CS 21 Decidability and Tractability Winter 2025

Posted: February 26

Solution Set 5

If you have not yet turned in the Problem Set, you should not consult these solutions.

1.

(a)

We will reduce 2-COLORABLE to 2-SAT, which we showed to be in P. Given a graph
G, our reduction produces the following set of clauses: label the vertices of G with
variables x1, 2, ..., x,; for every edge between vertices labelled x; and x;, produce the
clauses (x; V z;) and (77 V T5).

Clearly this reduction runs in polynomial time. We now argue that “yes maps to yes.”
If G is 2-colorable, then pick one of the two colors in a 2-coloring of G and assign the
associated variables TRUE. Every one of the clauses is satisfied, because the only way
to fail to satisfy a clause is if the two endpoints of some edges were the same color.

We argue that “no maps to no.” Suppose we have a satisfying assignment to the set of
clauses produced by the reduction. Then the two variables associated with a given edge
must have different truth assignments. Therefore, if we color the vertices of G associated
with TRUE variables red, and the other vertices of G green, we will have produced a
valid 2-coloring of G, and hence G is 2-colorable.

First, note that 3-COLORABLE is in NP because given an assignment of colors to the
vertices of the graph G, we can verify in polynomial time that each edge has different
colors at its endpoints.

To show that 3-COLORABLE is NP-hard, we reduce from 3SAT. Given an instance ¢
of 3SAT, our reduction produces the following graph G: we have three special vertices
A, B, C, and one vertex for each literal, z; and —x;. We have a triangle on A, x;, —x; for
each 7. Notice that any 3-coloring of the graph so far must assign distinct colors to B
and C, which we will call (suggestively) T and F, respectively. Also each pair z; and
—z; must be colored with T" and F', respectively, or F' and T', respectively. We can thus
think of the coloring of the “literal vertices” as a truth assignment.

Now, for each clause (¢1 V ¢2 V ¢3) appearing in ¢, we add a copy of the gadget from the
problem set. We identify the three grey vertices on the left with the three vertices ¢y,
Uy, and £3. We identify the grey vertex on the right with the vertex B. This reduction
runs in polynomial time.

If we started with a YES instance of 3SAT, then we claim that the reduction produces a
YES instance of 3-COLORABLE. Consider a satisfying assignment for ¢. We color A, B,
and C' with the colors RED, T and F, respectively. We then color x; and —x; with colors
T and F, respectively, if x; is true in the satisfying assignment, and we color z; and —x;
with colors F' and T, respectively, if z; is false in the satisfying assignment. So far this
is a valid 3-coloring. Now notice that every one of the clause gadgets has among its
left three grey nodes at least one node that is colored T' (since every clause has at least
one true literal in the satisfying assignment). Moreover, its right grey node is colored

5-1



5-2

2.

T. Thus using the observation in the problem set we can extend the 3-coloring to a
3-coloring of the clause gadgets, obtaining a 3-coloring of the entire graph G.

Now, if G is a YES instance of 3-COLORABLE, then we claim that the reduction started
with a satisfiable formula ¢. Suppose we have a 3-coloring of G, then A, B, and C must
be colored with three distinct colors, and let us call the color assigned to B “T” and
the color assigned to C' “F”. As noted each pair x; and —z; must be colored with T
and F' respectively, or F' and T respectively. For each clause gadget, the rightmost grey
node is colored with 7', and so by the observation in the problem set, the only way it
can be 3-colored is if at least one of its leftmost grey nodes are colored with T'. But this
means that we can set x; to true if it is colored T" and z; to false if it is colored F', and
the resulting assignment must satisfy every clause. Thus the formula ¢ is satisfiable, as
required.

(3,3)-sAT is in NP for the same reason 3-SAT is. We show that it is NP-hard by reducing
from 3-SAT.

Given a 3-CNF formula ¢, we perform the following transformation to obtain 3-CNF ¢': for
each x; we replace the m; occurrences of x; with fresh variables y; 1,y 2,...,Yim,;, and we
add the following m; clauses:

(=¥i1 Vyi2)
(—yi2 V yi3)
(—Yi3 V ¥ia)

(“Yimi—1 V Yim,)
("Yim; V Yin1)

Note that the extra clauses are logically equivalent to:

Yil = Yi2 = - = Yim; = Yi,l

and hence any assignment satisfying ¢’ must set all of these variables to the same value. Such
an assignment can be turned into a satisfying assignment for ¢ by setting x; = y; 1 for all <.
Similarly, any assignment satisfying ¢ can be turned into a satisfying assignment for ¢’ by
setting y; ; = x; for all 4, j. This shows that “yes maps to yes” and “no maps to no,” and
thus (3, 3)-SAT is NP-hard as required.

. We first prove the following lemma regarding the 10 clauses given on the problem set: any

assignment to x, y, z that sets at least one to true can be extended to an assignment to x, ¥y, z, w
that satisfies at most 7 of the 10 clauses, while the assignment to x,y, z that sets all of them
to false cannot be extended to an assignment to z,y, z, w that satisfy more than 6 of the 10
clauses. Moreover it is impossible to satisfy more than 7 of the 10 clauses simultaneously.

The second part is easier: if z,y, z are all false, then setting w to true satisfies 4 clauses, while
setting w to false satisfies 6 clauses. For the first part, observe that the clauses are symmetric
in x,y, z. Thus we need only consider 3 cases: (a) exactly one of x,y, z is true, (b) exactly 2



5-3

of x,y, z are true, and (c) exactly 3 of z,y, z are true. In case (a), we can set w to false to
satisfy 1 clause in the first row, 3 in the second row, and 3 in the last row, for a total of 7. In
case (b), we can set w to true to satisfy 3 clauses in the first row, 2 in the second row, and 2
in the last row, for a total of 7. In case (c) we can set w to be true to satisfy 4 clauses in the
first row, no clauses in the second row, and 3 clauses in the last row, for a total of 7. In each
of these three cases, we see that setting w the other way doesn’t help: in case (a) we would
satisfy only 6 clauses; in case (b) we would satisfy 7 clauses; in case (¢) we would satisfy only
6 clauses. This proves the “moreover” part of the lemma.

Now we proceed with proving MAX2SAT is NP-complete. Observe that it is in NP, because
given a formula ¢ and an integer k, together with an assignment A, it is easy to verify in
polynomial time that the assignment satisfies at least k& of the clauses of ¢.

Now, we show MAX2SAT is NP-hard by reducing from 3SAT. Given an instance ¢ of 3SAT
with m clauses, we produce a 2-CNF formula ¢’ by replacing each clause (¢1V ¢3V ¢3) with the
10 clauses in the problem set, with ¢1, s, /5 in place of z,y, 2. We use a fresh variable w for
each clause of ¢. The reduction sets the bound k = 7m. This reduction runs in polynomial
time (it produces a 2-CNF ¢’ with 10m clauses).

Suppose ¢ is satisfiable by an assignment A. Then by the lemma above, we can extend A to
an assignment to ¢’ that satisfies at least k = 7m clauses of ¢’ simultaneously, which implies
that (¢', k) is a YES instance of MAX2SAT.

Now, suppose that there is an assignment that simultaneously satisfies at least k = ™m
clauses of ¢’. Since the maximum number of clauses that can be satisfies within each group
of 10 clauses is 7, this means that every group of 10 clauses has 7 clauses satisfied by the
assignment. But by the lemma this means that this same assignment must satisfy every clause
of ¢, because if it didn’t satisfy even a single clause, then the associated group of 10 clauses
of ¢’ would only have 6 clauses satisfied by the current assignment. Thus we conclude that ¢
must be satisfiable.



