
CS 21 Decidability and Tractability Winter 2025

Solution Set 1

Posted: January 22

If you have not yet turned in the Problem Set, you should not consult these solutions.

1. We need to define a language that has the same computational power as the function f ; that
is, given f one should be able to “easily” compute Lf , and vice versa. There are many ways
to do this; here is one example:

Define

Lf = {(x, k, b) : x ∈ Σ∗, b ∈ Σ, k an integer and the k-th symbol of f(x) is b}.

The alphabet Γ thus includes Σ plus extra symbols to encode “(”, “)”, “,”, and integers
(which can be written in binary, and thus encoded using two additional symbols).

To determine if a string z is in Lf using f , we first determine if z is of the form (x, k, b). If
it is, we evaluate f(x), and accept iff the k-th symbol of f(x) is b.

To compute f(x) using Lf , we do the following: for k = 1, 2, . . ., we determine whether
(x, k, b) ∈ Lf for each b ∈ Σ, and we add the b for which we get a positive answer to the
output. We stop when we reach a value of k for which ∀b (x, k, b) 6∈ Lf (this marks the end
of the string f(x)).

2. (a) This is an“if and only if” proof so it must be proven in both directions. That is, (1)
given a regular language, show that it can be recognized by an all-paths-NFA, and (2)
given an all-paths-NFA show that the language it recognizes is regular.

(1) If a language is regular, then by the equivalence theorems there is a FA that recognizes
the language. Conveniently, a FA is an instance of an all-paths-NFA: since there is only
one computation path for any given input, then strings are accepted only if all paths
(the only path) ends in an accept state. So every regular language is recognized by an
all-paths-NFA.

(2) To show that a language recognized by an all-paths-NFA is regular, we can construct
a FA that recognizes the exact same language as a given all-paths-NFA. This can be
done in the same way as the NFA-FA equivalence proof in the lecture slides (or Sipser,
Theorem 1.39). That is, if the all-paths-NFA is given by M = (Q,Σ, F, q0, δ), then the
FA M ′ is given by M ′ = (Q′ = P(Q),Σ, F ′, q′0, δ

′), where

• For each R ∈ Q′ we have δ′(R, a) = ∪r∈R(E(δ(r, a))), as in the lecture (recall that
E(S) is defined to be the set of states reachable in M from some state in S via zero
or more ε-transitions).

• q′0 = E({q0}) as in the lecture.

• F ′ = {R ∈ Q′| every state in R is an accept state of M}. This corresponds to the
fact that for the all-paths-NFA to accept a string, every computation on that string
must end in an accept state.

1-1

1-2

As in the construction in lecture, we can argue that after reading each the first i symbols
of the input, machine M ′ is in a state R which contains exactly those r ∈ Q that are
reachable from the start state in M after processing the first i symbols of the input, plus
zero or more ε-transitions. This is true even when i is zero, corresponding to the states
reachable in M after reading no symbols. Note that if all of these states are accept states
in M , then q′0 will be an accept state of M ′, as required (and both machines will accept
the empty string).

(b) If A and B are regular languages, then by part (a) there are all-paths-NFAs, Ma and
Mb, that recognize each respectively. Given this fact, we can construct a third all-paths-
NFA, Mc, that recognizes C = (A ∩ B). Simply create a start state (which is also an
accept state) with epsilon-transitions that point to the start states of Ma and Mb. A
string is accepted by Mc if and only if all computations end in accept states, which
by the construction means all computations end in accept states in both Ma and Mb.
Therefore Mc recognizes the intersection of A and B. By part (a) since C is recognized
by an all-paths-NFA, it is a regular language. The new start state of Mc should be an
accept state so that if ε is in both A and B, it will be accepted by all-paths-NFS Mc.

(c) It is useful to define a valid computation of machine M on input x as a sequence of
states visited while processing x, starting from the start state, and reaching the end of
x. Nondeterministic machines may have several valid computations on input x. With
this notion in mind, we can see that Lflip is the complement of L. To see this, note
that if x is a string in L, then some valid computation of M on x ends up in an accept
state. Since accept states of M are not accept states in Mflip, and Mflip requires all
valid computations to end in accept states, x cannot be a member of Lflip. On the
other hand, if x is not a string in L, then all valid computations of M on x must end
in non-accept states. Since non-accept states in M are accept states in Mflip, then all
valid computations of x on Mflip end in accept states, and x is a member of Lflip.

There is an annoying edge case: if x is a string for which there are no valid computations
of M on x, then x is not accepted by M (i.e. it is not in L), and for Mflip to accept x,
we have to declare that an all-paths NFA accepts strings x for which there are no valid
computations of M on x (so, vacuously, “every valid computation of M on x leads to an
accept state”). You won’t lose points if you missed this detail (which should have been
made clearer in the problem statement!).

3. Let L be the language consisting of all palindromes. Suppose L is a regular language.
Then the Pumping Lemma must hold. Let p be the pumping length for L. Consider
w = aa . . . a︸ ︷︷ ︸

p

b aa . . . a︸ ︷︷ ︸
p

∈ L. Since |w| ≥ p, w can be written as w = xyz such that

(a) for every i ≥ 0, xyiz ∈ L, and

(b) |y| > 0, and

(c) |xy| ≤ p.

By (c), we see that xy = aa . . . a. Thus

xy2z = aa . . . a︸ ︷︷ ︸
p+|y|

b aa . . . a︸ ︷︷ ︸
p

.

1-3

Since |y| > 0, xy2z is not a palindrome, and thus it is not in L. Contradiction. We conclude
that the language consisting of all palindromes is not regular.

4. (a) The easiest way to show that Ln is regular is to show a Finite Automaton A that accepts
it. A will have n states S0, S1, . . . Sn−1 where the accept states are all the states except
S0, which is the start state. The transition function is δ(Sj , 0) = S(j+1) (mod n). In
other words, the machine is in state sj iff the number of symbols it has read so far,
modulo n, is j.

(b) Suppose primes is a regular language. Then the Pumping Lemma must hold, so there
is a pumping length p for this language. Let q > p be a prime, and consider the string
w = 00 . . . 0︸ ︷︷ ︸

q

, which is in primes.

By the Pumping Lemma, w can be written w = xyz, with |y| = r > 0, and for all i ≥ 0,
the string

xyiz = 00 . . . 0︸ ︷︷ ︸
q+(i−1)r

is in primes. This means that all the numbers q+ (i− 1)r must be primes for all i ≥ 0,
but for i = q + 1 we have q + (i− 1)r = q(1 + r) with both q > 1 and r + 1 > 1, which
is a composite. Contradiction. We conclude that primes is not a regular language.

