CS21 Decidability and Tractability
Lecture 8
January 21, 2022

Outline
• equivalence of NPDAs and CFGs
• non context-free languages via CFL Pumping Lemma

NPDA, CFG equivalence

Theorem: a language L is recognized by a NPDA iff L is described by a CFG.

Must prove two directions:
(\Rightarrow) L is recognized by a NPDA implies L is described by a CFG.
(\Leftarrow) L is described by a CFG implies L is recognized by a NPDA.

Proof of (\Rightarrow): L is recognized by a NPDA implies L is described by a CFG.

– harder direction
– first step: convert NPDA into “normal form”:
 • single accept state
 • empties stack before accepting
 • each transition either pushes or pops a symbol

NPDA, CFG equivalence

– main idea: non-terminal $A_{p,q}$ generates exactly the strings that take the NPDA from state p (w/ empty stack) to state q (w/ empty stack)

– then $A_{\text{start, accept}}$ generates all of the strings in the language recognized by the NPDA.

• Two possibilities to get from state p to q:

 \[
 \begin{align*}
 \text{generated by } A_{p,r} & \\
 \text{generated by } A_{r,q} & \\
 \end{align*}
 \]
NPDA, CFG equivalence

- NPDA $P = (Q, \Sigma, \Gamma, \delta, \text{start}, \{\text{accept}\})$
- CFG G:
 - non-terminals $V = \{A_{p,q} : p, q \in Q\}$
 - start variable A_{start}, accept
 - productions:
 for every $p, r, q \in Q$, add the rule
 $A_{p,r} \rightarrow A_{p,q}A_{r,s}$

NPDA, CFG equivalence

- Two possibilities to get from state p to q:
 - stack height
 - input string taking NPDA from p to q

NPDA, CFG equivalence

- NPDA $P = (Q, \Sigma, \Gamma, \delta, \text{start}, \{\text{accept}\})$
- CFG G:
 - non-terminals $V = \{A_{p,q} : p, q \in Q\}$
 - start variable A_{start}, accept
 - productions:
 for every $p, r, q \in Q$, $d \in \Gamma$ and $a, b \in (\Sigma \cup \{\epsilon\})$
 if $(r, d) \in \delta(p, a, \epsilon)$, and
 $(q, \epsilon) \in \delta(s, b, d)$, add the rule
 $A_{p,q} \rightarrow aA_{r,s}b$

NPDA, CFG equivalence

- two claims to verify correctness:
 1. if $A_{p,q}$ generates string x, then x can take NPDA P from state p (w/ empty stack) to q (w/ empty stack)
 2. if x can take NPDA P from state p (w/ empty stack) to q (w/ empty stack), then $A_{p,q}$ generates string x

NPDA, CFG equivalence

1. if $A_{p,q}$ generates string x, then x can take NPDA P from state p (w/ empty stack) to q (w/ empty stack)
 - induction on length of derivation of x
 - base case: 1 step derivation. must have only terminals on rhs. In G, must be production of form $A_{p,p} \rightarrow \epsilon$.

January 21, 2022 CS21 Lecture 8
NPDA, CFG equivalence

1. If \(A_{p,q} \) generates string \(x \), then \(x \) can take NPDA \(P \) from state \(p \) (w/ empty stack) to \(q \) (w/ empty stack)
 - Assume true for derivations of length at most \(k \), prove for length \(k+1 \).
 - Verify case: \(A_{p,q} \rightarrow A_{p,r}A_{r,q} \rightarrow^{k} x = yz \)
 - Verify case: \(A_{p,q} \rightarrow aA_{r,b} \rightarrow^{k} x = ayb \)

NPDA, CFG equivalence

2. If \(x \) can take NPDA \(P \) from state \(p \) (w/ empty stack) to \(q \) (w/ empty stack), then \(A_{p,q} \) generates string \(x \)
 - Induction step. Assume true for computations of length at most \(k \), prove for length \(k+1 \).
 - If stack becomes empty sometime in the middle of the computation (at state \(r \))
 • \(y \) is read going from state \(p \) to \(r \) \((A_{p,r} \rightarrow^{*} y)\)
 • \(z \) is read going from state \(r \) to \(q \) \((A_{r,q} \rightarrow^{*} z)\)
 • Conclude: \(A_{p,q} \rightarrow A_{p,r}A_{r,q} \rightarrow^{*} yz = x \)

NPDA, CFG equivalence

2. If \(x \) can take NPDA \(P \) from state \(p \) (w/ empty stack) to \(q \) (w/ empty stack), then \(A_{p,q} \) generates string \(x \)
 - If stack becomes empty only at beginning and end of computation.
 • First step: state \(p \) to \(r \), read \(a \), push \(d \)
 • Go from state \(r \) to \(s \), read string \(y \) \((A_{r,s} \rightarrow^{*} y)\)
 • Last step: state \(s \) to \(q \), read \(b \), pop \(d \)
 • Conclude: \(A_{p,q} \rightarrow aA_{r,s}b \rightarrow^{*} ayb = x \)

Pumping Lemma for CFLs

CFL Pumping Lemma: Let \(L \) be a CFL.
There exists an integer \(p \) ("pumping length") for which every \(w \in L \) with \(|w| \geq p \) can be written as
\[w = uvxyz \]
such that
1. For every \(i \geq 0 \), \(uv^{i}xy^{i}z \in L \), and
2. \(|vy| > 0 \), and
3. \(|vxy| \leq p \).
CFL Pumping Lemma Example

Theorem: the following language is not context-free:
\[L = \{ a^n b^n c^n : n \geq 0 \} \]

Proof:
- let \(p \) be the pumping length for \(L \)
- choose \(w = a^p b^p c^p \)
- \(w = \text{aaa...abbb...bccc...c} \)
- \(w = uvxyz \), with \(|vy| > 0 \) and \(|vxy| \leq p \).

CFL Pumping Lemma Example

- possibilities:
 \(w = \text{aaa...abbb...bccc...c} \)
 (if \(v \) or \(y \) contain more than one type of symbol, then pumping on them might produce a string with equal numbers of a's, b's, and c's. But they will be out of order.)

CFL Pumping Lemma Example

- possibilities:
 \(w = \text{aaa...abbb...bccc...c} \)
 (if \(v \) or \(y \) contain more than one type of symbol, then pumping on them might produce a string with equal numbers of a's, b's, and c's. But they will be out of order.)

CFL Pumping Lemma Example

\[L = \{ xx : x \in \{0,1\}^* \} \]

- try \(w = 0^p 1^p 0^p 1^p \)
- \(w = uvxyz \), with \(|vy| > 0 \) and \(|vxy| \leq p \).
- case: \(vxy \) in first half.
 - then \(uv^2 xy^2 z = {}^0?...?1?...? \)
- case: \(vxy \) in second half.
 - then \(uv^2 xy^2 z = {}^0?...?0?...?1 \)
- case: \(vxy \) straddles midpoint
 - then \(uv^2 xy^2 z = uxz = 0^p 10^p 1^p \) with \(i \neq 2p \) or \(j \neq 2p \)

CFL Pumping Lemma Example

Theorem: the following language is not context-free:
\[L = \{ xx : x \in \{0,1\}^* \} \]

Proof:
- let \(p \) be the pumping length for \(L \)
- try \(w = 0^p 1^p 0^p 1^p \)
- can this be pumped?

CFL Pumping Lemma Example

- possibilities:
 \(w = \text{aaa...abbb...bccc...c} \)
 (if \(v \) or \(y \) each contain only one type of symbol, then pumping on them produces a string not in the language)

CFL Pumping Lemma for CFLs

Pumping Lemma for CFLs: Let \(L \) be a CFL. There exists an integer \(p \) ("pumping length") for which every \(w \in L \) with \(|w| \geq p \) can be written as
\[w = uvxyz \quad \text{such that} \]
1. for every \(i \geq 0 \), \(uv^i xy^i z \in L \), and
2. \(|vy| > 0 \), and
3. \(|vxy| \leq p \).
CFL Pumping Lemma

Proof: consider a parse tree for a very long string \(w \in L \):

```
S
A
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>
A
  |   |
D b
  |   |
A
  |   |
B b
  |   |
A
  |   |
C b
  |   |
A
  |   |
D b
  |   |
S
```

some non-terminal must repeat on long path

- how large should pumping length \(p \) be?
- need to ensure other conditions:
 - \(|vy| > 0\)
 - \(|vxy| \leq p\)
- \(b = \max \) # symbols on rhs of any production (assume \(b \geq 2 \))
- if parse tree has height \(\leq h \), then string generated has length \(\leq b^h \) (so length > \(b^h \) implies height > \(h \))

- let \(m \) be the # of nonterminals in the grammar
- to ensure path of length at least \(m+2 \), require
 - \(|w| \geq p = b^{m+2}\)
- since \(|w| > b^{m+1}\), any parse tree for \(w \) has height \(\geq m+1 \)
- let \(T \) be the smallest parse tree for \(w \)
- longest root-leaf path must consist of \(\geq m+1 \) non-terminals and 1 terminal.

- must be a repeated non-terminal \(A \) on long path
- select a repetition among the lowest \(m+1 \) non-terminals on path.
- pictures show that for every \(i \geq 0 \), \(uv^i xy^i z \in L \)
- is \(|vy| > 0 \)?
 - smallest parse tree \(T \) ensures
 - is \(|vxy| \leq p \)?
 - red path has length \(\leq m+2 \), so \(\leq b^{m+2} = p \) leaves
Chomsky Normal Form

- Useful to deal only with CFGs in a simple normal form
- Most common: Chomsky Normal Form (CNF)
- Definition: every production has form
 \[A \rightarrow BC \quad \text{or} \quad S \rightarrow \varepsilon \quad \text{or} \quad A \rightarrow a \]
 where \(A, B, C \) are any non-terminals (and \(B, C \) are not \(S \)) and \(a \) is any terminal.

Theorem
Every CFL is generated by a CFG in Chomsky Normal Form.

Proof
Exercise or in book…