is a partition (A, B) of the vertices withs € A and t e B.
Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(4,B) = § c(e)

e ourof A

Min-cut problem. Find a cut of minimum capacity.

7

<

|
8 —
capacity = 10 + 8 + 10 ~(28) o —

Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:
* Foreache€E: 0= fle) = cle) [capacity]
* ForeachveV-{s,t}: 3Zfle) = 3 f(e) [flow conservation]
eintoy

eoutof v

Def. The value of a flow f is: val(f)= 3 f(e) .

eoutof s

Max-flow problem. Find a flow of maximum value.

e
,\h < ¢
o) ’s, ‘0
<;,5_. e oo @
% iy o
w0 -® N e

Residual graph
Original edge: e=(u,v) € E.
* Flow f(2) original graph G
: Q— 817 ——()
* Capacity c(e).

/ N\

flow capacity

Residual edge.
* "Undo" flow sent.
* e=(u,v)and eR = (v, u).

. . . residual graph Gi residual
Residual capacity:

@
6

* Residual edges with positive residual capacity.
* Er={e:f(e)< c(e)} U {eR:f(e) > O}. negates flow on a forward edge
* Key property: f'is a flow in G;iff f+f'is aflowin G.

© = cle)- fle) if eEE
1 1o if "EE

Residual graph: G¢=(V, E).

where flow on a reverse edge

Augmenting path

Def. An augmenting path is a simple s~t path P in the residual graph G;.

Def. The bottleneck capacity of an augmenting P is the minimum
residual capacity of any edge in P.

Key property. Letf be a flow and let P be an augmenting path in G;.
Then ' is a flow and val(f") = val(f) + bottleneck(Gr, P).

AUGMENT (f, ¢, P)

b < bottleneck capacity of path P.
FOREACH edge e € P
IF(e€E) f(e) «— f(e) + b.
ELSE f(eR) —f(eR) — b.
RETURN f.

5/8/2014

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.
* Start with f(e) = 0 for all edge e € E.
* Find an augmenting path P in the residual graph G; .
* Augment flow along path P.
* Repeat until you get stuck.

FORD-FULKERSON (G, s, t, €)

ForeacH edge e € E : f(e) « 0.
Gr « residual graph.
WHILE (there exists an augmenting path P in Gr)
f— AUGMENT (f, ¢, P).
Update Gr.
RETURN f.

Capacity-scaling
algorithm

May 8, 2014 CS38 Lecture 12

Capacity-scaling algorithm

Intuition. Choose augmenting path with highest bottleneck capacity:
it increases flow by max possible amount in given iteration.
* Don't worry about finding exact highest bottleneck path.
* Maintain scaling parameter A.
* Let G¢(A) be the subgraph of the residual graph consisting only of
arcs with capacity 2 A.

&~
P
"

o
7
»

et Gi(8), A=100 0

Capacity-scaling algorithm

CAPACITY-SCALING(G, 8, t, €)

FOREACH edge e € E : f(e) < 0.

A « largest power of 2 < C.

WHILE (A = 1)
Gi(A) « A-residual graph
WHILE (there exists an augmenting path P in Gi (A))
f— AuGMENT (f, ¢, P).
Update Gt (A).
Ae—A/2.

RETURN f.

Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.

Theorem. If capacity-scaling algorithm terminates, then fis a max-flow.
Pf.

* By integrality invariant, when A=1 = G;(A) = Gy.

* Upon termination of A = 1 phase, there are no augmenting paths. =

Capacity-scaling algorithm: analysis of running time

Lemma 1. The outer while loop repeats 1 + [Iogzc] times.
Pf. Initially C/2 < A < C; A decreases by a factor of 2 in each iteration. =

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then,
the value of the max-flow < val(f) + m A. — oot on next siide

Lemma 3. There are at most 2m augmentations per scaling phase.
Pf.

* Let f be the flow at the end of the previous scaling phase.

* LEMMA 2 = val(f*) < val(f)+2mA.

* Each augmentation in a A-phase increases val(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to run in O(m? log C) time.
Pf. Follows from LEMMA 1 and LEMMA 3. =

5/8/2014

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then,
the value of the max-flow < val(f) + m A.
Pf.
* We show there exists a cut (A, B) such that cap(A, B) < val(f) +mA.
* Choose A to be the set of nodes reachable from s in G¢(A).
* By definition of cut A, s € A.
* By definition of flow f, t & A. edge e = (v, W) withv B, w € A

must have fle) < A
original network

val(f) = EMf(E) = 3 \f(e)

eoutol A =

= 3 (c@-8)- 3 A ©

coutof A eintoA

= Tce)- T A- 3FA
coutof A soutofA eintoA
z cap(A,B) - mA . /

edgee=(v,w) withve A,we B
must have f(e) c(e) - &

Shortest
augmenting paths

May 8, 2014 CS38 Lecture 12 14

Shortest augmenting path

Q. Which augmenting path?
A. The one with the fewest number of edges.

can find via BFS.

SHORTEST-AUGMENTING-PATH(G, s, t,)

FOREACH € € E : f(e) < 0.
Gt « residual graph.
WHILE (there exists an augmenting path in Gr)
P « BREADTH-FIRST-SEARCH (G, 5,).
f «— AuGMENT (f, c, P).
Update Gr.
RETURN f.

Shortest augmenting path: overview of analysis

L1. Throughout the algorithm, length of the shortest path never decreases.

L2. After at most m shortest path augmentations, the length of the
shortest augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm runs in O(m? n) time.
Pf.
* O(m +n) time to find shortest augmenting path via BFS.
* O(m) augmentations for paths of length k.
* If there is an augmenting path, there is a simple one.
= 1<k<n
= O(mn) augmentations. =

Shortest augmenting path: analysis

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:
* {(v) = number of edges in shortest path from s to v.
* Lg=(V, Eg) is the subgraph of G that contains only those edges (v,w) € E
with f(w) = ¢(v) + 1.

o)
graph G A]
I o) @
L 4 O O @
Ox Q
level graph Le ~ ~
@ o) @
&) O O "\
e=0 e=1 e=2 e=3

Shortest augmenting path: analysis

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:
* {(v) = number of edges in shortest path from s to v.
* Lg=(V, Eg) is the subgraph of G that contains only those edges (v,w) € E
with f(w) = ¢(v) + 1.

Property. Can compute level graph in O(m + n) time.
Pf. Run BFS; delete back and side edges.

Key property. P is a shortest s~v path in G iff P is an s~v path Lg.

O P
level graph L g ~
o)) @
(U O O w

e=0 e=1 e=2 e=3

5/8/2014

Shortest augmenting path: analysis

L1. Throughout the algorithm, length of the shortest path never decreases.
* Letfand f' be flow before and after a shortest path augmentation.
* Let L and L' be level graphs of Gt and Gs:.
* Only back edges added to Gy
(any path with a back edge is longer than previous length) =

- O
level graph L O Q.
(S\ /:\), /‘>
=0 e=1 e=2 e=3
Y C
level graph L' O Q
fs\)). f(\
& U Q. © D

Shortest augmenting path: analysis

L2. After at most m shortest path augmentations, the length of the shortest
augmenting path strictly increases.

* The bottleneck edge(s) is deleted from L after each augmentation.

* No new edge added to L until length of shortest path strictly increases. =

~
level graph L O Q
@ ¢ o ®
e=0 e=1 e=2 =3
level graph L @] Q
G)) @
©. o A @ 2

Shortest augmenting path: review of analysis

L1. Throughout the algorithm, length of the shortest path never decreases.

L2. After at most m shortest path augmentations, the length of the shortest
augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm runs in O(m? n) time.
Pf.

* O(m + n) time to find shortest augmenting path via BFS.

* O(m) augmentations for paths of exactly k edges.

* O(m n) augmentations. =

Shortest augmenting path: improving the running time

Note. ©(m n) augmentations necessary on some networks.
* Try to decrease time per augmentation instead.
* Simple idea = O(mn?) [Dinic 1970]
* Dynamictrees = O(mnlogn) [Sleator-Tarjan 1983]

A Data Structure for Dynamic Troes

Blocking flow

May 8, 2014 CS38 Lecture 12 23

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

a) a)

A A
. Y). ft\
L 4 (O O A 4
level graph L.

5/8/2014

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

))

advance Q Q
O Y

level graph Lo

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.

* Start at s, advance along an edge in Lc until reach t or get stuck.

* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

augment Q. Q.
Q Q

@ c o o)

@ D

level graph Lo

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

))

advance Q Q
O Y

*—0—0 ®

level graph Lo

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.

* Start at s, advance along an edge in Lc until reach t or get stuck.

* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

retreat Q Q.
))

X ® ; @
& —> L] @

level graph Lo

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

®)
advance @)

level graph Le

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.

* Start at s, advance along an edge in Lc until reach t or get stuck.

* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

o o)
augment @) C
(e e 185)
ey @®
level graph Le

5/8/2014

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

aavance) o
o

Y [25)
(& Y

level graph Lo

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

~
rereat ® o
o

@) @
(o (U

level graph Lo

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

retreat Q
)

) Y ®
() W

level graph Lo

Blocking-flow algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
* Special: length of shortest path strictly increases.

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

a)

end of phase Q
)

Y [2S)
S () o

level graph Lo

Blocking-flow algorithm

INITIALIZE(G, s, 1, f, €) ADVANCE(V)
Le « level-graph of Gr. IF(v=t)
P «—g AUGMENT(P).

GOTO ADVANCE(S). Remove saturated edges from Le.
P«

GOTO ADVANCE(S).

RETREAT(V)

IF (there exists edge (v, w) € Lc)
IF (v=s) SToP. Add edge (v, w) to P.
ELsE

GOTO ADVANCE(W).

Delete v (and all incident edges) from Le.
Remove last edge (u, v) from P. ELSE GOTO RETREAT(V).
GOTO ADVANCE(U).

Blocking-flow algorithm: analysis

Lemma. A phase can be implemented in O(mn) time.
Pf.
* Initialization happens once per phase. ~—— o) using rs
° At most m augmentations per phase. —— () ber phase
(because an augmentation deletes at least one edge from Lg)
* At most n retreats per phase.
(because a retreat deletes one node from Lg)
* At most mn advances per phase. ST D
(because at most n advances before retreat or augmentation) =

O(m + n) per phase

Theorem. [Dinic 1970] The blocking-flow algorithm runs in O(mn?) time.
Pf.

* By lemma, O(mn) time per phase.

* At most n phases (as in shortest augment path analysis). =

5/8/2014

Choosing good augmenting paths: summary

Assumption. Integer capacities between 1 and C.

“ AT

augmenting path nC O(mnC)
fattest augmenting path m log (MC) O(m?log n log (mC))
capacity scaling mlog C O(m?log C)
improved capacity scaling mlog C O(mn log C)
shortest augmenting path mn O(m?n)
improved shortest augmenting path mn Oo(mn?)
dynamic trees mn O(mnlogn)

Maximum flow algorithms: theory

1951 simplex o(m?® ¢) Dantzig
1955 augmenting path o(m? C) Ford-Fulkerson
1970 shortest augmenting path o(md) Dinic, Edmonds-Karp
1970 fattestaugmenting path ~ O(m? log m log(m C)) ~ Dinic, Edmonds-Karp
1977 blocking flow o(m5?) Cherkasky
1978 blocking flow o(m73) Galil
1983 dynamic trees o(m? log m) Sleator-Tarjan
1985 capacity scaling o(m? log C) Gabow
1997 length function O(m#2 log m log C) Goldberg-Rao
2012 compact network o(m? / log m) orlin

2 2 o(m) 2

max-flow algorithms for sparse digraphs with m edges, integer capacities between 1 and C

Unit capacity
simple graphs

May 8, 2014 CS38 Lecture 12 40

Bipartite matching

Q. Which max-flow algorithm to use for bipartite matching?
* Generic augmenting path: O(m |f*|)=0(mn).
* Capacity scaling: O(m? log U) = O(m?).
* Shortest augmenting path: O(mn?).

Q. Suggests "more clever" algorithms are not as good as we first thought?
A. No, just need more clever analysis!

Next.

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY®
SHIMON EVEN® axo R. ENDRE TARIAN]

Abstract. An algorithm of Dinic for finding the mavimum flow in 8 network is deseribed. It is
then shown thatf the ities ar all cqual (0 one, the algorithn rquices ot mos -
tiane, and f the edge capcities are all cqual 1o o, the algorithm requires at most O V1
jht or Dinic’s algorithn.

1 1o test the vertes sonnectiviy of a graph in 0¥1"7. 1) time and the
edge conmectivity in OV1* |8 time.

i

Unit-capacity simple networks

Def. A network is a unit-capacity simple network if:
* Every edge capacity is 1.
* Every node (other than s or t) has either (i) at most one entering edge
or (i) at most one leaving edge.
Property. Let G be a simple unit-capacity network and let f be a 0-1 flow,
then Gt is a unit-capacity simple network.

=2

T

We will prove a running time

of O(mn'/2)

Unit-capacity simple networks

Shortest augmenting path algorithm.
* Normal augmentation: length of shortest path does not change.
* Special augmentation: length of shortest path strictly increases.

Theorem. [Even-Tarjan 1975] In unit-capacity simple networks, the shortest
augmenting path algorithm computes a maximum flow in O(m n'?) time.
Pf.

* L1. Each phase of normal augmentations takes O(m) time.

* L2. After at most n'? phases, | f| 2 |f* — n2

* L3. After at most n'2 additional augmentations, flow is optimal. =

5/8/2014

Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. e I A i e e
* If get stuck, delete node from Lg and go to previous node.

advance

y

level graph Le

Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. AT QS D A o e
* If get stuck, delete node from Lg and go to previous node.

augment

level graph Le

Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. il s AU [k G [
* If get stuck, delete node from L and go to previous node.

advance

level graph Lo

Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. delete all edges in augmenting path from Ls
* If get stuck, delete node from Lg and go to previous node.

retreat

level graph Lo

Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. el (U e e e e
* If get stuck, delete node from Lg and go to previous node.

advance

N_ . — ~_ 7

level graph Lo

Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. e S (g e e (e 16
* If get stuck, delete node from Lg and go to previous node.

augment

N_ . — ~_ .~

level graph Lo

5/8/2014

Unit-capacity simple networks

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg. e I A i e e
* If get stuck, delete node from Lg and go to previous node.

end of phase

level graph Le

Unit-capacity simple networks: analysis

Phase of normal augmentations.
* Explicitly maintain level graph Lg.
* Start at s, advance along an edge in Lc until reach t or get stuck.
* If reach t, augment and and update Lg.
* If get stuck, delete node from Lg and go to previous node.

LEMMA 1. A phase of normal augmentations takes O(m) time.

Pf.
* O(m) to create level graph Lg.
* O(1) per edge since each edge traversed and deleted at most once.
* O(1) per node since each node deleted at most once. =

Unit-capacity simple networks: analysis

LEMMA 2. After at most n¥2 phases, | f| 2 |f* — nt2.
* After n2 phases, length of shortest augmenting path is > nl2.
* Level graph has more than n2 |evels.
* Let1 < h< n'2be layer with min number of nodes: |Vn|< n¥2,

level graph L for flow f

Unit-capacity simple networks: analysis

LEMMA 2. After at most n¥2 phases, | f| = |f* — nV2.
* After n2 phases, length of shortest augmenting path is > n¥2.

Level graph has more than n'2 levels.
* Let1 < h< n'2be layer with min number of nodes: |Vn|< n'2
Let A = {v:{v)< h}u{v:¥v)=handv has <1 outgoing residual edge}.

* capi(A, B) £ |Vnh| € n¥2 = |f| 2 |f* - nt2 «

residual graph Gr residual edges

\—

Vo A Vi v, Vo A v, v,
52 53
Matching
Def. Given an undirected graph G = (V, E) a subset of edges M S E is
a matching if each node appears in at most one edge in M.
Max matching. Given a graph, find a max cardinality matching.
May 8, 2014 Cs38 Lecture 12 54

5/8/2014

Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets
L and R such that every edge connects a node in L to one in R.

Bipartite matching. Given a bipartite graph G = (L U R, E), find a max
cardinality matching.

matching: 1-2, 3-1', 4-5'

Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets
L and R such that every edge connects a node in L to one in R.

Bipartite matching. Given a bipartite graph G = (L U R, E), find a max
cardinality matching.

matching: 1-1, 2-2', 3-4', 4-5'

56 57
Bipartite matching: max flow formulation Max flow formulation: proof of correctness
* Create digraph G'=(LURU{s, t}, E'). Theorem. Max cardinality of a matching in G = value of max flow in G'.
* Direct all edges from L to R, and assign infinite (or unit) capacity. Pf. &
* Add source s, and unit capacity edges from s to each node in L. * Given a max matching M of cardinality k.
* Add sink t, and unit capacity edges from each node in R to t. * Consider flow f that sends 1 unit along each of k paths.
* fis a flow, and has value k. =
t
&
59
Max flow formulation: proof of correctness Perfect matching in a bipartite graph
Theorem. Max cardinality of a matching in G = value of max flow in G'. Def. Given a graph G = (V, E) a subset of edges M c E is a perfect matching
Pf. if each node appears in exactly one edge in M.
* Letf be a max flow in G' of value k.
* Integrality theorem implies k is integral and can assume f is 0-1. Q. When does a bipartite graph have a perfect matching?
* Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M A. Hall’s Theorem. Let G= (LU R, A be a bipartite graph with | | =| R|.
- [M|=k: consider cut(LUs,RuUt) = Ghas a perfect matching iff | M$)| > | S| for all subsets S< L
On problem set!
G
60 61

10

5/8/2014

Bipartite matching running time

Theorem. The Ford-Fulkerson algorithm solves the bipartite matching
problem in O(m n) time.

Theorem. [Hopcroft-Karp 1973] The bipartite matching problem can be
solved in O(m n*2) time.

Key wa
matching

Nonbipartite matching

Nonbipartite matching. Given an undirected graph (not necessarily
bipartite), find a matching of maximum cardinality.

* Structure of nonbipartite graphs is more complicated.

* But well-understood. [Tutte-Berge, Edmonds-Galai]

* Blossom algorithm: O(n%). [Edmonds 1965]

* Best known: O(m n%/2), [Micali-Vazirani 1980, Vazirani 1994]

FATHS, TREES, AND FLOWERS P

62 63
Edge-disjoint paths
Def. Two paths are edge-disjoint if they have no edge in common.
Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s~t paths.
@ ©)
© ©) ® ®
digraph G
May 8, 2014 Cs38 Lecture 12 64 @ @
65
Edge-disjoint paths Edge-disjoint paths
Def. Two paths are edge-disjoint if they have no edge in common. Max flow formulation. Assign unit capacity to every edge.
Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t, Theorem. Max number edge-disjoint s~t paths equals value of max flow.
find the max number of edge-disjoint s~t paths. Pf. <
* Suppose there are k edge-disjoint s~t paths Py, ..., Py.
* Setf(e) = 1if e participates in some path P;; else set f(e) = 0.
Ex. Communication networks. * Since paths are edge-disjoint, f is a flow of value k. =
/o\
f . /?%<
digraph G 1
2 edge-disjoint paths @
66 67

11

Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint s~t paths equals value of max flow.
Pf. ¢
* Suppose max flow value is k.
* Integrality theorem implies there exists 0-1 flow f of value k.
* Consider edge (s, u) with f(s, u) = 1.
- by conservation, there exists an edge (u, v) with f(u, v) = 1
- continue until reach t, always choosing a new edge
* Produces k (not necessarily simple) edge-disjoint paths. =

o can eliminate cycles
/l 1 t to get simple paths
in O(mn) time if desired

1 i U 1
4 1 ... (flow decomposition)
| —— \(57 ;=
g T~ : T
1 1 1
~ \(‘5/
O—— 1 ——

68

5/8/2014

12

