5/6/2014

CS38
Introduction to Algorithms

Lecture 11
May 6, 2014

Outline
» Dynamic programming design paradigm
— detecting negative cycles in a graph

— all-pairs-shortest paths

* Network flow

* some slides from Kevin Wayne

May 6, 2014 CS38 Lecture 11 2

Shortest paths

Shortest path problem. Given a digraph with edge
weights c,,, and no negative cycles, find cheapest
vt path for each node v.

Negative cycle problem. Given a digraph with edge
weights c,y, find a negative cycle (if one exists).

FONT TN
) b \JJ & e

shortest-paths tree negative cycle

May 6, 2014 CS38 Lecture 11 3

Bellman-Ford

BELLMAN-FORD (V, E, ¢, t)

FOREACH node v € V/

d(v) «— .

successor(v) « null.
d(t) 0.
Fori=1TONn-1

FOREACH node w € V

IF (d(w) was updated in previous iteration)
FOREACH edge (v, w) € E
IF (d(v) > d(w) + cw)
d(v) < d(w) + cw.

1 pass

SUCCESSOr(V) «— W. early stopping
IF no d(w) value changed in iteration i, STOP. rule

Bellman-Ford

Lemma: Throughout algorithm, d(v) is the cost of some v~t path; after the it" pass,
d(v) is no larger than the cost of the shortest vt path using < i edges.
Proof (induction on i)
— Assume true after it pass.
— Let P be any v~t path with i + 1 edges.
— Let (v, w) be first edge on path and let P’ be subpath fromw to t.
— By inductive hypothesis, d(w) < c(P') since P'is a w~»t path with i edges.
— After considering v in pass i+1: d(v) £ cw+d(w)

< cw+c(P)

= cP)

Theorem: Given digraph with no negative cycles, algorithm
computes cost of shortest vt paths in O(mn) time and O(n) space.

May 6, 2014 CS38 Lecture 11 5

Bellman-Ford

Lemma: If successor graph contains directed cycle W, then W is a negative cycle.
Proof:
— if successor(v) = w, we must have d(v) = d(w) + cuw.
(LHS and RHS are equal when successor(v) is set; d(w) can only decrease;
d(v) decreases only when successor(v) is reset)
— Letvi—w— .. — v be the nodes along the cycle W.
Assume that (vk, v1) is the last edge added to the successor graph.
Just prior to that: d(va) > d(v2)

+ ¢(v1, v2)

d(vz) = d(va) + c(vz, va)

dvk-1) 2 d(vk) + C(Vk-1, Vk)

d(vs > d(v + ¢(Vk, V. — holds with strict inequality
v vs) (Vi V1) since we are updating d(ve)

— add inequalities: c(vi, v2) + c(vz, va) + ... + c(Vk-1, Vk) + C(Vk, V1) < O

May 6, 2014 CS38 Lecture 11 6

5/6/2014

Bellman-Ford

Theorem: Given a digraph with no negative cycles, algorithm finds the shortest st
paths in O(mn) time and O(n) space.
Proof:
— The successor graph cannot have a cycle (previous lemma).
Thus, following the successor pointers from s yields a directed path to t.
Lets=vi— 12— ... — v =t be the nodes along this path P.
— Upon termination, if successor(v) = w, we must have d(v) = d(w) + cww.
(LHS and RHS are equal when successor(v) is set; d(:) did not change)

- Thus: gar) = dv) + c(vi V)
since algorithm
d(va) = d(va) + c(vz, va) terminated
d(vikr) = d(w) + C(Vk-1, Vi)

Adding equations yields d(s) = d(t) + c(v1, v2) + C(v2, V3) + ... + C(Vk-1, Vk)

min cost of any st o cost of path P
path

negative cycles

Shortest path problem. Given a digraph with edge
weights c,,, and no negative cycles, find cheapest
vt path for each node v.

Negative cycle problem. Given a digraph with edge
weights c,,, find a negative cycle (if one exists).

TN T TN T
I

o é) \é) (|3<—4 —O‘—“\—‘O

shortest-paths tree negative cycle

May 6, 2014 CS38 Lecture 11 8

negative cycles

+ a motivating application: given n currencies
and exchange rates between pairs of
currencies, is there an arbitrage opportunity?

g S

May 6, 2014 9

negative cycles

Lemma: OPT(n, v) = OPT(n — 1, v) for
all v iff no negative cycle can reach t
Proof: (=)

—OPT(n, -) = OPT(n-1, -) implies OPT(i, -) =
OPT(n-1,) foralli>n

— but if negative cycle can reach t

®©
cW)<0

—then OPT(i,v) » -oc0casi— o

May 6, 2014 CS38 Lecture 11 10

negative cycles

Lemma: OPT(n, v) = OPT(n — 1, v) for
all v iff no negative cycle can reach t

Proof: (<)

— already argued no negative cycle implies
shortest paths are all simple

— simple paths have at most n-1 edges

| Bellman-Ford can detect negative cycles that reach t

May 6, 2014 CS38 Lecture 11 11

negative cycles

» Can detect negative cycles that reach t;
can we find from the successor graph?
—yes, by the following lemma

Lemma: If OPT(n,v) < OPT(n-1, v), the
associated shortest path from v to t contains
a cycle and every such cycle is negative

— can then find a negative cycle by tracing
successor pointers seeking first repeat

May 6, 2014 CS38 Lecture 11 12

5/6/2014

negative cycles

Lemma: If OPT(n,v) < OPT(n-1, v), the
associated shortest path from v to t contains
a cycle and every such cycle is negative

Proof:

— trace the path from v to t following successor
pointers, find a repeat; this implies a cycle W
— removing W results = path with < n-1 edges

— OPT(n-1, v) > OPT(n, v) so W must be negative

May 6, 2014 CS38 Lecture 11 13

negative cycles

« can detect and find negative cycles that
reach t

— how to solve the general problem?

» add weight 0
edges to new t
t .« negative cycle iff
negative cycle
that reaches t

May 6, 2014 CS38 Lecture 11 14

Bellman-Ford

We have proved:

Theorem: Bellman-Ford operates in O(nm)
time and O(n) space, and compute shortest
s-t path in digraph G with no negative
cycles.

If G has a negative cycle, Bellman-Ford
detects and can find within same time
bound.

May 6, 2014 CS38 Lecture 11 15

all-pairs shortest paths

+ Given directed graph with weighted edges
(possibly negative) but no negative cycles
* Goal: compute shortest-path costs for all
pairs of vertices
—vertex setV ={1,2,...,n}
— subproblems: OPT(i,j,k) = cost of shortest

path from i to j with all intermediate nodes
from {1,2,..., k}

May 6, 2014 CS38 Lecture 11 16

all-pairs shortest paths

* OPT(i,j,k) = cost of shortest path from i to j with
all intermediate nodes from {1,2,..., k}
» consider optimal path p
« case 1: k is not on path p
— OPT(i,j,k) = OPT(i,j,k-1)
« case 2: kis on path p
— break into path p, from i to k and path p, fromk to j
— path p simple, so p, doesn’t use k as intermediate node

— path p simple, so p, doesn't use k as intermediate node
— OPT(i,j,k) = OPT(i,k,k-1) + OPT(k,j,k-1)

May 6, 2014 CS38 Lecture 11 17

all-pairs shortest paths

Floyd-Warshall (directed graph with weights c;;)

1. OPT(i},0) = c;; for all i,

2.fork=1ton

3. fori=1ton

4. forj=1ton

5. OPT(i,j,k) = Min{OPT(i,j,k-1), OPT(i,k,k-1)+OPT(k,j,k-1)}
6. return(OPT(, -, n))

* running time?
—-0o(nd)

May 6, 2014 CS38 Lecture 11 18

5/6/2014

Dynamic programming summary

identify subproblems:
— present in recursive formulation, or

—reason about what residual problem needs to
be solved after a simple choice

« find order to fill in table

* running time (size of table)-(time for 1 cell)
 optimize space by keeping partial table

« store extra info to reconstruct solution

May 6, 2014 CS38 Lecture 11 19

Max-Flow
and
Min-Cut

May 6, 2014 CS38 Lecture 11 20

Flow network

* Abstraction for material flowing through the edges.

* Digraph G = (V, E) with source s €V and sink t eV.

* Nonnegative integer capacity c(e) for each e €E.
no parallel edges
no edge enters s
no edge leaves t

capacity

Minimum cut problem

Def. Ast-cut (cut) is a partition (A, B) of the vertices withs € A and te B.
Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(4,B) = 3 cle)

< outof.4

capacity = 10 + 5 + 15 =(30)

Minimum cut problem

Def. A st-cut (cut) is a partition (A, B) of the vertices withs € A and te B.
Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(4,B) = § ole)

eoutof A

/
10
|
8 — t
\ don't count edges
from B to A
® o——>

capacity =10+ 8 + 16 =

Minimum cut problem

Def. A st-cut (cut) is a partition (A, B) of the vertices withs € A and t € B.
Def. Its capacity is the sum of the capacities of the edges from A to B.
cap(4,B) = 3 ole)

eoutof 4

Min-cut problem. Find a cut of minimum capacity.

capacity = 10 + 8 + 10 =(28)

5/6/2014

Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 = fle) = cle) [capacity]
* ForeachveV-{s,t}: T fle) = 3fle) [flow conservation]
eintov eoutofv
flow capacity

inflowatv = 5+5+0 =10

5/9 outflowatv = 10+0 =10

10/16

Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0= fle) = cle) [capacity]
* ForeachveV-{s,t}: 3 fle) = 3 f(e) [flow conservation]
eintoy eout of v
Def. The value of a flow f is: val(f)= 3 f(e) .
cottof s
5/9
\Q‘\“ f/,f ““/,a
5/5 m— 5/8 10710 @
o
/n//r \“\\

Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 = fle) = cle) [capacity]
* ForeachveV-{s,t}: T fle) = 3fle) [flow conservation]
eintov eoutofv

Def. The value of a flow f is: val(f)= I f(e) .

eoutof s

Max-flow problem. Find a flow of maximum value.

8/9
B
1s
5/5 s/s w10 ©
% »
75 s o'
vn\uc:&w\ﬂw\ﬂ:@ \ e

Ford-Fulkerson
method

May 6, 2014 CS38 Lecture 11 28

Towards a max-flow algorithm

Greedy algorithm.
* Start with f(e) = 0 for all edge e € E.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

flow 7pacl(v

))
network G s 0/4 Q.
© 0/2 o, 0/6 %z,
o ¢ © value of flow
o Y))
&/ 0/10 % 0/9 % 0/10 & o

Towards a max-flow algorithm

Greedy algorithm.
* Start with f(e) = 0 for all edge e € E.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

network G

(- M () 8 (D
& 0/10 Y 0/9 U o/10==>1) 0+8=8

5/6/2014

Towards a max-flow algorithm

Greedy algorithm.
* Start with f(e) = 0 for all edge e € E.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

2)
network G /T 0/4 N\
o
@g\\“ 2 -elz Gz, 0/6 “
o o) 2)\ 2)
\S/ 0/10 \/_0/9_’\/_8/\0_7\(/ 8+2=10

Towards a max-flow algorithm

Greedy algorithm.
* Start with f(e) = 0 for all edge e € E.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

network G Q. 0/4 \\
™\

£
2/2 % 50-'6

X 6 O 8) D
o/ 10==> =/ o==>)"10/10) 10+6-16

Towards a max-flow algorithm

Greedy algorithm.
* Start with f(e) = 0 for all edge e € E.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

ending flow value = 16

O)
network G s 0/4 N\
K 6
\§\ 2/2 g 6/6 %
(X)))
&/ 6/10 (% 8/9 O 10/10 W 16

Towards a max-flow algorithm

Greedy algorithm.
* Start with f(e) = 0 for all edge e € E.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

but max-flow value = 19

))
network G O 3/4 (U
o 2
\0\ 0/2)/a’ 6/6 %
o)))
& 9/10 (% 9/9 (% 10/10 W 19

Residual graph

Original edge: e=(u,v) € E.
* Flow f(2) original graph G
: Q— 817 ——()
* Capacity c(e). / \

flow capacity
Residual edge.

Undo" flow sent.
* e=(u,v)and eR = (v, u).

idual graph G residual
* Residual capacity: (R .
S
“(e)-fe) if e€F 6
cple) = R
fle) if e"€EE
Residual graph: G;=(V, E).
* Residual edges with positive residual capacity. Ry aTEEECER
* E={e:f(e)< c(e)} u {eR:f(e) > O} negates flow on a forward edge

* Key property: f'is a flow in G;iff f+f'is aflowin G.

Augmenting path

Def. An augmenting path is a simple s~t path P in the residual graph G;.

Def. The bottleneck capacity of an augmenting P is the minimum
residual capacity of any edge in P.

Key property. Letf be a flow and let P be an augmenting path in G;.
Then ' is a flow and val(f") = val(f) + bottleneck(Gr, P).

AUGMENT (f, ¢, P)

b < bottleneck capacity of path P.
FOREACH edge e € P
IF(e€E) f(e) «— f(e) + b.
ELSE f(eR) —f(eR) — b.
RETURN f.

5/6/2014

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.
* Start with f(e) = 0 for all edge e € E.
* Find an augmenting path P in the residual graph G; .
* Augment flow along path P.
* Repeat until you get stuck.

FORD-FULKERSON (G, s, t, €)

FOREACH edge e € E : f(e) « 0.
Gr « residual graph.
WHILE (there exists an augmenting path P in Gr)
f— AUGMENT (f, ¢, P).
Update Gr.
RETURN f.

Ford-Fulkerson algorithm demo

network G flow capacity
™ N S
A\ 0/4 (O
® 0/2 o, 0/6 o
o) ¢ o value of flow
X)))
&/ 0/10 (O 0/9 O 0/10 @ 0

residual graph Gi

))
A 4 (i
residual capacity
p
< 2 s 6 o
Y)))
&/ 10 (% 9 O 10 Y

Ford-Fulkerson algorithm demo

network G
))
A 0/4 A
& &
%g\\ 0/2 9/0 0/6
I)) 8)
& 0/10 (% 0/9 (% %/10 & 0+8=8

residual graph Gt ~ ~

~

/\\4 (W
o 2 & \ 6 0

/ o @Y

a D
& 10 O 9 (| ey)

Ford-Fulkerson algorithm demo

network G
))
A\ 0/4 (O
& 2
29/2 % 0/6 7
X) 2) 2)
&/ 0/10 (O ©/9 U /10 W 8+2=10

residual graph Gt A\
& 6 ‘o
: i

() (), (D
&) 10 (s | ey e t)

8 0

Ford-Fulkerson algorithm demo

network G
M 20
A 0/4 A
3
©)
o 2/2 e 68/6 “%
I 6 M 8 120 /l\
& ©/10 0 2/9 Y 10/10 (1) 10+6=16
residual graph Gt ~ —~

. 4 \f\
RY 2 @ i ‘0 \

(@A ()) ()
(5 | e (s ey () 0 @)

2 @

Ford-Fulkerson algorithm demo

network G
O 2)
A ©/4 A
@
©° S
\b\ 02/2 4‘/& 6/6 %
fa 8 0))
& /10 0 8/9 0 10/10 () 16+2=18
residual graph Gr —~ -

5/6/2014

Ford-Fulkerson algorithm demo Ford-Fulkerson algorithm demo
network G network G
0 3) o) o
i 2/4 U N 3/4 N
R °
S S
\Q\‘ 0/2 % 6/6 "’/,0 - \Q\\ 0/2 % 6/6 g/,a max flow
oot 9) 9) oD))
© /10 Y /9 010) 18+1=19 @ 9/10 O 9/9 (10710) e
2 3
residual graph Gy residual graph Gt
o))))
(T = N\ 1 (U
@ 9
S 2 o 6 ° nodes reachable from s S 2 5 G ’
\)
o) @) D 0)
o —>U) 10 % @ 1 O 9 O 10 (O
8 8 a 9 4

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then, the net
flow across (A, B) equals the value of f.
Zfle - Zfle = vf)

coutaf A einA

Min-flow max-cut R
Theorem e o\

© 8 52
\0‘\ % \
e s @ s/8 o— |o/|o7 ©) valueof flow = 25
/0/& \“*Q
S ./
May 6, 2014 Cs38 Lecture 11 45
“
Relationship between flows and cuts Relationship between flows and cuts
Flow value lemma. Let f be any flow and let (A, B) be any cut. Then, the net Flow value lemma. Let f be any flow and let (A, B) be any cut. Then, the net
flow across (A, B) equals the value of f. flow across (A, B) equals the value of f.
Sfle) - Zfte) = wf) Zfe) - 3fl =)
eoutof A eintw A eoutef A einto A
net flow across cut = 10+ 5+10 = 25 net flow across cut = (10+10 +5+10+0+0)=(5+5+0+0) = 25
5/9 — 5/ O
/ / I\ edges from B to A
o s % o Oia 5//*\)
5/ 5 m—p 5/8 10/10 t) valueof flow = 25 s/s T s/8 T— 10/10mp(t) valueof flow = 25
S , \ S
o % 0sa o, 0 1'5 o
10/16 \ VQ/VS\
o 4

5/6/2014

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then, the net
flow across (A, B) equals the value of f.

If@ - Tfe) = wWf)

eoutafA eintoA

Pf. W

2 fle)

eoutofs

by flow conservation,allterms __ o 3 (S fle) - Ef(f))

except v =s are 0 .
2 vEA \eoutof v eintov

= Zfe- 3 fle). -

coutof A cinto A

Relationship between flows and cuts

Weak duality. Let f be any flow and (A, B) be any cut. Then, v(f) < cap(A, B).

Pf. RO E({(EJ* 2 fle)
ot

eintoA

3 fle)

coulofd
2 cle)
coutofd

cap(A,B) -

flow-value
lemma

n

"

o d 10
2 2, N
: N N

12/16

"

value of flow = 27 capacity of cut = 30 s0

Max-flow min-cut theorem

Augmenting path theorem. A flow f is a max-flow iff no augmenting paths.
Max-flow min-cut theorem. Value of the max-flow = capacity of min-cut.

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (A, B) such that cap(A, B) = val(f).

ii. fis a max-flow.

iii. There is no augmenting path with respect to f.

[i=ii]
* Suppose that (A, B) is a cut such that cap(A, B) = val(f).
* Then, for any flow f', val(f') 3 cap(A B) = val(f).
* Thus, fis a max-flow. = I [

weak duality by assumption

Max-flow min-cut theorem

Augmenting path theorem. A flow f is a max-flow iff no augmenting paths.
Max-flow min-cut theorem. Value of the max-flow = capacity of min-cut.

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (A, B) such that cap(A, B) = val(f).

i. fis a max-flow.

iii. There is no augmenting path with respect to f.

[ii = iii] We prove contrapositive: ~iii = ~ii.
* Suppose that there is an augmenting path with respect to f.
* Can improve flow f by sending flow along this path.
* Thus, f is not a max-flow. =

Max-flow min-cut theorem

[iii=i]
* Let f be a flow with no augmenting paths.
* Let A be set of nodes reachable from s in residual graph Gt.
* By definition of cut A, s€A.
* By definition of flow f, t¢ A.
edgee=(v,w) withveB, weA

must have f(e) = 0
original network G

W) = I fle- 3 fe)

eoutof A einto A A B
flow-value = T
lemma eoutof A4 Q
= cap(A,B) =

/

edge e = (v, W) withv € A, w € B
must have f(e) = c(e)

Capacity-scaling
algorithm

May 6, 2014 CS38 Lecture 11 56

file://localhost/Users/rs/Desktop/book4FINAL/06context/figs/stCut.ai
file://localhost/Users/rs/Desktop/book4FINAL/06context/figs/stCut.ai

5/6/2014

Running time

Assumption. Capacities are integers between 1 and C.

Integrality invariant. Throughout the algorithm, the flow values f(e)
and the residual capacities c;(e) are integers.

Theorem. The algorithm terminates in at most val (f*) < nC iterations.
Pf. Each augmentation increases the value by at least 1. =

Corollary. The running time of Ford-Fulkerson is O(mnC).
Corollary. If C =1, the running time of Ford-Fulkerson is O(mn).

Integrality theorem. Then exists a max-flow f* for which every
flow value f*(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. =

Bad case for Ford-Fulkerson

Q. Is generic Ford-Fulkerson algorithm poly-time in input size?

m, n, and log C

A. No. If max capacity is C, then algorithm can take 2= C iterations.

* s—vow—t
* sHwovot each augmenting path
* sovowot sends only 1 unit of flow
. (#augmenting paths = 2C)
SHW—V—t
st @—c—@
* sowWov—t

Choosing good augmenting paths

Use care when selecting augmenting paths.
* Some choices lead to exponential algorithms.
* Clever choices lead to polynomial algorithms.
* If capacities are irrational, algorithm not guaranteed to terminate!

Goal. Choose augmenting paths so that:
* Can find augmenting paths efficiently.
* Few iterations.

Choosing good augmenting paths

Choose augmenting paths with:
* Max bottleneck capacity.
* Sufficiently large bottleneck capacity.
* Fewest number of edges.

Algorithinic Fflcioney

Edmonds-Karp 1972 (USA) Dinic 1970 (Soviet Union)

Capacity-scaling algorithm

Intuition. Choose augmenting path with highest bottleneck capacity:
it increases flow by max possible amount in given iteration.
* Don't worry about finding exact highest bottleneck path.
* Maintain scaling parameter A.
* Let G¢(A) be the subgraph of the residual graph consisting only of
arcs with capacity 2 A.

o

Gt Gi(a), A=100 @

Capacity-scaling algorithm

CAPACITY-SCALING(G, s, t, €)

FoReAcH edge e € E : f(e) « 0.

A « largest power of 2 < C.

WHILE (A = 1)
Gt(A) < A-residual graph,
WHILE (there exists an augmenting path P in Gt (A))
f— AucmenT (f, ¢, P).
Update Gr(A).
A—A/2.

RETURN f.

10

5/6/2014

Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Theorem. If capacity-scaling algorithm terminates, then f is a max-flow.
Pf.

* By integrality invariant, when A=1 = G;(A) = Gy.

* Upon termination of A = 1 phase, there are no augmenting paths. =

Capacity-scaling algorithm: analysis of running time

Lemma 1. The outer while loop repeats 1 + [Iogzc] times.
Pf. Initially C/2 < A < C; A decreases by a factor of 2 in each iteration. =

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then,
the value of the max-flow < val(f) + m A. — ,oof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.
Pf.

* Let f be the flow at the end of the previous scaling phase.

* LEMMA 2 = val(f*) < val(f)+2mA.

* Each augmentation in a A-phase increases val(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to run in O(m? log C) time.
Pf. Follows from LEMMA 1 and LEMMA 3. =

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then,

the value of the max-flow < val(f) + m A.

Pf.
* We show there exists a cut (A, B) such that cap(A, B) < val(f) +mA.
* Choose A to be the set of nodes reachable from s in G¢(4).
* By definition of cut A, s € A.
* By definition of flow f, t & A.

edge e = (v, w) withv € B, w € A

must have f(e) < A
original network

val(f) = EMf(E) = 3 \f(e)

A B

= 3 (c@-8)- 3 A ©

coutof A eintoA

= Tce)- T A- 3FA
coutof A soutofA eintoA
z cap(A,B) - mA . /

edgee=(v,w) withve A, we B
must have f(e) > c(e) - &

11

