CS38
Introduction to Algorithms

Lecture 1
April 1, 2014

Outline

• administrative stuff
• motivation and overview of the course
 stable matchings example
• graphs, representing graphs
• graph traversals (BFS, DFS)
• connectivity, topological sort, strong
 connectivity

Administrative Stuff

• Text: Introduction to Algorithms (3rd Edition)
 by Cormen, Leiserson, Rivest, Stein
 – “CLRS”
 – recommended but not required
• lectures self-contained
• slides posted online

Administrative Stuff

• weekly homework
 – collaboration in groups of 2-3 encouraged
 – separate write-ups (clarity counts)
• midterm and final
 – indistinguishable from homework except
 cumulative, no collaboration allowed

Administrative Stuff

• no programming in this course
• things I assume you are familiar with:
 – programming and basic data structures:
 arrays, lists, stacks, queues
 – asymptotic notation “big-oh”
 – sets, graphs
 – proofs, especially induction proofs
 – exposure to NP-completeness

Motivation/Overview

Computability
and Complexity

Theory

Algorithms

Systems and Software
Design and Implementation
Motivation/Overview

• at the heart of programs lie algorithms

• in this course algorithms means:
 – abstracting problems from across application domains
 – worst case analysis
 – asymptotic analysis ("big-oh")
 – rigorous proofs paradigm (vs. "heuristics")

April 1, 2014
CS38 Lecture 1
7

Motivation/Overview

• algorithms as a key technology
 think about:
 – mapping/navigation
 – Google search
 – Shazam
 – word processing (spelling correction, layout…)
 – content delivery and streaming video
 – games (graphics, rendering…)
 – big data (querying, learning…)

April 1, 2014
CS38 Lecture 1
8

Motivation/Overview

• In a perfect world
 – for each problem we would have an algorithm
 – the algorithm would be the fastest possible

What would CS look like in this world?

April 1, 2014
CS38 Lecture 1
9

Motivation/Overview

• Our world (fortunately) is not so perfect:
 – for many problems we know embarrassingly little about what the fastest algorithm is
 • multiplying two integers or two matrices
 • factoring an integer into primes
 • determining shortest tour of given n cities
 – for many problems we suspect fast algorithms are impossible (NP-complete problems)
 – for some problems we have unexpected and clever algorithms (we will see many of these)

April 1, 2014
CS38 Lecture 1
10

Motivation/Overview

• Two main themes:
 – algorithm design paradigms
 – algorithms for fundamental problems
 (data structures as needed)

• NP-completeness and introduction to approximation algorithms

April 1, 2014
CS38 Lecture 1
11

definitions and conventions

April 1, 2014
CS38 Lecture 1
12
What is a problem?

- Some examples:
 - given n integers, produce a sorted list
 - given a graph and nodes s and t, find a shortest path from s to t
 - given an integer, find its prime factors
- problem associates each input to an output
- a problem is a function:
 \[f : \Sigma^* \rightarrow \Sigma^* \]

What is an algorithm?

- a problem is a function:
 \[f : \Sigma^* \rightarrow \Sigma^* \]
- formally: an algorithm is a Turing Machine that computes function f
- more informal: a precisely specified sequence of basic instructions computing f
- level of detail is a judgment call
 - high-level description ⇔ detailed pseudo-code

Underlying model

- Officially, Random Access Machine (RAM)
 - essentially, low level programming language like assembly code
- Will not come up in this course
- We all can distinguish between, e.g.
 - $x \leftarrow i$-th element of array A (single step)
 - $x \leftarrow$ minimum element of array A (not a single step)

Worst-case analysis

- Figure of merit: resource usage
 - running time (primary for this course)
 - storage space
 - others…
- Always measure resource usage via:
 - function of the input size
 - value of the fn. is the maximum quantity of resource used over all inputs of given size
 - called “worst-case analysis”

Asymptotic notation

- Measure time/space complexity using asymptotic notation (“big-oh notation”)
 - disregard lower-order terms in running time
 - disregard coefficient on highest order term
- example:
 \[f(n) = 6n^3 + 2n^2 + 100n + 102781 \]
 - $f(n)$ is order n^3
 - write $f(n) = O(n^3)$

Asymptotic notation

- captures behavior for “large n”

\[2^{n/30} \quad 3n^2 + 100 \]

\[n \rightarrow \]
Asymptotic notation

Definition: given functions $f,g : \mathbb{N} \to \mathbb{R}^+$, we say $f(n) = O(g(n))$ if there exist positive integers c, n_0 such that for all $n \geq n_0$

$$f(n) \leq cg(n).$$

- **meaning**: $f(n)$ is (asymptotically) less than or equal to $g(n)$
- if $g > 0$ can assume $n_0 = 0$, by setting $c' = \max_{0 \leq n \leq n_0} \{c, f(n)/g(n)\}$

Asymptotic notation facts

- "logarithmic": $O(\log n)$
 - $\log_b n = (\log_2 n)/(\log_2 b)$
 - so $\log_b n = O(\log_2 n)$ for any constant b; therefore suppress base when write it

- "polynomial": $O(n^c) = n^{O(1)}$
 - also: $c^{O(\log n)} = O(n^c) = n^{O(1)}$

- "exponential": $O(2^{n^d})$ for $d > 0$

Why worst case, asymptotic?

- Why worst-case?
 - well-suited to rigorous analysis, simple
 - stringent requirement better

- Why asymptotic?
 - not productive to focus on fine distinctions
 - care about behavior on large inputs
 - general-purpose alg. should be scalable
 - exposes genuine barriers/motivates new ideas

Stable matchings example

Stable matchings

- **Motivation**:
 - n medical students and n hospitals
 - each student has ranking of hospitals
 - each hospital has ranking of students
 - Goal: match each student to a hospital
 - Goal: make the matching stable

Definition (student x, hospital y) pair unstable if x prefers y to its match and y prefers x to its match

- Captures many settings, e.g.,
 - employee/employer
 - students/dorms
 - men/women

- Usually described via men/women:
 - ranked list of n women for each of n men
 - ranked list of n men for each of n women
 - produce a stable matching (no unstable pairs)
Stable matchings

• Does a stable matching always exist?
• Is there an efficient algorithm to find one?

Gale-Shapley Stable Matching Algorithm

Input: ranking lists for each man, women
1. S ← empty matching
2. WHILE some man m is unmatched and hasn't proposed to every woman
3. w ← first woman on m's list to whom m has not yet proposed
4. IF w is unmatched THEN add pair (m,w) to matching S
5. ELSE IF w prefers m to her current partner m' THEN
 replace pair (m',w) with pair (m,w) in matching S
6. ELSE w rejects m

April 1, 2014
CS38 Lecture 1
25

Stable matchings

• We have
 – a well-defined problem
 – a proposed algorithm

• Now we need to
 – prove correctness
 – bound running time, possibly requiring filling
 in implementation details

April 1, 2014
CS38 Lecture 1
26

Stable matchings

Gale-Shapley Stable Matching Algorithm

Input: ranking lists for each man, women
1. S ← empty matching
2. WHILE some man m is unmatched and hasn't proposed to every woman
3. w ← first woman on m's list to whom m has not yet proposed
4. IF w is unmatched THEN add pair (m,w) to matching S
5. ELSE IF w prefers m to her current partner m' THEN
 replace pair (m',w) with pair (m,w) in matching S
6. ELSE w rejects m

April 1, 2014
CS38 Lecture 1
27

Stable matchings

Lemma: algorithm terminates with all men, women matched, and with no unstable pair

Proof: terminates?

April 1, 2014
CS38 Lecture 1
28

Stable matchings

Gale-Shapley Stable Matching Algorithm

Input: ranking lists for each man, women
1. S ← empty matching
2. WHILE some man m is unmatched and hasn't proposed to every woman
3. w ← first woman on m's list to whom m has not yet proposed
4. IF w is unmatched THEN add pair (m,w) to matching S
5. ELSE IF w prefers m to her current partner m' THEN
 replace pair (m',w) with pair (m,w) in matching S
6. ELSE w rejects m

Lemma: algorithm terminates with all men, women matched, and with no unstable pair

Proof: all matched?

April 1, 2014
CS38 Lecture 1
29

Stable matchings

Lemma: algorithm terminates with all men, women matched, and S containing no unstable pair

Proof: terminates: only \(n^2 \) possible proposals, 1 per iteration

all matched: suppose not. Then some m unmatched and some w unmatched. So w never proposed to. But m proposed to everyone if ends unmatched.

April 1, 2014
CS38 Lecture 1
30
Stable matchings

Lemma: algorithm terminates with all men, women matched, and S containing no unstable pair

Proof:
- pair \((m, w)\) not in \(S\)
 - case 1: \(m\) never proposed to \(w\), \(\Rightarrow m\) prefers his current partner
 - case 2: \(m\) proposed to \(w\)
 \(\Rightarrow w\) rejected \(m\) (in line 6 or line 5)
 - in both cases \((m, w)\) is not an unstable pair.

Gale-Shapley Stable Matching Algorithm

Input: ranking lists for each man, women
1. \(S \leftarrow \) empty matching
2. WHILE some man \(m\) is unmatched and hasn't proposed to every woman
3. \(w \leftarrow \) first woman on \(m\)'s list to whom \(m\) has not yet proposed
4. IF \(w\) is unmatched THEN add pair \((m, w)\) to matching \(S\)
5. ELSE IF \(w\) prefers \(m\) to her current partner \(m'\) THEN
 replace pair \((m', w)\) with pair \((m, w)\) in matching \(S\)
6. ELSE \(w\) rejects \(m\)

Lemma: can implement with running time \(O(n^2)\)

Proof: create two arrays \(wife\), \(husband\)
- \(wife[m] = w\) if \((m, w)\) in \(S\), 0 if unmatched (same for \(husband\))

Theorem (Gale-Shapley '62): there is an \(O(n^2)\) time algorithm that is given
- \(n\) rankings of women by each of \(n\) men
- \(n\) rankings of men by each of \(n\) women
and outputs
- a stable matching of men to women.

Basic graph algorithms

- Graph \(G = (V, E)\)
 - directed or undirected
 - notation: \(n = |V|\), \(m = |E|\) (note: \(m \leq n^2\))
 - adjacency list or adjacency matrix

```plaintext
  a | b | c
  a | 0 | 1 | 1
  b | 0 | 0 | 0
  c | 0 | 1 | 0
```

Graphs
Graphs

- Graphs model many things…
 - physical networks (e.g. roads)
 - communication networks (e.g. internet)
 - information networks (e.g. the web)
 - social networks (e.g. friends)
 - dependency networks (e.g. topics in this course)

… so many fundamental algorithms operate on graphs

April 1, 2014 CS38 Lecture 1

Graph terminology:
- an undirected graph is connected if there is a path between each pair of vertices
- a tree is a connected, undirected graph with no cycles; a forest is a collection of disjoint trees
- a directed graph is strongly connected if there is a path from x to y and from y to x, \(\forall x,y \in V \)
- a DAG is a Directed Acyclic Graph

April 1, 2014 CS38 Lecture 1

Graph traversals

- Graph traversal algorithm: visit some or all of the nodes in a graph, labeling them with useful information
 - breadth-first: useful for undirected, yields connectivity and shortest-paths information
 - depth-first: useful for directed, yields numbering used for
 - topological sort
 - strongly-connected component decomposition

April 1, 2014 CS38 Lecture 1

Breadth first search

BFS(undirected graph G, starting vertex s)
1. for each vertex v, v.color = white, v.dist = \(\infty \), v.pred = nil
2. s.color = grey, s.dist = 0, s.pred = nil
3. Q = \{ s \}; ENQUEUE(Q, s)
4. while Q is not empty
 5. u = DEQUEUE(Q)
 6. for each v adjacent to u
 7. if v.color = white
 8. v.color = grey, v.dist = u.dist + 1, v.pred = u
 9. ENQUEUE(Q, v)
 9. u.color = black

Lemma: BFS runs in time O(m + n), when G is represented by an adjacency list.
Proof?

BFS example from CLRS

- for each vertex v, v.color = white, v.dist = \(\infty \), v.pred = nil
- s.color = grey, s.dist = 0, s.pred = nil
- Q = \{ s \}; ENQUEUE(Q, s)
- for each u adjacent to s
 - if u.color = white
 - v.color = grey, v.dist = u.dist + 1, v.pred = u
 - ENQUEUE(Q, v)
- u.color = black

Lemma: BFS runs in time O(m + n), when G is represented by an adjacency list.
Proof: each vertex enqueued at most 1 time; its adj. list scanned once; O(1) work for each neighbor