Review

• Highest level: 2 main points

1. Decidability
 – problem solvable by an algorithm = problem is decidable
 – some problems are not decidable (e.g. HALT)

2. Tractability
 – problem solvable in polynomial time = problem is tractable
 – some problems are not tractable (EXP-complete problems)
 – huge number of problems are likely not to be tractable (NP-complete problems)

• Important ideas
 – "problem" formalized as language
 • language = set of strings
 – "computation" formalized as simple machine
 • finite automata
 • pushdown automata
 • Turing Machine
 – "power" of machine formalized as the set of languages it recognizes

• Important ideas (continued):
 – simulation used to show one model at least as powerful as another
 – diagonalization used to show one model strictly more powerful than another
 • also Pumping Lemma
 – reduction used to compare one problem to another
Review

• Important ideas (continued):
 – complexity theory investigates the resources required to solve problems
 • time, space, others…
 – complexity class = set of languages
 – language L is C-hard if every problem in C reduces to L
 – language L is C-complete if L is C-hard and L is in C.

A complete problem is a surrogate for the entire class.

Summary

Part I: automata

Finite Automata

• Non-deterministic variant: NFA
• Regular expressions built up from:
 – unions
 – concatenations
 – star operations

Main results: same set of languages recognized by FA, NFA and regular expressions (“regular languages”).

Pushdown Automata

New capabilities:
• can push symbol onto stack
• can pop symbol off of stack
Context-Free Grammars

Start symbol: A
Non-terminal symbols: A, B
Terminal symbols: $0, 1, \#$
Production: $A \rightarrow 0A1$, $A \rightarrow B$, $B \rightarrow \#$

Pushdown Automata

Main results: same set of languages recognized by NPDA, and context-free grammars ("context-free languages").

- and DPDA's weaker than NPDA's...

Non-regular languages

Pumping Lemma: Let L be a regular language. There exists an integer p ("pumping length") for which every $w \in L$ with $|w| \geq p$ can be written as $w = xyz$ such that:
1. for every $i \geq 0$, $xyz \in L$, and
2. $|y| > 0$, and
3. $|xy| \leq p$.

Pumping Lemma for CFLs

CFL Pumping Lemma: Let L be a CFL. There exists an integer p ("pumping length") for which every $w \in L$ with $|w| \geq p$ can be written as $w = uvxyz$ such that:
1. for every $i \geq 0$, $uvxyz \in L$, and
2. $|vy| > 0$, and
3. $|vxy| \leq p$.

Summary

Part II: Turing Machines and decidability

- New capabilities:
 - infinite tape
 - can read OR write to tape
 - read/write head can move left and right
Deciding and Recognizing

- TM M:
 - $L(M)$ is the language it recognizes
 - if M rejects every $x \notin L(M)$ it decides L
 - set of languages recognized by some TM is called Turing-recognizable or recursively enumerable (RE)
 - set of languages decided by some TM is called Turing-decidable or decidable or recursive

Church-Turing Thesis

- the belief that TMs formalize our intuitive notion of an algorithm is:
 - The Church-Turing Thesis
 - everything we can compute on a physical computer can be computed on a Turing Machine
 - Note: this is a belief, not a theorem.

The Halting Problem

- $H : (M, x) :$ does M halt on x?
- The existence of H which tells us yes/no for each box allows us to construct a TM H' that cannot be in the table.

Decidable, RE, coRE...

- $\{a^n b^n : n \geq 0\}$
- $\{a^n b^n c^n : n \geq 0\}$

Using reductions

- Used reductions to prove lots of problems were:
 - undecidable (reduce from undecidable)
 - non-RE (reduce from non-RE)
 - or show undecidable, and RE
 - or show undecidable, and coRE
 - Rice's Theorem: Every nontrivial TM property is undecidable.
The Recursion Theorem

Theorem: Let T be a TM that computes $f_n: \Sigma^* \times \Sigma^* \to \Sigma^*$. There is a TM R that computes the fn: $r: \Sigma^* \to \Sigma^*$ defined as $r(w) = t(w, <R>)$.

- In the course of computation, a Turing Machine can output its own description.

Incompleteness Theorem

Theorem: Peano Arithmetic is not complete.

(same holds for any reasonable proof system for number theory)

Proof outline:
- the set of theorems of PA is RE
- the set of true sentences (= Th(N)) is not RE

Summary

Part III: Complexity

- Complexity Theory = study of what is computationally feasible (or tractable) with limited resources:
 - running time
 - storage space
 - number of random bits
 - degree of parallelism
 - rounds of interaction
 - others…

main focus: not in this course

Time and Space Complexity

Definition: the time complexity of a TM M is a function $t: \mathbb{N} \to \mathbb{N}$, where $t(n)$ is the maximum number of steps M uses on any input of length n.

Definition: the space complexity of a TM M is a function $s: \mathbb{N} \to \mathbb{N}$, where $s(n)$ is the maximum number of tape cells M scans on any input of length n.

Complexity Classes

Definition: $\text{TIME}(t(n)) = \{ L : \text{there exists a TM } M \text{ that decides } L \text{ in time } O(t(n)) \}$

$P = \bigcup_{k \geq 1} \text{TIME}(n^k)$

$\text{EXP} = \bigcup_{k \geq 1} \text{TIME}(2^{n^k})$

Definition: $\text{SPACE}(t(n)) = \{ L : \text{there exists a TM } M \text{ that decides } L \text{ in space } O(t(n)) \}$

$\text{PSPACE} = \bigcup_{k \geq 1} \text{SPACE}(2^{n^k})$
Complexity Classes

Definition: \(\text{NTIME}(t(n)) = \{ L : \text{there exists a NTM M that decides L in time } O(t(n)) \} \)

\(\text{NP} = \bigcup_{k \geq 1} \text{NTIME}(2^{n^k}) \)

- Theorem: \(\text{P} \subseteq \text{EXP} \)
- \(\text{P} \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{EXP} \)
- Don’t know if any of the containments are proper.

Alternate definition of NP

Theorem: language \(L \) is in NP if and only if it is expressible as:

\(L = \{ x | \exists y, |y| \leq |x|, (x, y) \in R \} \)

where \(R \) is a language in \(\text{P} \).

Poly-time reductions

- Type of reduction we will use:
 - “many-one” poly-time reduction (commonly)
 - “mapping” poly-time reduction (book)

1. \(f \) poly-time computable
2. YES maps to YES
3. NO maps to NO

Hardness and completeness

Definition: a language \(L \) is \(C \)-hard if for every language \(A \in C \), \(A \) poly-time reduces to \(L \), i.e., \(A \leq_p L \).

- can show \(L \) is \(C \)-hard by reducing from a known \(C \)-hard problem

Definition: a language \(L \) is \(C \)-complete if \(L \) is \(C \)-hard and \(L \in C \)

Complete problems

- \(\text{EXP} \)-complete: \(\text{ATM}_m = \{ <M, x, m> : M \text{ is a TM that accepts } x \text{ within at most } m \text{ steps} \} \)
- \(\text{PSPACE} \)-complete: \(\text{QSAT} = \{ \phi : \phi \text{ is a 3-CNF, and } \exists x_1, x_2, x_3, \ldots x_k. \phi(x_1, x_2, \ldots x_k) \} \)
- \(\text{NP} \)-complete: \(\text{3SAT} = \{ \phi : \phi \text{ is a satisfiable 3-CNF formula} \} \)

Lots of NP-complete problems

- Indenent Set
- Vertex Cover
- Clique
- Hamilton Path (directed and undirected)
- Hamilton Cycle and TSP
- Subset Sum
- \(\text{NAE3SAT} \)
- Max Cut
- Problem sets: max/min Bisection, 3-coloring, subgraph isomorphism, subset sum, (3,3)-SAT, Partition, Knapsack, Max2SAT…
Other complexity classes

- coNP – complement of NP
 - complete problems: UNSAT, DNF-TAUTOLEGY

- NP intersect coNP
 - contains (decision version of) FACTORING

- PSPACE
 - complete problems: QSAT, GEOGRAPHY

Complexity classes

all containments believed to be proper