
1 

CS38 

Introduction to Algorithms 

Lecture 1 

April 1, 2014 

April 1, 2014 CS38 Lecture 1 2 

Outline 

• administrative stuff 

• motivation and overview of the course 

stable matchings example 

 

• graphs, representing graphs 

• graph traversals (BFS, DFS) 

• connectivity, topological sort, strong 

connectivity 

April 1, 2014 CS38 Lecture 1 3 

Administrative Stuff 

• Text: Introduction to Algorithms (3rd Edition) 

by Cormen, Leiserson, Rivest, Stein  

– “CLRS” 

– recommended but not required 

 

• lectures self-contained 

 

• slides posted online 

 

Administrative Stuff 

• weekly homework  

– collaboration in groups of 2-3 encouraged 

– separate write-ups (clarity counts) 

 

• midterm and final 

– indistinguishable from homework except 

cumulative, no collaboration allowed 

April 1, 2014 CS38 Lecture 1 4 

April 1, 2014 CS38 Lecture 1 5 

Administrative Stuff 

• no programming in this course 

 

• things I assume you are familiar with: 

– programming and basic data structures: 
arrays, lists, stacks, queues  

– asymptotic notation “big-oh” 

– sets, graphs 

– proofs, especially induction proofs 

– exposure to NP-completeness 

April 1, 2014 CS38 Lecture 1 6 

Motivation/Overview 

 

 

 

 

Algorithms 

Systems and Software 

Design and Implementation 

Computability 

and Complexity 

Theory 



2 

Motivation/Overview 

• at the heart of programs lie algorithms 

 

• in this course algorithms means: 

– abstracting problems from across application 

domains 

– worst case analysis  

– asymptotic analysis (“big-oh”) 

– rigorous proofs paradigm (vs. “heuristics”) 

 
April 1, 2014 CS38 Lecture 1 7 

main figure 

of merit 

April 1, 2014 CS38 Lecture 1 8 

Motivation/Overview 

• algorithms as a key technology 

• think about: 
– mapping/navigation 

– Google search 

– Shazam 

– word processing (spelling correction, 
layout…) 

– content delivery and streaming video 

– games (graphics, rendering…) 

– big data (querying, learning…) 

April 1, 2014 CS38 Lecture 1 9 

Motivation/Overview 

• In a perfect world 

– for each problem we would have an algorithm 

– the algorithm would be the fastest possible 

 

 

What would CS look like in this world? 

April 1, 2014 CS38 Lecture 1 10 

Motivation/Overview 

• Our world (fortunately) is not so perfect: 

– for many problems we know embarrassingly 
little about what the fastest algorithm is 

• multiplying two integers or two matrices 

• factoring an integer into primes 

• determining shortest tour of given n cities 

– for many problems we suspect fast algorithms 
are impossible (NP-complete problems) 

– for some problems we have unexpected and 
clever algorithms (we will see many of these) 

April 1, 2014 CS38 Lecture 1 11 

Motivation/Overview 

• Two main themes: 

– algorithm design paradigms 

– algorithms for fundamental problems 

(data structures as needed) 

 

• NP-completeness and introduction to 

approximation algorithms 

 

 

 

 

April 1, 2014 CS38 Lecture 1 12 

definitions and conventions 



3 

April 1, 2014 CS38 Lecture 1 13 

What is a problem? 

• Some examples: 

– given n integers, produce a sorted list  

– given a graph and nodes s and t, find a 

shortest path from s to t 

– given an integer, find its prime factors 

• problem associates each input to an output 

• a problem is a function: 

f:Σ* → Σ*  

April 1, 2014 CS38 Lecture 1 14 

What is an algorithm? 

• a problem is a function: 

f:Σ* → Σ*  

• formally: an algorithm is a Turing Machine 

that computes function f 

• more informal: a precisely specified 

sequence of basic instructions computing f 

• level of detail is a judgment call 

high-level description , detailed pseudo-code 

Underlying model 

• Officially, Random Access Machine (RAM) 

– essentially, low level programming language 

like assembly code 

 

• Will not come up in this course 

• We all can distinguish between, e.g. 

– x Ã i-th element of array A (single step) 

– x Ã minimum element of array A (not a single step) 

April 1, 2014 CS38 Lecture 1 15 April 1, 2014 CS38 Lecture 1 16 

Worst-case analysis 

• Figure of merit: resource usage 

– running time (primary for this course) 

– storage space 

– others… 

• Always measure resource usage via: 

– function of the input size 

– value of the fn. is the maximum quantity of 
resource used over all inputs of given size 

– called “worst-case analysis” 

April 1, 2014 CS38 Lecture 1 17 

Asymptotic notation 

• Measure time/space complexity using 

asymptotic notation (“big-oh notation”) 

– disregard lower-order terms in running time 

– disregard coefficient on highest order term 

• example: 

f(n) = 6n3 + 2n2 + 100n + 102781 

– “f(n) is order n3”  

– write f(n) = O(n3) 

Asymtotic notation  

• captures behavior for “large n” 

April 1, 2014 CS38 Lecture 1 18 

3n2 +100 

2n/30 

n !  

f(n) 



4 

April 1, 2014 CS38 Lecture 1 19 

Asymptotic notation 

Definition: given functions f,g:N → R+, we 

say f(n) = O(g(n)) if there exist positive 

integers c, n0 such that for all n ≥ n0 

f(n) ≤ cg(n). 

• meaning: f(n) is (asymptotically) less than 

or equal to g(n) 

• if g > 0 can assume n0 = 0, by setting  

c’ = max0≤n≤n0
{c, f(n)/g(n)} 

 April 1, 2014 CS38 Lecture 1 20 

Asymptotic notation facts 

• “logarithmic”: O(log n) 

– logb n = (log2 n)/(log2 b)  

– so logbn = O(log2 n) for any constant b; 

therefore suppress base when write it 

 

• “polynomial”: O(nc) = nO(1)
 

– also: cO(log n)  = O(nc’) = nO(1) 

• “exponential”: O(2nδ) for δ > 0 

each bound 

asymptotically 

less than next 

April 1, 2014 CS38 Lecture 1 21 

Why worst case, asymptotic? 

• Why worst-case?  

– well-suited to rigorous analysis, simple 

– stringent requirement better 

• Why asymptotic? 

– not productive to focus on fine distinctions 

– care about behavior on large inputs  

– general-purpose alg. should be scalable 

– exposes genuine barriers/motivates new ideas 

 
April 1, 2014 CS38 Lecture 1 22 

Stable matchings example 

Stable matchings 

• Motivation: 

– n medical students and n hospitals 

– each student has ranking of hospitals 

– each hospital has ranking of students 

– Goal: match each student to a hospital 

– Goal: make the matching stable 

Definition: (student x, hospital y) pair unstable if x 

prefers y to its match and y prefers x to its match 

April 1, 2014 CS38 Lecture 1 23 

Stable matchings 

• Captures many settings, e.g.,  

– employee/employer 

– students/dorms  

– men/women 

• Usually described via men/women: 

– ranked list of n women for each of n men 

– ranked list of n men for each of n women 

– produce a stable matching (no unstable pairs) 

 
April 1, 2014 CS38 Lecture 1 24 

f 



5 

Stable matchings 

Gale-Shapley Stable Matching Algorithm 

Input: ranking lists for each man, women 

1. S Ã empty matching 

2. WHILE some man m is unmatched and hasn't proposed to every woman 

3.        w ← first woman on m's list to whom m has not yet proposed 

4.        IF w is unmatched THEN add pair (m,w) to matching S 

5.         ELSE IF w prefers m to her current partner m’ THEN 

                       replace pair (m’,w) with pair (m,w) in matching S 

6.         ELSE w rejects m 

April 1, 2014 CS38 Lecture 1 25 

• Does a stable matching always exist?  

• Is there an efficient algorithm to find one? 

 

 

 

Stable matchings 

• We have 

– a well-defined problem 

– a proposed algorithm  

 

• Now we need to  

– prove correctness  

– bound running time, possibly requiring filling 

in implementation details 

 
April 1, 2014 CS38 Lecture 1 26 

Stable matchings 

Lemma: algorithm terminates with all men, women 

matched, and with no unstable pair 

Proof: terminates? 

April 1, 2014 CS38 Lecture 1 27 

Gale-Shapley Stable Matching Algorithm 

Input: ranking lists for each man, women 

1. S Ã empty matching 

2. WHILE some man m is unmatched and hasn't proposed to every woman 

3.        w ← first woman on m's list to whom m has not yet proposed 

4.        IF w is unmatched THEN add pair (m,w) to matching S 

5.         ELSE IF w prefers m to her current partner m’ THEN 

                       replace pair (m’,w) with pair (m,w) in matching S 

6.         ELSE w rejects m 

Stable matchings 

Lemma: algorithm terminates with all men, women 

matched, and with no unstable pair 

Proof: all matched? 

April 1, 2014 CS38 Lecture 1 28 

Gale-Shapley Stable Matching Algorithm 

Input: ranking lists for each man, women 

1. S Ã empty matching 

2. WHILE some man m is unmatched and hasn't proposed to every woman 

3.        w ← first woman on m's list to whom m has not yet proposed 

4.        IF w is unmatched THEN add pair (m,w) to matching S 

5.         ELSE IF w prefers m to her current partner m’ THEN 

                       replace pair (m’,w) with pair (m,w) in matching S 

6.         ELSE w rejects m 

Stable matchings 

Lemma: algorithm terminates with all men, women 

matched, and with no unstable pair 

Proof: unstable pair (m, w)? 

April 1, 2014 CS38 Lecture 1 29 

Gale-Shapley Stable Matching Algorithm 

Input: ranking lists for each man, women 

1. S Ã empty matching 

2. WHILE some man m is unmatched and hasn't proposed to every woman 

3.        w ← first woman on m's list to whom m has not yet proposed 

4.        IF w is unmatched THEN add pair (m,w) to matching S 

5.         ELSE IF w prefers m to her current partner m’ THEN 

                       replace pair (m’,w) with pair (m,w) in matching S 

6.         ELSE w rejects m 

Stable matchings 

Lemma: algorithm terminates with all men, women 

matched, and S containing no unstable pair 

Proof: 

 terminates: only n2 possible proposals, 1 per iteration   

  

 all matched: suppose not. Then some m unmatched and 

some w unmatched. So w never proposed to. But m 

proposed to everyone if ends unmatched. 

 

April 1, 2014 CS38 Lecture 1 30 



6 

Stable matchings 

Lemma: algorithm terminates with all men, women 

matched, and S containing no unstable pair 

Proof: 

  pair (m, w) not in S 

  case 1: m never proposed to w,  

   ) m prefers his current partner 

  case 2: m proposed to w 

   ) w rejected m (in line 6 or line 5) 

  in both cases (m, w) is not an unstable pair.  

April 1, 2014 CS38 Lecture 1 31 

Stable matchings 

Lemma: can implement with running time O(n2) 

Proof: create two arrays wife, husband 

 wife[m] = w if (m,w) in S, 0 if unmatched (same for husband) 

 April 1, 2014 CS38 Lecture 1 32 

Gale-Shapley Stable Matching Algorithm 

Input: ranking lists for each man, women 

1. S Ã empty matching 

2. WHILE some man m is unmatched and hasn't proposed to every woman 

3.        w ← first woman on m's list to whom m has not yet proposed 

4.        IF w is unmatched THEN add pair (m,w) to matching S 

5.         ELSE IF w prefers m to her current partner m’ THEN 

                       replace pair (m’,w) with pair (m,w) in matching S 

6.         ELSE w rejects m 

Stable matchings 

• implementing step 5? for each preference list pref can 

create inv-pref via: for i = 1 to n do inv-pref[pref[i]] = i 

• w prefers m to m’ iff inv-pref[m] < inv-pref[m’] 

• O(n2) preprocessing; O(1) time for each iteration of loop

  

Gale-Shapley Stable Matching Algorithm 

Input: ranking lists for each man, women 

1. S Ã empty matching 

2. WHILE some man m is unmatched and hasn't proposed to every woman 

3.        w ← first woman on m's list to whom m has not yet proposed 

4.        IF w is unmatched THEN add pair (m,w) to matching S 

5.         ELSE IF w prefers m to her current partner m’ THEN 

                       replace pair (m’,w) with pair (m,w) in matching S 

6.         ELSE w rejects m 

Stable matchings 

• We proved: 

 

April 1, 2014 CS38 Lecture 1 34 

Theorem (Gale-Shapley ‘62): there is an O(n2) time 

algorithm that is given 

 n rankings of women by each of n men 

 n rankings of men by each of n women 

and outputs 

 a stable matching of men to women.  

April 1, 2014 CS38 Lecture 1 35 

Basic graph algorithms 

Graphs 

• Graph G = (V, E)  

– directed or undirected 

– notation: n = |V|, m = |E|  (note: m · n2) 

– adjacency list or adjacency matrix 

April 1, 2014 CS38 Lecture 1 36 

a 

b 

c 

a 

b 

c 

c b 

b 

0 1 1 

0 0 0 

0 1 0 

a     b     c 

a 

b 

c 



7 

Graphs 

• Graphs model many things… 

– physical networks (e.g. roads) 

– communication networks (e.g. internet) 

– information networks (e.g. the web) 

– social networks (e.g. friends) 

– dependency networks (e.g. topics in this course) 

… so many fundamental algorithms operate 

on graphs 

 
April 1, 2014 CS38 Lecture 1 37 

Graphs 

• Graph terminology: 

– an undirected graph is connected if there is a 

path between each pair of vertices 

– a tree is a connected, undirected graph with 

no cycles; a forest is a collection of disjoint 

trees 

– a directed graph is strongly connected if there 
is a path from x to y and from y to x,  8 x,y2V 

– a DAG is a Directed Acyclic Graph 

 
April 1, 2014 CS38 Lecture 1 38 

Graph traversals 

• Graph traversal algorithm: visit some or all 

of the nodes in a graph, labeling them with 

useful information 

– breadth-first: useful for undirected, yields 

connectivity and shortest-paths information 

– depth-first: useful for directed, yields 

numbering used for 

• topological sort 

• strongly-connected component decomposition  

 

 

April 1, 2014 CS38 Lecture 1 39 

Breadth first search 
BFS(undirected graph G,  starting vertex s) 

1. for each vertex v, v.color = white, v.dist = 1, v.pred = nil 

2. s.color = grey, s.dist = 0, s.pred = nil 

3. Q = ;; ENQUEUE(Q, s) 

4. WHILE Q is not empty u = DEQUEUE(Q) 

5.        for each v adjacent to u 

6.              IF v.color = white THEN 

7.                  v.color = grey, v.dist = u.dist + 1, v.pred = u 

8.                  ENQUEUE(Q, v) 

9.              u.color = black   

Lemma: BFS runs in time O(m + n), when G is represented 
by an adjacency list. 

Proof? 

Breadth first search 
BFS(undirected graph G,  starting vertex s) 

1. for each vertex v, v.color = white, v.dist = 1, v.pred = nil 

2. s.color = grey, s.dist = 0, s.pred = nil 

3. Q = ;; ENQUEUE(Q, s) 

4. WHILE Q is not empty u = DEQUEUE(Q) 

5.        for each v adjacent to u 

6.              IF v.color = white THEN 

7.                  v.color = grey, v.dist = u.dist + 1, v.pred = u 

8.                  ENQUEUE(Q, v) 

9.              u.color = black   

Lemma: BFS runs in time O(m + n), when G is represented 

by an adjacency list. 

Proof: each vertex enqueued at most 1 time; its adj. list scanned once; 

O(1) work for each neighbor 

BFS example from CLRS 


