Chomsky Normal Form

 Useful to deal only with CFGs in a simple
normal form

* Most common: Chomsky Normal Form (CNF)

* Definition: every production has form
A—BC or S—¢ or
A—a
where A, B, C are any non-terminals (and
B, C are not S) and a is any terminal.
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Chomsky Normal Form

Theorem: Every CFL is generated by a
CFG in Chomsky Normal Form.

Proof: exercise or in book...
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Deciding CFLs

 Useful to have an efficient algorithm to
decide whether string x is in given CFL

— e.g. programming language often described
by CFG. Determine if string is valid program.

« If CFL recognized by deterministic PDA,
just simulate the PDA.
— but not all CFLs are (homework)...

» Can simulate NPDA, but this takes
exponential time in the worst case.
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Deciding CFLs

» Convert CFG into Chomsky Normal Form
* parse tree for string x generated by
nonterminal A:

A If A—>¥x (k> 1) then there must
. be away to split x:

B C
X=yz
* A— BC is a production and

X *B-lyandC=izfori,j<k
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Deciding CFLs

+ An algorithm:

IsGenerated(x, A)
if x| = 1, then return YES if A — x is a production,
else return NO
for all n-1 ways of splitting x = yz
for all £ m productions of form A — BC

if IsGenerated(y, B) and IsGenerated(z, C),
return YES

return NO
» worst case running time?
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Deciding CFLs

« worst case running time exp(n)
* ldea: avoid recursive calls

— build table of YES/NO answers to calls to
IsGenerated, in order of length of substring

— example of general algorithmic strategy called
dynamic programming

— notation: x[i,j] = substring of x fromitoj
— table: T(i, j) contains
{A: A nonterminal such that A —=* x[i,j]}
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Deciding CFLs
IsGenerated(x = X1X2X3...Xn, G) O(nm) steps
fori=1ton /
T[i, i] = {A: “A — x” is a production in G}
fork=1ton-1
fori=1ton-k
for k splittings x]i, i+k] = x[i,i+j]x[i+j+1, i+k]
T[i, i+k] = {A: “A — BC” is a production
CUHI)SESS in G and B € T[i,i+j] and
C e T[i+j+1,i+k] }
output “YES” if S € T[1, n], else output “NO”
January 24, 2025 CS21 Lecture 8 9
9
Deterministic PDA

+ A technical detail:
we will give our deterministic machine the
ability to detect end of input string
— add special symbol B to alphabet
—require input tape to contain xll

+ language recognized by a deterministic
PDA is called a deterministic CFL (DCFL)
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Deciding CFLs

IsGenerated(x = X1X2X3...Xn, G)

fori=1ton

T[i, i] = {A: “A — x” is a production in G}
fork=1ton-1

fori=1ton-k

for k splittings x]i, i+k] = x[i,i+j]x[i+j+1, i+k]
T[i, i+k] = {A: “A — BC” is a production
in G and B € TJ[i,i+j] and
C e T[i+j+1,i+k] }
output “YES” if S € T[1, n], else output “NO”
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Deterministic PDA

« ANPDA is a 6-tuple (Q, 2, T, 8, qq, F)
where:
-0QxZu{ehx(Tu{e) > PQx(TuU{e})is
a function called the transition function
* A deterministic PDA has only one option at
every step:
—foreverystateqeQ,a €z, and t e T, exactly
1 element in &(q, a, t), or

—exactly 1 element in 8(q, €, t), and &(q, a, t)
empty foralla e X
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Example deterministic PDA
0,e—>0
>={0, 1} oo
r={0,1,9%}
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1,0 > ¢

L={0"":n >0}

(unpictured transitions go to a “reject” state and stay there)
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Deterministic PDA

Theorem: DCFLs are closed under
complement
(complement of L in 2*is (Z*- L))
Proof attempt:
— swap accept/non-accept states

— problem: might enter infinite loop before
reading entire string

—machine for complement must accept in these
cases, and read to end of string
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Example of problem

1,e > ¢

0,e—>¢
0,e—>¢ /[ <> { )

U M-

|
ge—9$

Language of this DPDA is 03"
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13
Example of problem
1,e—>¢
0,e—>¢
0,e—¢ N
U B¢
Meoc
ge—$
Language of this DPDA is {¢}
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Deterministic PDA

Proof:
— convert machine into “normal form”
« always reads to end of input

« always enters either an accept state or single
distinguished “reject” state, and stay there

— step 1: keep track of when we have read to
end of input

— step 2: eliminate infinite loops
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Deterministic PDA

step 1: keep track of when we have read to end
of input
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Deterministic PDA

step 1: keep track of when we have read to end
of input
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for accept state q’: replace outgoing “€, ? — ?”
transition with self-loop with same label
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Deterministic PDA

step 2: eliminate infinite loops

—add new “reject” states

a, t -t (foralla, t)
g, t—t (forallt)

MW, t—t (forallt)
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Deterministic PDA

step 2: eliminate infinite loops

— infinite seq. ip< i1< ... such that for all k, stack
height never decreases below ht(ix) after time ix

— infinite subsequence jo< j1< jo< ... such that
same transition is applied at each time jk
* never see any stack symbol below

t from j, on
* we are in a periodic, deterministic

gtos sequence of stack operations
independent of the input
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Deterministic PDA

step 2: eliminate infinite loops
—on input X, if infinite loop, then:

stack
height
time
o iz i |infinite sequence ip< 1< ix< ... such

that for all k, stack height never
decreases below ht(iy) after time i
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Deterministic PDA

step 2: eliminate infinite loops

— infinite subsequence jo< j1< j2< ... such that
same transition is applied at each time ji
—safe t?,r,?m%‘iej a, t >t (forall a, t)

g tos

g, t—t (forallt)

o g t= s
/

g,t—os
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Deterministic PDA

— finishing up...
— have a machine M with no infinite loops
— therefore it always reads to end of input

— either enters an accept state g, or enters
“reject” state r’

—now, can swap: make r’ unique accept state
to get a machine recognizing complement of L
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