
CS 21 Decidability and Tractability Winter 2024

Problem Set 3

Out: January 24 Due: January 31

Reminder: you are encouraged to work in groups of two or thre e; however you must turn in
your own write-up and note with whom you worked. You may consult the course notes and the
text (Sipser). The full honor code guidelines and collaboration policy can be found in the course
syllabus.

Please attempt all problems. Please turn in your solutions via Gradescope, by 1pm on
the due date.

1. Here is an informal description of a 2-Stack Nondeterministic Pushdown Automata (2-NPDA):
the machine is just like an ordinary NPDA, except there is a second stack that behaves just
like the first. At each step, the machine reads a symbol from the tape (possible ε), pops
specified symbols from each of the two stacks (either may be ε), pushes specified symbols
onto each of the two stacks (either may be ε), and moves into a specified state. The machine
accepts if there is some computation on its input string that causes it to reach an accept
state.

(a) Give a formal definition of a 2-NPDA, and a formal definition of what it means for a
2-NPDA to accept an input string. Your definition will probably begin with something
like “A 2-NPDA is a 7-tuple...”

(b) Give an informal description of a 2-NPDA that decides the language:

L = {anbncn : n ≥ 0}.

(c) Prove that 2-NPDAs are equivalent to Turing Machines. That is, show language L is
decided by a 2-NPDA if and only if it is decided by a Turing Machine.

2. Here is an informal description of a Queue Automaton: the machine is similar to an NPDA,
except that the stack (“last in, first out” memory) is replaced with a queue (“first in, first
out” memory). At each step, the machine reads a symbol from the tape (possible ε), dequeues
a specified symbol (possibly ε) from the head of the queue, enqueues a specified symbol onto
the tail of the queue (possibly ε), and moves into a specified state. The machine accepts if
there is some computation on its input string that causes it to reach an accept state.

(a) Give a formal definition of a Queue Automaton, and a formal definition of what it means
for a Queue Automaton to accept an input string. Your definition will probably begin
with something like “A Queue Automaton is a 6-tuple...”

(b) Prove that Queue Automata are equivalent to Turing Machines. That is, show language
L is decided by a Queue Automaton if and only if it is decided by a Turing Machine.

3-1



3-2

Hint: repeated pairs of “dequeue x” and “enqueue x” operations cyclically shift the
queue in one direction. Can you use a sequence of cyclic shifts to replace the symbol at
the head of the queue? Can you use a sequence of cyclic shifts to effect a cyclic shift in
the other direction? For this last part you may want a queue alphabet that contains all
pairs of symbols from the input alphabet.

3. Prove that a language L is RE if and only if it can be expressed as

L = {x : there exists y for which 〈x, y〉 ∈ R}

where R is a decidable language. In other words, you must prove that every language of this
form is RE, and that every RE language L has a related decidable language RL that allows
it to be described in the form above.


