CS38 Introduction to Algorithms

Lecture 12 May 8, 2014

May 8, 2014 CS38 Lecture 12

Outline

- · Network flow
 - finishing capacity-scaling analysis
 - Edmonds-Karp, blocking-flow implementation
 - unit-capacity simple graphs
 - bipartite matching
 - edge-disjoint paths
 - assignment problem

* slides from Kevin Wayne

May 8, 2014 CS38 Lecture 12

Ford-Fulkerson algorithm Ford-Fulkerson augmenting path algorithm. • Start with f(e) = 0 for all edge $e \in E$. • Find an augmenting path P in the residual graph G_f . • Augment flow along path P. • Repeat until you get stuck. FORD-FULKERSON (G, s, t, e)FOREACH edge $e \in E : f(e) \leftarrow 0$. $G_f \leftarrow \text{residual graph}$. WHILE (there exists an augmenting path $P \text{ in } G_f$) $f \leftarrow \text{AUGMENT } (f, e, P)$. Update G_f . RETURN f. }

```
Capacity-scaling algorithm

May 8, 2014 CS38 Lecture 12 8
```

Capacity-scaling algorithm

Intuition. Choose augmenting path with highest bottleneck capacity: it increases flow by max possible amount in given iteration.

• Don't worry about finding exact highest bottleneck path.

• Maintain scaling parameter Δ.

• Let G_f(Δ) be the subgraph of the residual graph consisting only of arcs with capacity ≥ Δ.

Capacity-scaling algorithm: proof of correctness
Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.
Theorem. If capacity-scaling algorithm terminates, then f is a max-flow.
Pf.
• By integrality invariant, when $\Delta = 1 \Rightarrow G_r(\Delta) = G_r$.
• Upon termination of $\Delta = 1$ phase, there are no augmenting paths. •

Capacity-scaling algorithm: analysis of running time

Lemma 1. The outer while loop repeats $1+\lceil \log_2 C \rceil$ times.

Pf. Initially $C/2 < \Delta \le C$; Δ decreases by a factor of 2 in each iteration. •

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then, the value of the max-flow $\le val(f) + m\Delta$. — proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.

Pf.

• Let f be the flow at the end of the previous scaling phase.

• LEMMA $2 \Rightarrow val(f^*) \le val(f) + 2m\Delta$.

• Each augmentation in a Δ -phase increases val(f) by at least Δ . •

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time.

Pf. Follows from LEMMA 1 and LEMMA 3. •

Shortest augmenting path?

Q. Which augmenting path?

A. The one with the fewest number of edges.

Can find via BFS

SHORTEST-AUGMENTING-PATH(G, s, t, c)

FOREACH $e \in E: f(e) \leftarrow 0$. $G_f \leftarrow \text{residual graph}$.

WHILE (there exists an augmenting path in G_f) $P \leftarrow \text{BREADTH-FIRST-SEARCH}(G_f, s, t)$. $f \leftarrow \text{AUGMENT}(f, c, P)$.

Update G_f .

RETURN f.

Shortest augmenting path: overview of analysis

L1. Throughout the algorithm, length of the shortest path never decreases.

L2. After at most *m* shortest path augmentations, the length of the shortest augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm runs in *O*(*m*² *n*) time.

Pf.

• *O*(*m* + *n*) time to find shortest augmenting path via BFS.

• *O*(*m*) augmentations for paths of length *k*.

• If there is an augmenting path, there is a simple one.

⇒ 1 ≤ *k* < *n*⇒ *O*(*m n*) augmentations. •

Shortest augmenting path: analysis

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:

• $\ell(v) =$ number of edges in shortest path from s to v.

• $L_G = (V, E_G)$ is the subgraph of G that contains only those edges $(v, w) \in E$ with $\ell(w) = \ell(v) + 1$.

Property. Can compute level graph in O(m + n) time.

Pf. Run BFS; delete back and side edges.

Key property. P is a shortest $s \sim v$ path in G iff P is an $s \sim v$ path L_G .

Shortest augmenting path: review of analysis

L1. Throughout the algorithm, length of the shortest path never decreases.

L2. After at most *m* shortest path augmentations, the length of the shortest augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm runs in $O(m^2 n)$ time.

Pf.

O(m+n) time to find shortest augmenting path via BFS.
O(m) augmentations for paths of exactly *k* edges.
O(m n) augmentations.

Shortest augmenting path: improving the running time

Note. O(m n) augmentations necessary on some networks.

• Try to decrease time per augmentation instead.

• Simple idea ⇒ O(m n²) [Dinic 1970]

• Dynamic trees ⇒ O(m n log n) [Sleator-Tarjan 1983]

A Data Structure for Dynamic Trees

Date: D. Receive for Dynamic

Blocking flow May 8, 2014 CS38 Lecture 12 23

Two types of augmentations. Normal: length of shortest path does not change. Special: length of shortest path strictly increases. Phase of normal augmentations. Explicitly maintain level graph L_G. Start at s, advance along an edge in L_G until reach t or get stuck. If reach t, augment and and update L_G. If get stuck, delete node from L_G and go to previous node.

Blocking-flow algorithm

Two types of augmentations.

Normal: length of shortest path does not change.
Special: length of shortest path strictly increases.

Phase of normal augmentations.
Explicitly maintain level graph L_G .
Start at s, advance along an edge in L_G until reach t or get stuck.
If reach t, augment and and update L_G .
If get stuck, delete node from L_G and go to previous node.

Blocking-flow algorithm

Two types of augmentations.

Normal: length of shortest path does not change.
Special: length of shortest path strictly increases.

Phase of normal augmentations.
Start at s, advance along an edge in L_G until reach t or get stuck.
If reach t, augment and and update L_G.
If get stuck, delete node from L_G and go to previous node.

Blocking-flow algorithm INITIALIZE(G, s, t, f, c)ADVANCE(v) $L_G \leftarrow level-graph of G_f$. IF (v = t) $P \leftarrow \emptyset$. GOTO ADVANCE(s). Remove saturated edges from L_G . $P \leftarrow \emptyset$. GOTO ADVANCE(s). RETREAT(v) IF (there exists edge $(v, w) \in L_G$) IF (v = s) STOP. Add edge (v, w) to P. GOTO ADVANCE(w). Delete ν (and all incident edges) from L_G . Remove last edge (u, v) from P. ELSE GOTO RETREAT(v). GOTO ADVANCE(u).

Blocking-flow algorithm: analysis

Lemma. A phase can be implemented in O(mn) time.

Pf.

Initialization happens once per phase. — O(m) using BFS

At most m augmentations per phase. — O(m) per phase (because an augmentation deletes at least one edge from L_0)

At most n retreats per phase. — O(m+n) per phase (because a retreat deletes one node from L_0)

At most m advances per phase. — O(mn) per phase (because at most n advances before retreat or augmentation)

Theorem. [Dinic 1970] The blocking-flow algorithm runs in $O(mn^2)$ time.

Pf.

By lemma, O(mn) time per phase.

At most n phases (as in shortest augment path analysis).

year	method	worst case	discovered by
1951	simplex	O(m³ C)	Dantzig
1955	augmenting path	O(m² C)	Ford-Fulkerson
1970	shortest augmenting path	O(m³)	Dinic, Edmonds-Karp
1970	fattest augmenting path	O(m² log m log(m C))	Dinic, Edmonds-Karp
1977	blocking flow	O(m ^{5/2})	Cherkasky
1978	blocking flow	O(m ^{7/3})	Galil
1983	dynamic trees	O(m² log m)	Sleator-Tarjan
1985	capacity scaling	O(m² log C)	Gabow
1997	length function	$O(m^{3/2} \log m \log C)$	Goldberg-Rao
2012	compact network	O(m² / log m)	Orlin
?	?	O(m)	?

Unit capacity simple graphs

May 8, 2014 CS38 Lecture 12

Bipartite matching

- Q. Which max-flow algorithm to use for bipartite matching?
- Generic augmenting path: $O(m | f^*|) = O(mn)$.
- Capacity scaling: $O(m^2 \log U) = O(m^2)$.
- Shortest augmenting path: O(mn2).
- Q. Suggests "more clever" algorithms are not as good as we first thought?
- A. No, just need more clever analysis!

Next.

40

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY*

Unit-capacity simple networks

Def. A network is a unit-capacity simple network if:

• Every edge capacity is 1.

of O(mn1/2)

* Every node (other than s or t) has either (i) at most one entering edge or (ii) at most one leaving edge.

Property. Let G be a simple unit-capacity network and let f be a 0-1 flow, then G_f is a unit-capacity simple network.

Unit-capacity simple networks

Shortest augmenting path algorithm.

- * Normal augmentation: length of shortest path does not change.
- Special augmentation: length of shortest path strictly increases.

Theorem. [Even-Tarjan 1975] In unit-capacity simple networks, the shortest augmenting path algorithm computes a maximum flow in $O(m \, n^{1/2})$ time.

- \bullet L1. Each phase of normal augmentations takes O(m) time.
- L2. After at most $n^{1/2}$ phases, $|f| \ge |f^*| n^{1/2}$.
- ullet L3. After at most $n^{1/2}$ additional augmentations, flow is optimal. ullet

Unit-capacity simple networks Phase of normal augmentations. Explicitly maintain level graph L_G . Start at s, advance along an edge in L_G until reach t or get stuck. If reach t, augment and and update L_G . If get stuck, delete node from L_G and go to previous node. advance

Unit-capacity simple networks: analysis

Phase of normal augmentations.

Explicitly maintain level graph L_G.

Start at s, advance along an edge in L_G until reach t or get stuck.

If reach t, augment and and update L_G.

If get stuck, delete node from L_G and go to previous node.

LEMMA 1. A phase of normal augmentations takes O(m) time.

Pf.

O(m) to create level graph L_G.

O(1) per edge since each edge traversed and deleted at most once.

O(1) per node since each node deleted at most once.

Bipartite matching Def. A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L to one in R. Bipartite matching. Given a bipartite graph $G = (L \cup R, E)$, find a max cardinality matching.

Bipartite matching running time

Theorem. The Ford-Fulkerson algorithm solves the bipartite matching problem in $O(m \, n)$ time.

Theorem. [Hopcroft-Karp 1973] The bipartite matching problem can be solved in $O(m \, n^{1/2})$ time.

BIAN J. Course.

Vol. 2. No. 4. Counter 1779

An $\sigma^{4/2}$ ALGORITHM FOR MAXIMUM MATCHINGS

IN BIPARTITE GRAPHS*

JOIN E. BIOROFT AND RICKARD M. KARP!

Abbret. The prosen paper show how to course a maximum matching in a biggirt graph with a vortice and or digin is a knowled or compensation step proceedited for $\sigma = A_0/C$,

Ry week algorithm. algorithmic analysis, bipartite graphs, computational complexity, graphs, matching

Edge-disjoint paths

May 8, 2014 CS38 Lecture 12 64

Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s → t paths.

Ex. Communication networks.

Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint s v t paths equals value of max flow. Pf. ≤

• Suppose there are k edge-disjoint s v t paths P₁, ..., Pk.

• Set f(e) = 1 if e participates in some path Pj; else set f(e) = 0.

• Since paths are edge-disjoint, f is a flow of value k. •

Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint $s\sim t$ paths equals value of max flow. Pf. ε
• Suppose max flow value is k.
• Suppose max flow value is the state of the

- Integrality theorem implies there exists 0-1 flow f of value k.
- Consider edge (s, u) with f(s, u) = 1.
- by conservation, there exists an edge (u, v) with f(u, v) = 1
- continue until reach t, always choosing a new edge
- ullet Produces k (not necessarily simple) edge-disjoint paths. ullet

