If you have not yet turned in the Midterm you should not consult these solutions.
1. (a) The language L_1 is not context-free.

To see it is not context-free, we use the CFL pumping lemma: let $w = a^pb^pc^pd^p$, and consider the ways w can be written as $w = uvxyz$. If u or v straddles the boundary between characters, then pumping results in an out-of-order string (not in the language). Otherwise, we use the fact that $|vxy| \leq p$ to argue that v and y can only be within a single block or two adjacent blocks of characters. In all such cases, pumping on v and y results in a string not in the language. We conclude that L_1 is not context free.

(b) The language L_2 is context-free but not regular. To see it is context free, consider the NPDA that first pushes a’s onto the stack until it sees the first b, then pushes b’s onto the stack until it sees the first c, then pops b’s from the stack as it reads c’s, and finally pops a’s from the stack as it reads d’s. To see that it is not regular, we use the pumping lemma. Let $w = a^pb^pc^pd^p$ and consider the ways w can be written as xyz. If string y straddles the boundary between characters, then pumping on y results in an out-of-order string (not in the language). Otherwise pumping on y increases the number of only a single character type, again resulting in a string not in the language. We conclude that L_2 is not regular.

(c) The language L_3 is regular: it is the union of the regular languages $a^{1000}a^*b^*c^*$ and the finite (and hence regular) language $\{a^n b^n c^n : n < 1000\}$.

2. (a) Decidable. We will reduce this problem to E_{CFG} (emptiness of context-free-grammars), which we saw in lecture was decidable. Given E we first build the DFA that recognizes language A, the complement of $L(E)$. This is possible because regular languages are closed under complement. We also know how to construct a NPDA that recognizes the language $B = L(G) \cap A$ (from the hint: Sipser problem 2.18). We now check if B is empty. From lecture we know that emptiness of CFGs is decidable. Moreover the complementation step and the intersection step are all computable transformations. Finally, note that B is empty iff $L(G) \subseteq L(E)$, so the language CFG-IN-REG is decidable.

(b) Undecidable. We reduce ALL_{CFG} to REG-IN-CFG. Set $E = \Sigma^*$. Given an instance G of ALL_{CFG}, we produce the pair (E, G). If $G = \Sigma^*$ then clearly $L(E) \subseteq L(G)$; if $G \neq \Sigma^*$ then $L(E) \not\subseteq L(G)$. Therefore we have reduced ALL_{CFG} to REG-IN-CFG, and we know from lecture that ALL_{CFG} is undecidable.

3. Suppose there exists a decidable language D such that $L_1 \cap D = \emptyset$ and $L_2 \subseteq D$, with a corresponding TM M_D. Then considering $M_D(\langle M_D \rangle)$ we come to a contradiction as follows.

Suppose $M_D(\langle M_D \rangle)$ accepts; i.e. $\langle M_D \rangle$ is in the language D. Then by the definition of L_1, $\langle M_D \rangle$ is in the language L_1, which contradicts the fact that $L_1 \cap D = \emptyset$.

Suppose $M_D(\langle M_D \rangle)$ rejects; i.e. $\langle M_D \rangle$ is not in the language D. Then by the definition of L_2, $\langle M_D \rangle$ is in the language L_2, which contradicts the fact that $L_2 \subseteq D$.

4. (a) Let G be a right-linear CFG. We will construct a NFA M recognizing $L(G)$. Our machine M will have a single state for each non-terminal in the grammar, a distinguished “accept” state, and other states. The start state of M is the state corresponding to the start symbol in the grammar. For each transition of the form:

$$A \rightarrow x_1x_2 \ldots x_nB$$
we add \(n - 1 \) states \(s_1, s_2, \ldots, s_{n-1} \) “linking” \(A \) to \(B \), with a transition from \(A \) to \(s_1 \) labelled \(x_1 \), a transition from \(s_1 \) to \(s_2 \) labelled \(x_2 \), etc..., and a transition from \(s_{n-1} \) to \(B \) labelled \(x_n \).

For each transition of the form:

\[
A \to x_1 x_2 \ldots x_n
\]

we add \(n - 1 \) states \(s_1, s_2, \ldots, s_{n-1} \) “linking” \(A \) to the accept state, with a transition from \(A \) to \(s_1 \) labelled \(x_1 \), a transition from \(s_1 \) to \(s_2 \) labelled \(x_2 \), etc..., and a transition from \(s_{n-1} \) to the accept state labelled \(x_n \).

Now, if \(M \) accepts a string \(w \), then the sequence of “non-terminal” states it traverses to reach the accept state dictates a derivation of \(w \) in the grammar. In the other direction, if \(w \) has a derivation in the grammar, then it must arise from applying a sequence of rules of the first type, followed by a single application of a rule of the second type. This derivation dictates a path from the start state of \(M \) to the accept state, and thus \(M \) accepts \(w \).

(b) Given a FA \(M \), we construct a right-linear CFG \(G \) as follows. The non-terminals of \(G \) are exactly the states of \(M \). The start symbol of \(G \) is the start state of \(M \). For each transition in \(M \) from state \(A \) to state \(B \), labelled with the symbol \(x \), we add the following rule: \(A \to xB \). For each transition from state \(A \) to an accept state \(B \), labelled with the symbol \(x \), we add the following rule: \(A \to x \).

If \(M \) accepts a string \(w \), then the sequence of states traversed from the start state to an accept state dictates a derivation of \(w \) in the grammar. In the other direction, if \(w \) has a derivation in the grammar, then this derivation dictates a path from the start state of \(M \) to an accept state (since it must end with a rule of the second type).

(c) Consider the following linear CFG \(G \):

\[
\begin{align*}
S & \to 0A|1B|0|1|\epsilon \\
A & \to S0 \\
B & \to S1
\end{align*}
\]

We prove two claims to establish that this indeed generates exactly the palindrome language \(L \). First, we claim that \(L \subseteq L(G) \). Let \(w \) be a palindrome. Since \(w \) is a palindrome, it has the form \(w = x x^R \) or \(w = x 0 x^R \) or \(w = x 1 x^R \), where \(x^R \) denotes the reverse of string \(x \) (the latter two cases are when \(w \) is of odd length). We prove that each of these three types of strings are in \(L(G) \), by induction on \(|x| \). If \(|x| = 0 \) then \(x = \epsilon \) and \(w \) is either \(\epsilon \), 0, or 1, and indeed \(S \) derives \(w \). Now assume by induction that for all \(x' \) with length \(< n \), the strings \(x'(x')^R \), \(x'0(x')^R \), \(x'1(x')^R \) are in \(L(G) \). Then we can derive \(w \) as follows: if the first character of \(x \) is 0, then we use one of the derivations (for the three different forms for \(w \))

\[
\begin{align*}
S \Rightarrow 0A & \Rightarrow 0S0 \Rightarrow^* 0x'(x')^R0 = x x^R \\
S \Rightarrow 0A & \Rightarrow 0S0 \Rightarrow^* 0x'0(x')^R0 = x 0 x^R \\
S \Rightarrow 0A & \Rightarrow 0S0 \Rightarrow^* 0x'1(x')^R0 = x 1 x^R
\end{align*}
\]
similarly, if the first character of x is 1, then we use one of the derivations (for the three different forms for w)

$$
S \Rightarrow 1B \Rightarrow 1S1 \Rightarrow^* 1x'(x')^R 1 = xx^R
$$

$$
S \Rightarrow 1B \Rightarrow 1S1 \Rightarrow^* 1x'0(x')^R 1 = x0x^R
$$

$$
S \Rightarrow 1B \Rightarrow 1S1 \Rightarrow^* 1x'1(x')^R 1 = x1x^R
$$

In all of the above, the “\Rightarrow^*” follows by induction.

Second, we claim that $L(G) \subseteq L$. Consider a derivation of some string w. The proof is by induction on the length of the derivation. If the length is 1, then the only string w could be is ϵ, 0, or 1 and all of these strings are in L. Otherwise, assume all derivations of length $< n$ result in strings in L and consider the first step in a length n derivation. If it is $S \rightarrow 0A$, then the only rule that can be applied next is $A \rightarrow S0$, so we deduce that the derivation has the form $S \Rightarrow 0A \Rightarrow 0S0 \Rightarrow^* 0w'0 = w$. Now since $S \Rightarrow^* w'$ in fewer than n steps, we know that w' is a palindrome, and thus $w = 0w'0$ is as well. Otherwise, the first step in the derivation is $S \rightarrow 1B$, then the only rule that can be applied next is $B \rightarrow S1$, so we deduce that the derivation has the form $S \Rightarrow 1B \Rightarrow 1S1 \Rightarrow^* 1w'1 = w$. Now since $S \Rightarrow^* w'$ in fewer than n steps, we know that w' is a palindrome, and thus $w = 1w'1$ is as well. We conclude that $w \in L$ and then that $L(G) \subseteq L$.

5. Let M be a recognizer for L. We are given an input $\#x_1\#x_2\# \cdots \#x_k\#$ for some $k \geq 0$. We simulate M on each x_i in parallel, and accept as soon as “three in a row” of these simulations accept. Specifically, we do the following for $j = 1, 2, 3, \ldots$: simulate M on each x_i for j steps, and if “three in a row” of the simulations halt and accept, then we halt and accept.

Now, it is clear that if for some i, all of x_i, x_{i+1}, x_{i+2} are in L, then for some j (corresponding to the maximum number of steps for M to accept each of x_i, x_{i+1}, x_{i+2}) the new machine will accept. Otherwise, we will never experience accepts for “three in a row” of the x_i and the machine will not accept.