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If you have not yet turned in the Problem Set, you should not consult these solutions.

1. The high-level idea of the reduction is this: the first row of tiles should be forced to be the
start configuration of Turing Machine M on input w (padded with blanks). Each successive
row of a tiling should be forced to be a TM configuration that legally follows from the one
encoded in the previous row. In this way, if M does not halt on w, then there are tilings of
all possible sizes, and hence we have a “yes” instance of TILE. On the other hand, if M halts
on w after t steps, then there are tilings only up to size t, and hence we have a “no” instance
of TILE.

In order to enforce these ideas using only horizontal and vertical compatibility relations, we
will label each tile not just with a symbol in a configuration, but also with the left and right
neighbors of that symbol. We will then exploit the observation that triplets of symbols in a
configuration Ci exactly determine the corresponding triplets of symbols allowed in a legal
next configuration Ci+1.

Here are the details. We first modify M so that it never tries to move off the left end of the
tape (it can start by placing a marker and copying the input 1 step to the right to implement
this). Also we ensure that once M reaches qaccept or qreject there are no transitions available to
leave those states (so once M halts there are no further legal configurations according to the
transition function). It is also easier if we modify our format for writing configurations so that
we have available new symbols which are all pairs (a, q), where a is from the tape alphabet,
and q is a state of M . A configuration that we formerly wrote u1u2 . . . umqv1v2 . . . vn is now
written u1u2 . . . um(v1, q)v2 . . . vn.

Now we describe the tiles. First we have a set of tiles that produce the first row containing the
start configuration of M on input w = w1w2 . . . wn. These tiles look like this when assembled
properly:

[(w1, q0), w2, w3]︸ ︷︷ ︸
t1

[w2, w3, w4][w3, w4, w5] · · · [wn−2, wn−1, wn][wn−1, wn, ][wn, , ][ , , ] · · · [ , , ]

We include these n + 1 tiles in our tile set and name the first one t1, to ensure that it
occurs in position (1, 1). Our horizontal compatibility relation will contain all pairs of tiles
((a, b, c), (d, e, f)) with b = d and c = e. Note that these n + 1 tiles are distinct tile-types
from the ones described next.

We now include one tile for every triple of symbols (a, b, c) in which at most one of the three
symbols is a state symbol q. We will add vertical compatibility pairs ((a, b, c), (d, e, f)) if

• (a, b, c) = (d, e, f) and none of a, b, c, e contain a state symbol, b = e, and d = a or
d = (a, q), and f = c or f = (c, q), or
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• a = (x, q) and δ(q, x) = (r, d, L) and e = b and f = c, or

• a = (x, q) and δ(q, x) = (r, d,R) and e = (b, r) and f = c, or

• b = (x, q) and δ(q, x) = (r, e, L) and d = (a, r) and f = c, or

• b = (x, q) and δ(q, x) = (r, e, R) and d = a and f = (c, r), or

• c = (x, q) and δ(q, x) = (r, f, L) and d = a and e = (b, r), or

• c = (x, q) and δ(q, x) = (r, f, R) and d = a and f = c

In words, tile (a, b, c) is vertically compatible with tile (d, e, f) iff the triple abc occurring
somewhere in a TM configuration can legally evolve into the triple def in one step, according
to the transition function of M . Note that the first case allows for the head to “appear”
on the left or the right, which may happen as it moves across tiles (this creates a technical
problem, which is that “spurious” heads can appear on the rightmost tile – we will solve that
with a small modification below after completing the argument).

As an example of how the tiling is supposed to work, if δ(q0, w1) = (q′, z, R), then the following
row of tiles could be placed below the first row, satisfying all of the vertical and horizontal
compatibility relations:

[z, (w2, q
′), w3][(w2, q

′), w3, w4][w3, w4, w5] · · · [wn−2, wn−1, wn][wn−1, wn, ][wn, , ][ , , ] · · · [ , , ]

If δ(q′, w2) = (q′′, y, R) then the following row of tiles could be placed below the second row,
satisfying all of the vertical and horizontal compatibility relations:

[z, y, (w3, q
′′)][y, (w3, q

′′), w4][w3, w4, w5] · · · [wn−2, wn−1, wn][wn−1, wn, ][wn, , ][ , , ] · · · [ , , ]

Now we verify that this is indeed a reduction from HALT to TILE. If we have a “yes” instance
〈M,w〉 of HALT that this means that M does not halt on w. But then for every n ≥ 0 we
can tile the n×n square by writing down rows of tiles corresponding to the first n steps of M
on input w (padding with blanks if necessary to make the width n, or truncating at width n
if n smaller than |w|). So our reduction has produced a “yes” instance of TILE in this case.

If we have a “no” instance 〈M,w〉 of HALT that this means that M halts on w, after some
number of steps t. But then we cannot tile more than t rows, since row i is guaranteed to be
the configuration of M on input w after i steps, and no further evolution can occur after t
steps. Thus our reduction has produced a “no” instance of TILE in this case.

To solve the technical issue mentioned above, we make the following modification. We intro-
duce two versions of symbol in our configurations, a primed version and an unprimed version.
The intention is that the unprimed symbols occur in each row up to the cell with the head,
and the primed symbols occur at the head and to the right of the head. With this small mod-
ification to the way configurations are represented, we observe that it is never possible for a
primed symbol c to turn into a symbol with a head in the next configuration, unless c contains
the head or the symbol immediately to the left of c contains the head. With this observation,
it is never possible for a “spurious” head to appear in the rightmost cell, because the right-
most cell is always a primed symbol, and the rightmost cell and the second-to-the-rightmost
cell don’t have the head in them in the “spurious” case we are trying to avoid.
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2. The key here is that H is fixed. Suppose it has k vertices. Given an input G, we can simply
exhaustively try all potential subgraph isomorphisms. Specifically, we try every subset of k
vertices of G, and for each subset we try every one of the k! possible ways of mapping it to
the vertices of H. We can easily check, whether H equals the subgraph induced by a given
subset of G’s vertices (permuted according to a given mapping) – in fact this can be done in
time polynomial in k.

Thus the overall running time of the algorithm is(
|G|
|H|

)
· k! · kO(1)

Note that
(n
k

)
≤ nk, and k! ≤ kk, so we have an overall running time of |G|O(k). Since k is

fixed, this is polynomial in the size of the input, G.

3. Following the hint, we will build up a table T which has a TRUE/FALSE entry for each
0 ≤ B′ ≤ B telling us whether some multiset of the xi sum to exactly B′. Specifically, let T
be an array with B+ 1 entries. Initialize T [i] to be FALSE for all i. For B′ = 0, 1, 2, . . . B do:

• if some xi = B′ then T [B′] = TRUE.

• else if for some xi we have T [B′−xi] = TRUE, then set T [B′] = TRUE (otherwise leave
T [B′] set to FALSE).

At the end, we accept iff T [B] is TRUE.

In each step we need to check all of the xi, so the running time for one iteration of the loop is
O(n). The overall running time is O(Bn) which is polynomial in the size of the input (here
we use crucially that B is presented in unary).

We should also argue that this algorithm is correct. We claim that after the B′-th iteration,
all entries of T up to and including B′ are correct (i.e. they are TRUE if there is a multiset of
the xi summing to that value, and FALSE otherwise). The base case (when B′ = 0) is clearly
satisfied. Now assume T is correct up to and including B′−1. There is a non-empty multiset
summing to exactly B′ iff for some i, there is a non-empty multiset summing to B′ − xi. By
induction T [B′ − xi] is correct, and so we correctly fill in T [B′] in the B′-th iteration of the
main loop.


