CS38 Introduction to Algorithms

Lecture 11 May 6, 2014

Outline

- · Dynamic programming design paradigm
 - detecting negative cycles in a graph
 - all-pairs-shortest paths
- · Network flow

* some slides from Kevin Wayne

May 6, 2014 CS38 Lecture 11

Shortest path problem. Given a digraph with edge weights c_{VW} and no negative cycles, find cheapest $v \sim t$ path for each node v. Negative cycle problem. Given a digraph with edge weights c_{VW} , find a negative cycle (if one exists).


```
Bellman-Ford
Lemma: Throughout algorithm, d(v) is the cost of some v \sim t path; after the i^{th} pass,
   d(v) is no larger than the cost of the shortest v \sim t path using \leq i edges.
Proof (induction on i)

 Assume true after ith pass.

    - Let P be any v \sim t path with i + 1 edges.
    - Let (v, w) be first edge on path and let P' be subpath from w to t.
    - By inductive hypothesis, d(w) \le c(P') since P' is a w \sim t path with i edges.

    After considering v in pass i+1:

                                            d(v) \le c_{vw} + d(w)
                                                  \leq c_{vw} + c(P')
                                                      c(P)
  Theorem: Given digraph with no negative cycles, algorithm
  computes cost of shortest v \sim t paths in O(mn) time and O(n) space.
May 6, 2014
                                  CS38 Lecture 11
```

Theorem: Given a digraph with no negative cycles, algorithm finds the shortest $s \sim t$ paths in O(m) time and O(n) space. Proof: The successor graph cannot have a cycle (previous lemma). Thus, following the successor pointers from s yields a directed path to t. Let $s = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k = t$ be the nodes along this path P. Upon termination, if successor(v) = w, we must have $d(v) = d(w) + c_{Ow}$. (LHS and RHS are equal when successor(v) is set; $d(\cdot)$ did not change) Thus: $d(v_1) = d(v_2) + c(v_1, v_2)$ since algorithm terminated $d(v_2) = d(v_3) + c(v_2, v_3)$ since algorithm terminated $d(v_3) = d(v_3) + c(v_3) + c(v_4) + c(v_5) + c(v_5) + c(v_5) + c(v_5) + c(v_6) + c(v_6)$

negative cycles Lemma: OPT(n, v) = OPT(n − 1, v) for all v iff no negative cycle can reach t Proof: (←) - already argued no negative cycle implies shortest paths are all simple - simple paths have at most n-1 edges Bellman-Ford can detect negative cycles that reach t

negative cycles • Can detect negative cycles that reach t; can we *find* from the successor graph? – yes, by the following lemma Lemma: If OPT(n, v) < OPT(n – 1, v), the associated shortest path from v to t contains a cycle and every such cycle is negative – can then find a negative cycle by tracing successor pointers seeking first repeat

negative cycles

Lemma: If OPT(n, v) < OPT(n - 1, v), the associated shortest path from v to t contains a cycle and every such cycle is negative

Proof:

- trace the path from v to t following successor pointers, find a repeat; this implies a cycle W
- removing W results = path with ≤ n-1 edges
- OPT(n-1, v) > OPT(n, v) so W must be negative

May 6, 2014

CS38 Lecture 11

negative cycles

- · can detect and find negative cycles that
 - how to solve the general problem?

- add weight 0 edges to new t
- negative cycle iff negative cycle that reaches t

May 6, 2014 CS38 Lecture 11

Bellman-Ford

We have proved:

Theorem: Bellman-Ford operates in O(nm) time and O(n) space, and compute shortest s-t path in digraph G with no negative cycles.

If G has a negative cycle, Bellman-Ford detects and can find within same time bound.

May 6, 2014

CS38 Lecture 11

all-pairs shortest paths

- · Given directed graph with weighted edges (possibly negative) but no negative cycles
- Goal: compute shortest-path costs for all pairs of vertices
 - vertex set $V = \{1, 2, ..., n\}$
 - subproblems: OPT(i,j,k) = cost of shortest path from i to j with all intermediate nodes from {1,2,..., k}

May 6, 2014 CS38 Lecture 11 16

all-pairs shortest paths

- OPT(i,j,k) = cost of shortest path from i to j with all intermediate nodes from {1,2,..., k}
- · consider optimal path p
 - · case 1: k is not on path p
 - OPT(i,j,k) = OPT(i,j,k-1)
 - · case 2: k is on path p
 - break into path p₁ from i to k and path p₂ from k to j
 - path p simple, so p₁ doesn't use k as intermediate node
 - path p simple, so p₂ doesn't use k as intermediate node
 - OPT(i,j,k) = OPT(i,k,k-1) + OPT(k,j,k-1)

May 6, 2014

CS38 Lecture 11

all-pairs shortest paths

```
Floyd-Warshall (directed graph with weights ci.)
1. OPT(i,j,0) = c_{i,j} for all i,j
2. for k = 1 to n
3. for i = 1 to n
4. for j = 1 to n
           \mathsf{OPT}(i,j,k) = \mathsf{min}\{\mathsf{OPT}(i,j,k-1), \mathsf{OPT}(i,k,k-1) + \mathsf{OPT}(k,j,k-1)\}
6. return(OPT(·, ·, n))
```

· running time?

 $-O(n^3)$

May 6, 2014

17

CS38 Lecture 11

Dynamic programming summary

- · identify subproblems:
 - present in recursive formulation, or
 - reason about what residual problem needs to be solved after a simple choice
- · find order to fill in table
- running time (size of table)-(time for 1 cell)
- · optimize space by keeping partial table
- · store extra info to reconstruct solution

May 6, 2014 CS38 Lecture 11

19

Towards a max-flow algorithm Greedy algorithm. • Start with f(e) = 0 for all edge $e \in E$. • Find an $s \sim t$ path P where each edge has f(e) < c(e). • Augment flow along path P. • Repeat until you get stuck.

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A,B) be any cut. Then, the net flow across (A,B) equals the value of f.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Pf.

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

by flow conservation, all terms \longrightarrow = $\sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e). \quad \bullet$$

Relationship between flows and cuts

Weak duality. Let f be any flow and (A, B) be any cut. Then, $v(f) \le cap(A, B)$.

Pf.
$$v(f) = \sum_{\substack{\text{flow-value} \\ \text{lemma}}} f(e) - \sum_{\substack{\text{e into } A}} f(e)$$

$$\leq \sum_{\substack{\text{c out of } A}} f(e)$$

$$\leq \sum_{\substack{\text{e out of } A}} f(e)$$

$$\leq \sum_{\substack{\text{c out of } A}} f(e)$$

$$\leq \sum_{\substack{\text{c out of } A}} f(e)$$

Max-flow min-cut theorem

Augmenting path theorem. A flow f is a max-flow iff no augmenting paths. Max-flow min-cut theorem. Value of the max-flow = capacity of min-cut.

Pf. The following three conditions are equivalent for any flow f:

- i. There exists a cut (A, B) such that cap(A, B) = val(f).
- ii. f is a max-flow.
- iii. There is no augmenting path with respect to $\it f$.

[i⇒ii

- Suppose that (A, B) is a cut such that cap(A, B) = val(f).
- Then, for any flow f', $val(f') \delta cap(A, B) = val(f)$.
- Thus, f is a max-flow.

Max-flow min-cut theorem

Augmenting path theorem. A flow f is a max-flow iff no augmenting paths. Max-flow min-cut theorem. Value of the max-flow = capacity of min-cut.

- $\label{eq:pf} \textbf{Pf.} \ \textbf{The following three conditions are equivalent for any flow} \ f \colon$
- i. There exists a cut (A, B) such that cap(A, B) = val(f).
- ii. f is a max-flow.
- iii. There is no augmenting path with respect to $\it f$.

[ii \Rightarrow iii] We prove contrapositive: \sim iii \Rightarrow \sim ii.

- ${}^{\bullet}\,$ Suppose that there is an augmenting path with respect to $\mathit{f}.$
- ${}^{\bullet}$ Can improve flow f by sending flow along this path.
- Thus, f is not a max-flow. •

Max-flow min-cut theorem

[iii \Rightarrow i]

• Let f be a flow with no augmenting paths.

• Let A be set of nodes reachable from s in residual graph Gt.

• By definition of cut A, $s \in A$.

• By definition of flow f, $t \notin A$.

• By definition of flow f, $t \notin A$.

• adge e = (v, w) with $v \in B$, $w \in A$ must have f(v) = 0• cox of A• cox of A

Capacity-scaling algorithm

May 6, 2014

CS38 Lecture 11

Choosing good augmenting paths.

• Some choices lead to exponential algorithms.

• Clever choices lead to polynomial algorithms.

• If capacities are irrational, algorithm not guaranteed to terminate!

Goal. Choose augmenting paths so that:

• Can find augmenting paths efficiently.

• Few iterations.

Choosing good augmenting paths with:

• Max bottleneck capacity.
• Sufficiently large bottleneck capacity.

• Fewest number of edges.

Therestical Improvements in Algorithmic Efficiency for Network Park Problems

ACT STROME

ACT STROM

Capacity-scaling algorithm

Intuition. Choose augmenting path with highest bottleneck capacity: it increases flow by max possible amount in given iteration.

• Don't worry about finding exact highest bottleneck path.

• Maintain scaling parameter Δ.

• Let G_f(Δ) be the subgraph of the residual graph consisting only of arcs with capacity ≥ Δ.

Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Theorem. If capacity-scaling algorithm terminates, then f is a max-flow.

- By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.
- Upon termination of Δ = 1 phase, there are no augmenting paths. •

63

Capacity-scaling algorithm: analysis of running time

Lemma 1. The outer while loop repeats $1+\lceil\log_2C\rceil$ times. Pf. Initially $C/2 < \Delta \le C$; Δ decreases by a factor of 2 in each iteration. •

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then, the value of the max-flow $\leq val(f) + m\Delta$. — proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.

- ullet Let f be the flow at the end of the previous scaling phase.
- LEMMA 2 \Rightarrow $val(f^*) \leq val(f) + 2 m \Delta$.
- Each augmentation in a Δ -phase increases val(f) by at least Δ . •

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time. Pf. Follows from LEMMA 1 and LEMMA 3. •

64

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then, the value of the max-flow $\leq val(f) + m\Delta$.

- We show there exists a cut (A, B) such that $cap(A, B) \le val(f) + m\Delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
- By definition of cut $A, s \in A$.
- By definition of flow $f, t \notin A$.

 $val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$

 $\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta$

 $= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta$

 $\geq cap(A,B) - m\Delta$

