Deciding CFLs

• An algorithm:
 \[
 \text{IsGenerated}(x, A)
 \]
 - if \(|x| = 1\), then return YES if \(A \rightarrow x\) is a production, else return NO
 - for all \(n\)-1 ways of splitting \(x = yz\)
 - for all \(m\) productions of form \(A \rightarrow BC\)
 - if \(\text{IsGenerated}(y, B)\) and \(\text{IsGenerated}(z, C)\), return YES
 return NO
 - worst case running time?

Deciding CFLs

• worst case running time \(\exp(n)\)
 - Idea: avoid recursive calls
 - build table of YES/NO answers to calls to \(\text{IsGenerated}\)
 - in order of length of substring
 - example of general algorithmic strategy called dynamic programming
 - notation: \(x[i,j]\) = substring of \(x\) from \(i\) to \(j\)
 - table: \(T(i, j)\) contains
 \(\{A: \text{A nonterminal such that } A \rightarrow x[i,j]\}\)

Deciding CFLs

\[
\text{IsGenerated}(x = x_1x_2x_3 \ldots x_n, G)
\]
for \(i = 1\) to \(n\)
 \(T[i, j] = \{A: “A \rightarrow x_i” \text{ is a production in } G\}\)
for \(k = 1\) to \(n - 1\)
 for \(i = 1\) to \(n - k\)
 for \(k\) splittings \(x[i, i+k] = x[i,i+j][i+j+1,i+k]\)
 \(T[i, i+k] = \{A: “A \rightarrow BC” \text{ is a production in } G \text{ and } B \in T[i,i+j] \text{ and } C \in T[i+j+1,i+k]\}\)
 output “YES” if \(S \in T[1, n]\), else output “NO”
Deterministic PDA

- A NPDA is a 6-tuple \((Q, \Sigma, \Gamma, \delta, q_0, F)\) where:
 - \(\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(Q \times (\Gamma \cup \{\varepsilon\}))\) is a function called the transition function.
- A deterministic PDA has only one option at every step:
 - for every state \(q \in Q\), \(a \in \Sigma\), and \(t \in \Gamma\), exactly 1 element in \(\delta(q, a, t)\), or
 - exactly 1 element in \(\delta(q, \varepsilon, t)\), and \(\delta(q, a, t)\) empty for all \(a \in \Sigma\).

Example deterministic PDA

\(\Sigma = \{0, 1\}\)
\(\Gamma = \{0, 1, \square\}\)

\(L = \{0^n1^n : n \geq 0\}\)

(unpicted transitions go to a “reject” state and stay there)

Theorem: DCFLs are closed under complement (complement of \(L\) in \(\Sigma^*\) is \((\Sigma^* - L)\))

Proof attempt:
- swap accept/non-accept states
- problem: might enter infinite loop before reading entire string
- machine for complement must accept in these cases, and read to end of string

Example of problem

Language of this DPDA is \(0\Sigma^*\)

Example of problem

Language of this DPDA is \(\{\varepsilon\}\)
Deterministic PDA

Proof:
– convert machine into "normal form"
 • always reads to end of input
 • always enters either an accept state or single distinguished "reject" state, and stay there
– step 1: keep track of when we have read to end of input
– step 2: eliminate infinite loops

Deterministic PDA

step 1: keep track of when we have read to end of input

for accept state q': replace outgoing "ε, ? → ?" transition with self-loop with same label

Deterministic PDA

step 2: eliminate infinite loops
– add new "reject" states

Deterministic PDA

step 2: eliminate infinite loops
– infinite seq. i_0 < i_1 < ... such that for all k, stack height never decreases below h(t(i_k)) after time i_k
– infinite subsequence j_0 < j_1 < j_2 < ... such that same transition is applied at each time j_k
 • never see any stack symbol below t from j_k
 • we are in a periodic, deterministic sequence of stack operations independent of the input
Deterministic PDA

step 2: eliminate infinite loops
– infinite subsequence \(j_1 < j_2 < \ldots \) such that same transition is applied at each time \(j_k \)
– safe to replace:
\[
\begin{align*}
p, t \rightarrow s \quad & (for \ all \ a, t) \\
p', t \rightarrow s' \quad & (for \ all \ a, t) \\
\varepsilon, t \rightarrow s \quad & (for \ all \ t) \\
\varepsilon, t \rightarrow s' \quad & (for \ all \ t)
\end{align*}
\]

or

– finishing up…
– have a machine \(M \) with no infinite loops
– therefore it always reads to end of input
– either enters an accept state \(q' \), or enters "reject" state \(r' \)

– now, can swap: make \(r' \) unique accept state to get a machine recognizing complement of \(L \)

Summary

• Nondeterministic Pushdown Automata (NPDA)
• Context-Free Grammars (CFGs) describe Context-Free Languages (CFLs)
 – terminals, non-terminals
 – productions
 – yields, derivations
 – parse trees

• NDPAs and CFGs are equivalent
• CFL Pumping Lemma is used to show certain languages are not CFLs

So far…

• several models of computation
 – finite automata
 – pushdown automata
• fail to capture our intuitive notion of what is computable
 – regular languages
 – context free languages
 – all languages

Summary

• deterministic PDAs recognize DCFLs
• DCFLs are closed under complement
• there is an efficient algorithm (based on dynamic programming) to determine if a string \(x \) is generated by a given grammar \(G \)
So far…

- We proved (using constructions of FA and NPDA and the two pumping lemmas):
 - all languages
 - context free languages
 - regular languages

 - \(\{ w : w \in \{a,b\}^* \text{ has an even # of b's} \} \)
 - \(\{ a^n b^n : n \geq 0 \} \)
 - \(\{ a^n b^n c^n : n \geq 0 \} \)

A more powerful machine

- limitation of NPDA related to fact that their memory is stack-based (last in, first out)

- What is the simplest alteration that adds general-purpose “memory” to our machine?

 - Should be able to recognize, e.g., \(\{ a^n b^n : n \geq 0 \} \)

Turing Machines

- New capabilities:
 - infinite tape
 - can read OR write to tape
 - read/write head can move left and right

Turing Machine

- Informal description:
 - input written on left-most squares of tape
 - rest of squares are blank
 - at each point, take a step determined by
 - current symbol being read
 - current state of finite control
 - a step consists of
 - writing new symbol
 - moving read/write head left or right
 - changing state

Example Turing Machine

language \(L = \{ w\#w : w \in \{0,1\}^* \} \)

Turing Machine diagrams

- Transition label: (tape symbol read \rightarrow tape symbol written, direction moved)
 - \(a \rightarrow R \) means “read a, move right”
 - \(a \rightarrow L \) means “read a, move left”
 - \(a \rightarrow b, R \) means “read a, write b, move right”

 - “_” means blank tape square