
CS 21 Decidability and Tractability Winter 2025

Midterm Solutions

Out: February 12

If you have not yet turned in the Midterm
you should not consult these solutions.

0-1



0-2

1. (a) The language L1 is context free but not regular. To see it is context free, consider the
NPDA that first pushes a $ marker onto the bottom of the stack. Then it does the
following: as it reads a’s it pushes a’s onto the stack until it sees the first b, then pops
a’s from the stack as it reads b’s. If the $ marker is encountered, it begins pushing b’s
for each b read. When the first c is encountered, we know that either (1) the stack has
a b at the top, and the number of b’s on the stack equals the excess of b’s over a’s in
the string read so far, or (2) the stack has an a at the top, and the number of a’s on the
stack equals the excess of a’s over b’s in the string read so far or (3) the stack has a $
at the top, and the number of a’s equals the number of b’s in the string read so far.

In the first case, as we read c’s, we pop b’s, until we get to $, at which point we know
i+ k ≥ j and we accept (see below). Otherwise, if we reach the end of the string (or see
another character besides a c) we reject.

In the second case we know that i > j and we accept (see below).

In the third case, we know that i = j and we accept (see below).

In all cases, when we say “we accept” it means we enter a dedicated portion of the
machine that reads to the end of the input and accepts as long as the characters are in
order – b’s before c’s. Otherwise we reject. And when we say “we reject” it just means
we enter a distinguished reject state and stay there.

To see that L1 is not regular, we use the pumping lemma: let w = apb2pcp, and consider
the ways w can be written as w = xyz. If y straddles the boundary between characters,
then pumping results in an out-of-order string (not in the language). And, if y is within
any single type of character, then pumping on it results in a string not in the language:
if y is within a’s or c’s then pumping down (i.e., replacing y with y0) gives this string;
if y is within b’s, then pumping up (i.e., replacing y with y2) gives the desired string.

(b) Language L2 is regular. It is the union of the languages a1001a∗b∗c∗ and the finite
language {anbncn : n < 1000} (which is regular because it is finite).

(c) Language L3 is not context free. Let p be the pumping lemma, and define w = aqbqcq

for q ≥ max{p, 1001}. Consider the ways w can be written as uvxyz. If v or y straddle
the boundary between characters, then pumping results in an out-of-order string, which
is not in the language. Otherwise, pumping on v and y results in a string arbsct with
r, s, t not all equal and with r > 1000, which is not in the language.

2. (a) Language L is co-RE. To see this we will consider the language

co− L = {〈M〉 : Turing Machine M has no unreachable states, }

and show that this language is RE. Our recognizer for co−L operates as follows. Given
M , it “simulates M in parallel” on all strings in Σ∗, accepting after it has observed
every state being visited. More precisely, if w1, w2, w3, . . . is an enumeration of Σ∗ in
lexicographic order, then our recognizer does this: for j = 1, 2, . . ., we simulate M for
j steps on strings w1, w2, . . . , wj . If in some round j we see that every state of M has
been visited, we halt and accept. Clearly, if every state of M is reachable, then there is a
finite set of strings that together reach every state (pick one for each state, for example).
Thus there is some round j in which we will simulate M on all of these strings, for
enough steps for M to reach each state, and we will accept. Otherwise, if some state is
unreachable, then this simulation will go on forever, and never accept.



0-3

(b) We show that L is undecidable by reduction from ETM. Given an instance 〈M〉, we
will produce a machine M ′. This machine will have the property that L(M ′) = L(M),
and before M ′ accepts, it visits all of its states. To do this, start out by making M ′

identical to M . Let q0, q1, q2, . . . , qm be an enumeration of all of the states of M excluding
qaccept. Replace any transition to qaccept with an identical transition to a new state
qtour1. State qtour1 has transitions a→ %, R to new state qtour2 for each a ∈ Γ ∪ { }.
State qtour2 has transitions a→ %, L to new state qtour3 for each a ∈ Γ ∪ { }. Finally
there is a transition %→ %, R from state qtour3 to state q0, and a transition %→ %, L
from state q0 to state q1, and a transition % → %, R from state q1 to state q2, and a
transition %→ %, L from state q2 to state q3, and so on, until there is finally a transition
%→ %, L to state qaccepts.

The effect of this modification is as follows. If w is not accepted by M , then qaccept is
never reached, no % symbol is ever written on the tape, and thus M ′ also does not accept
w. If w is accepted by M , then M ′ also accepts w, but it first writes two consective
% symbols on the tape, leaving the head positioned over the first one. It then moves
left and right repeatedly over these two symbols while visiting every state before finally
entering qaccept and halting. The effect is that every state is visited when accepting w.
We see that L(M) = L(M ′). And, if L(M ′) = ∅, qaccept is an unreachable state of M ′.
Conversely, if L(M ′) 6= ∅, then some string is accepted by M ′ and every state of M ′ is
reachable. Thus 〈M ′〉 is in L iff L(M) = ∅, which completes the reduction from ETM
to L, showing that L is indeed undecidable. We also should note that constructing M ′

from M is an easy modification entailing adding some states and transitions to M (and
thus is computable).

3. Suppose there exists a decidable language D such that L1 ∩ D = ∅ and L2 ⊆ D, with a
corresponding TM MD. Then considering MD(〈MD〉) we come to a contradiction as follows.

Suppose MD(〈MD〉) accepts; i.e. 〈MD〉 is in the language D. Then by the definition of L1,
〈MD〉 is in the language L1, which contradicts the fact that L1 ∩D = ∅.
Suppose MD(〈MD〉) rejects; i.e. 〈MD〉 is not in the language D. Then by the definition of
L2, 〈MD〉 is in the language L2, which contradicts the fact that L2 ⊆ D.

4. (a) Let G be a right-linear CFG. We will construct a NFA M recognizing L(G). Our machine
M will have a single state for each non-terminal in the grammar, a distinguished “accept”
state, and other states. The start state of M is the state corresponding to the start
symbol in the grammar. For each transition of the form:

A→ x1x2 . . . xnB

we add n − 1 states s1, s2, . . . , sn−1 “linking” A to B, with a transition from A to s1
labelled x1, a transition from s1 to s2 labelled x2, etc..., and a transition from sn−1 to
B labelled xn.

For each transition of the form:

A→ x1x2 . . . xn

we add n − 1 states s1, s2, . . . , sn−1 “linking” A to the accept state, with a transition
from A to s1 labelled x1, a transition from s1 to s2 labelled x2, etc..., and a transition
from sn−1 to the accept state labelled xn.



0-4

Now, if M accepts a string w, then the sequence of “non-terminal” states it traverses to
reach the accept state dictates a derivation of w in the grammar. In the other direction,
if w has a derivation in the grammar, then it must arise from applying a sequence of
rules of the first type, followed by a single application of a rule of the second type. This
derivation dictates a path from the start state of M to the accept state, and thus M
accepts w.

(b) Given a FA M , we construct a right-linear CFG G as follows. The non-terminals of G
are exactly the states of M . The start symbol of G is the start state of M . For each
transition in M from state A to state B, labelled with the symbol x, we add the following
rule: A→ xB. For each transition from state A to an accept state B, labelled with the
symbol x, add the following rule: A→ x.

If M accepts a string w, then the sequence of states traversed from the start state to an
accept state dictates a derivation of w in the grammar. In the other direction, if w has
a derivation in the grammar, then this derivation dictates a path from the start state of
M to an accept state (since it must end with a rule of the second type).

(c) Consider the following linear CFG G:

S → aT |ε
T → Sb

We claim that L(G) = {anbn : n ≥ 0} (which is not regular as seen in class, so the
“linear” constraint on CFGs is not sufficient to force the language to be regular). We
first show that all strings of this form are generated by G. We prove this by induction
on n: assume all strings in L of length < n are derivable; the base case with n = 0 is
trivially true, and then to derive string anbn, we use the derivation S ⇒ 0T ⇒ 0S1⇒∗
aan−1bn−1b, where the last step is possible by induction.

In the other direction, we prove by induction on the length of the derivation strings
derivable from S are in L. Our induction hypothesis is the stronger statement: all
strings derivable in < n steps from S are in L, and all strings derivable in < n steps
from T are of the form am−1bm. Clearly the base case (deriviation of length 1, which can
only derive ε) is true. Now consider a derivation of length n. If the first step is S → aT ,
then we know by induction that in the remainder of the derivation aT ⇒∗ aam−1bm for
some m, so S derives a string in the language as required. If the first step is T → Sb,
then we know by induction that in the remainder of the derivation Sb ⇒∗ ambmb for
some m, so T derives a string of the required form.

5. Let M be a recognizer for L. We are given an input #x1#x2# · · ·#xk# for some k ≥ 0.
We simulate M on each xi in parallel, and accept as soon as at least 50 of these simulations
accept. Specifically, we do the following for j = 1, 2, 3, . . .: simulate M on each xi for j steps.
If in some round j we observe that at least 50 of the simulations halt and accept, then we
halt and accept.

Now, it is clear that if at least 50 of the xi are in L, then for some j (corresponding to the
maximum number of steps for M to accept any one of these xi) the new machine will accept.
Otherwise, we will never experience accepts for at least 50 of the xi and the machine will not
accept.


