Review

• Highest level: 2 main points

1. Decidability
 – problem solvable by an algorithm = problem is decidable
 – some problems are not decidable (e.g. HALT)

2. Tractability
 – problem solvable in polynomial time = problem is tractable
 – some problems are not tractable (EXP-complete problems)
 – huge number of problems are likely not to be tractable (NP-complete problems)

• Important ideas
 – “problem” formalized as language
 • language = set of strings
 – “computation” formalized as simple machine
 • finite automata
 • pushdown automata
 • Turing Machine
 – “power” of machine formalized as the set of languages it recognizes

• Important ideas (continued):
 – simulation used to show one model at least as powerful as another
 – diagonalization used to show one model strictly more powerful than another
 • also Pumping Lemma
 – reduction used to compare one problem to another
Review

Important ideas (continued):
- **complexity theory** investigates the resources required to solve problems
 - time, space, others…
- **complexity class** = set of languages
- language L is **C-hard** if every problem in C reduces to L
- language L is **C-complete** if L is C-hard and L is in C.

A complete problem is a surrogate for the entire class.

Summary

Part I: automata

Finite Automata

- **Non-deterministic** variant: NFA
- **Regular expressions** built up from:
 - unions
 - concatenations
 - star operations

Main results: same set of languages recognized by FA, NFA and regular expressions ("regular languages").

Finite Automata

- read input one symbol at a time; follow arrows; accept if end in accept state

Pushdown Automata

New capabilities:
- can **push** symbol onto stack
- can **pop** symbol off of stack
Context-Free Grammars

- **A → 0A1**
- **A → B**
- **B → #**

Pushdown Automata

Main results: same set of languages recognized by NPDA, and context-free grammars ("context-free languages").

- and DPDA’s weaker than NPDA’s…

Non-regular languages

Pumping Lemma: Let L be a regular language. There exists an integer p ("pumping length") for which every \(w \in L \) with \(|w| \geq p \) can be written as \(w = xyz \) such that:
1. for every \(i \geq 0 \), \(xy^i z \in L \), and
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).

Pumping Lemma for CFLs

CFL Pumping Lemma: Let L be a CFL. There exists an integer p ("pumping length") for which every \(w \in L \) with \(|w| \geq p \) can be written as \(w = uvxyz \) such that:
1. for every \(i \geq 0 \), \(uv^i xy^i z \in L \), and
2. \(|vy| > 0 \), and
3. \(|vxy| \leq p \).

Summary

Part II: Turing Machines and decidability

- New capabilities:
 - infinite tape
 - can read OR write to tape
 - read/write head can move left and right
Deciding and Recognizing

- TM M:
 - \(L(M) \) is the language it recognizes
 - if M rejects every \(x \notin L(M) \) it decides \(L \)
 - set of languages recognized by some TM is called Turing-recognizable or recursively enumerable (RE)
 - set of languages decided by some TM is called Turing-decidable or decidable or recursive

Church-Turing Thesis

- the belief that TMs formalize our intuitive notion of an algorithm is:

 The Church-Turing Thesis

 everything we can compute on a physical computer

 can be computed on a Turing Machine

 • Note: this is a belief, not a theorem.

The Halting Problem

- \(\text{Turing Machines}
- \(H' : (M, x) \); does \(M \) halt on \(x \)?

The existence of \(H \) which tells us yes/no for each box allows us to construct a TM \(H' \) that cannot be in the table.

Decidable, RE, coRE...

- some problems (e.g HALT) have no algorithms

Rice's Theorem: Every nontrivial TM property is undecidable.

Using reductions

- Used reductions to prove lots of problems were:
 - undecidable (reduce from undecidable)
 - non-RE (reduce from non-RE)
 • or show undecidable, and coRE
 - non-coRE (reduce from non-coRE)
 • or show undecidable, and RE

Rice's Theorem: Every nontrivial TM property is undecidable.
The Recursion Theorem

Theorem: Let T be a TM that computes $f_n: \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$. There is a TM R that computes the fn: $r: \Sigma^* \rightarrow \Sigma^*$ defined as $r(w) = t(w, \langle R \rangle)$.

- In the course of computation, a Turing Machine can output its own description.

Incompleteness Theorem

Theorem: Peano Arithmetic is not complete.

(same holds for any reasonable proof system for number theory)

Proof outline:
- the set of theorems of PA is RE
- the set of true sentences ($= \text{Th}(\mathbb{N})$) is not RE

Summary

Part III: Complexity

Complexity

- Complexity Theory = study of what is computationally feasible (or tractable) with limited resources:
 - running time
 - storage space
 - number of random bits
 - degree of parallelism
 - rounds of interaction
 - others…

main focus

not in this course

Time and Space Complexity

Definition: the time complexity of a TM M is a function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps M uses on any input of length n.

Definition: the space complexity of a TM M is a function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of tape cells M scans on any input of length n.

Complexity Classes

Definition: $\text{TIME}(t(n)) = \{L :$ there exists a TM M that decides L in time $O(t(n))\}$

$P = \cup_{k \geq 1} \text{TIME}(n^k)$

$\text{EXP} = \cup_{k \geq 1} \text{TIME}(2^{n^k})$

Definition: $\text{SPACE}(t(n)) = \{L :$ there exists a TM M that decides L in space $O(t(n))\}$

$\text{PSPACE} = \cup_{k \geq 1} \text{SPACE}(2^{n^k})$
Complexity Classes

Definition: \(\text{NTIME}(t(n)) = \{L : \text{there exists a NTM M that decides } L \text{ in time } O(t(n))\} \)

\(\text{NP} = \bigcup_{k \geq 1} \text{NTIME}(2^{n^k}) \)

- Theorem: \(\text{P} \subseteq \text{EXP} \)
- \(\text{P} \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{EXP} \)
- Don’t know if any of the containments are proper.

Alternate definition of NP

Theorem: language \(L \) is in NP if and only if it is expressible as:

\[L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \} \]

where \(R \) is a language in \(P \).

Poly-time reductions

- Type of reduction we will use:
 - “many-one” poly-time reduction (commonly)
 - “mapping” poly-time reduction (book)

\[f \text{ poly-time computable} \]
\[2. \text{YES maps to YES} \]
\[3. \text{NO maps to NO} \]

Hardness and completeness

Definition: a language \(L \) is **C-hard** if for every language \(A \in C \), \(A \) poly-time reduces to \(L \); i.e., \(A \leq_P L \).

Can show \(L \) is C-hard by reducing from a known C-hard problem

Definition: a language \(L \) is **C-complete** if \(L \) is C-hard and \(L \in C \)

Complete problems

- EXP-complete: \(\text{ATM}_B = \{ <M, x, m> : M \text{ is a TM that accepts } x \text{ within at most } m \text{ steps} \} \)
- PSPACE-complete: \(\text{QSAT} = \{ \varphi : \varphi \text{ is a 3-CNF, and } \exists x_1 \forall x_2 \exists x_3 \ldots \forall x_n \varphi(x_1, x_2, \ldots x_n) \} \)
- NP-complete: \(3\text{SAT} = \{ \varphi : \varphi \text{ is a satisfiable 3-CNF formula}\} \)

Lots of NP-complete problems

- Indepent Set
- Vertex Cover
- Clique
- Hamilton Path (directed and undirected)
- Hamilton Cycle and TSP
- Subset Sum
- NAE3SAT
- Max Cut
- Problem sets: max/min Bisection, 3-coloring, subgraph isomorphism, subset sum, (3,3)-SAT, Partition, Knapsack, Max2SAT…
Other complexity classes

- coNP – complement of NP
 - complete problems: UNSAT, DNF-TAUTOLOGY

- NP intersect coNP
 - contains (decision version of) FACTORING

- PSPACE
 - complete problems: QSAT, GEOGRAPHY

Complexity classes

all containments believed to be proper