If you have not yet turned in the Midterm you should not consult these solutions.
1. (a) The language L_1 is context free but not regular. To see it is context free, consider the NPDA that first pushes a's onto the stack until it sees the first b, then pops a's from the stack as it reads b's. If there are still a's on the stack when the first c is encountered, then we reject (since there are more a's than b's so we definitely can't have $j > i + k$). Otherwise, once it runs out of a's, the machine pushes b's as it reads b's, until it sees the first c. The number of b's on the stack at this point is $j - i$. We then pop b's as we read c's. If we run out of b's then we reject (since that implies $k \geq j - i$). Otherwise we accept, since we know then that $j - i > k$ as required.

In all cases, when we say “we accept” it means we enter a dedicated portion of the machine that reads to the end of the input and accepts as long as the characters are in order – a's before b's before c's. If we encounter an out-of-order character we reject. Anytime we say “we reject” it just means we enter a distinguished reject state state and stay there.

To see that L_1 is not regular, we use the pumping lemma: let $w = a^pb^{p+1}c^r$, and consider the ways w can be written as $w = xyz$. If y straddles the boundary between characters, then pumping results in an out-of-order string (not in the language). And, if y is within any single type of character, then pumping on it results in a string not in the language: if y is within a's or c's then pumping up gives this string; if y is within b's, then pumping down gives the desired string.

(b) Language L_2 is regular. It is the union of the languages $a^{1001}a^*b^*c^*$ and the finite language $\{a^nb^n:c^n : n < 1000\}$ (which is regular because it is finite).

(c) Language L_3 is not context free. Let p be the pumping lemma, and define $w = a^pb^qc^r$ for $q \geq \max\{p, 1001\}$. Consider the ways w can be written as $wxxyz$. If v or y straddle the boundary between characters, then pumping results in an out-of-order string, which is not in the language. Otherwise, pumping on v and y results in a string $a^rb^sc^t$ with r,s,t not all equal and with $r > 1000$, which is not in the language.

2. (a) Decidable. We will reduce this problem to E_{CFG} (emptiness of context-free-grammars), which we saw in lecture was decidable. Given E we first build the DFA that recognizes language A, the complement of $L(E)$. This is possible because regular languages are closed under complement. We also know how to construct a NPDA that recognizes the language $B = L(G) \cap A$ (from the hint: Sipser problem 2.18). We now check if B is empty. From lecture we know that emptiness of CFGs is decidable. Moreover the complementation step and the intersection step are all computable transformations. Finally, note that B is empty iff $L(G) \subseteq L(E)$, so the language CFG-IN-REG is decidable.

(b) Undecidable. We reduce ALL_{CFG} to REG-IN-CFG. Set $E = \Sigma^*$. Given an instance G of ALL_{CFG}, we produce the pair (E,G). If $G = \Sigma^*$ then clearly $L(E) \subseteq L(G)$; if $G \neq \Sigma^*$ then $L(E) \nsubseteq L(G)$. Therefore we have reduced ALL_{CFG} to REG-IN-CFG, and we know from lecture that ALL_{CFG} is undecidable.

3. Suppose there exists a decidable language D such that $L_1 \cap D = \emptyset$ and $L_2 \subseteq D$, with a corresponding TM M_D. Then considering $M_D(\langle M_D \rangle)$ we come to a contradiction as follows.

Suppose $M_D(\langle M_D \rangle)$ accepts; i.e. $\langle M_D \rangle$ is in the language D. Then by the definition of L_1, $\langle M_D \rangle$ is in the language L_1, which contradicts the fact that $L_1 \cap D = \emptyset$.

Suppose $M_D(\langle M_D \rangle)$ rejects; i.e. $\langle M_D \rangle$ is not in the language D. Then by the definition of L_2, $\langle M_D \rangle$ is in the language L_2, which contradicts the fact that $L_2 \subseteq D$.

4. (a) Let G be a right-linear CFG. We will construct a NFA M recognizing $L(G)$. Our machine M will have a single state for each non-terminal in the grammar, a distinguished “accept” state, and other states. The start state of M is the state corresponding to the start symbol in the grammar. For each transition of the form:

$$A \to x_1x_2\ldots x_nB$$

we add $n - 1$ states $s_1, s_2, \ldots, s_{n-1}$ “linking” A to B, with a transition from A to s_1 labelled x_1, a transition from s_1 to s_2 labelled x_2, etc..., and a transition from s_{n-1} to B labelled x_n.

For each transition of the form:

$$A \to x_1x_2\ldots x_n$$

we add $n - 1$ states $s_1, s_2, \ldots, s_{n-1}$ “linking” A to the accept state, with a transition from A to s_1 labelled x_1, a transition from s_1 to s_2 labelled x_2, etc..., and a transition from s_{n-1} to the accept state labelled x_n.

Now, if M accepts a string w, then the sequence of “non-terminal” states it traverses to reach the accept state dictates a derivation of w in the grammar. In the other direction, if w has a derivation in the grammar, then it must arise from applying a sequence of rules of the first type, followed by a single application of a rule of the second type. This derivation dictates a path from the start state of M to the accept state, and thus M accepts w.

(b) Given a FA M, we construct a right-linear CFG G as follows. The non-terminals of G are exactly the states of M. The start symbol of G is the start state of M. For each transition in M from state A to state B, labelled with the symbol x, we add the following rule: $A \to xB$. For each transition from state A to an accept state B, labelled with the symbol x, add the following rule: $A \to x$.

If M accepts a string w, then the sequence of states traversed from the start state to an accept state dictates a derivation of w in the grammar. In the other direction, if w has a derivation in the grammar, then this derivation dictates a path from the start state of M to an accept state (since it must end with a rule of the second type).

(c) Consider the following linear CFG G:

$$S \to aT|\epsilon$$
$$T \to Sb$$

We claim that $L(G) = \{a^nb^n : n \geq 0\}$ (which is not regular as seen in class, so the “linear” constraint on CFGs is not sufficient to force the language to be regular). We first show that all strings of this form are generated by G. We prove this by induction on n: assume all strings in L of length $< n$ are derivable; the base case with $n = 0$ is trivially true, and then to derive string a^nb^n, we use the derivation $S \Rightarrow 0T \Rightarrow 0S1 \Rightarrow^* aa^{n-1}b^{n-1}b$, where the last step is possible by induction.
In the other direction, we prove by induction on the length of the derivation strings derivable from S are in L. Our induction hypothesis is the stronger statement: all strings derivable in $< n$ steps from S are in L, and all strings derivable in $< n$ steps from T are of the form $a^{m-1}b^m$. Clearly the base case (derivation of length 1, which can only derive ϵ) is true. Now consider a derivation of length n. If the first step is $S \rightarrow aT$, then we know by induction that in the remainder of the derivation $aT \Rightarrow^* a^{m-1}b^m$ for some m, so S derives a string in the language as required. If the first step is $T \rightarrow Sb$, then we know by induction that in the remainder of the derivation $Sb \Rightarrow^* a^mb^mb$ for some m, so T derives a string of the required form.

5. Let M be a recognizer for L. We are given an input $\#x_1\#x_2\# \cdots \#x_k\#$ for some $k \geq 0$. We simulate M on each x_i in parallel, and accept as soon as at least 50 of these simulations accept. Specifically, we do the following for $j = 1, 2, 3, \ldots$: simulate M on each x_i for j steps. If in some round j we observe that at least 50 of the simulations halt and accept, then we halt and accept.

Now, it is clear that if at least 50 of the x_i are in L, then for some j (corresponding to the maximum number of steps for M to accept any one of these x_i) the new machine will accept. Otherwise, we will never experience accepts for at least 50 of the x_i and the machine will not accept.