CS21
Decidability and Tractability
Lecture 8
January 22, 2021

Outline

• equivalence of NPDAs and CFGs (continued)
• non context-free languages via CFL Pumping Lemma
• Chomsky Normal Form and deciding CFLs

NPDA, CFG equivalence

Theorem: a language \(L \) is recognized by a NPDA iff \(L \) is described by a CFG.

Must prove two directions:

\((\Rightarrow) \) \(L \) is recognized by a NPDA implies \(L \) is described by a CFG.

\((\Leftarrow) \) \(L \) is described by a CFG implies \(L \) is recognized by a NPDA.

NPDA, CFG equivalence

Proof of \((\Rightarrow)\): \(L \) is recognized by a NPDA implies \(L \) is described by a CFG.

– harder direction
– first step: convert NPDA into “normal form”:
 - single accept state
 - empties stack before accepting
 - each transition either pushes or pops a symbol

NPDA, CFG equivalence

– **main idea:** non-terminal \(A_{p,q} \) generates exactly the strings that take the NPDA from state \(p \) (w/ empty stack) to state \(q \) (w/ empty stack)

– then \(A_{\text{start, accept}} \) generates all of the strings in the language recognized by the NPDA.
NPDA, CFG equivalence

- NPDA P = (Q, Σ, Γ, δ, start, {accept})
- CFG G:
 - non-terminals V = {A_{p,q} : p, q ∈ Q}
 - start variable A_{start, accept}
 - productions:
 for every p, r, q ∈ Q, add the rule
 $$A_{p,q} \rightarrow A_{p,r}A_{r,q}$$

NPDA, CFG equivalence

- NPDA P = (Q, Σ, Γ, δ, start, {accept})
- CFG G:
 - non-terminals V = {A_{p,q} : p, q ∈ Q}
 - start variable A_{start, accept}
 - productions:
 for every p ∈ Q, add the rule
 $$A_{p,p} \rightarrow \epsilon$$

two claims to verify correctness:

1. if $A_{p,q}$ generates string x, then x can take NPDA P from state p (w/ empty stack) to q (w/ empty stack)
2. if x can take NPDA P from state p (w/ empty stack) to q (w/ empty stack), then $A_{p,q}$ generates string x

NPDA, CFG equivalence

- Two possibilities to get from state p to q:
NPDA, CFG equivalence

1. If $A_{p,q}$ generates string x, then x can take NPDA P from state p (w/ empty stack) to q (w/ empty stack)
 - Assume true for derivations of length at most k, prove for length $k+1$.
 - Verify case: $A_{p,q} \rightarrow A_p A_{r,q} \rightarrow^k x = \epsilon$.
 - Verify case: $A_{p,q} \rightarrow a A_{r,s} b \rightarrow^k x = ayb$.

NPDA, CFG equivalence

2. If x can take NPDA P from state p (w/ empty stack) to q (w/ empty stack), then $A_{p,q}$ generates string x
 - Induction step. Assume true for computations of length at most k, prove for length $k+1$.
 - If stack becomes empty sometime in the middle of the computation (at state r)
 - y is read going from state p to r ($A_{p,r} \rightarrow^* y$)
 - z is read going from state r to q ($A_{r,q} \rightarrow^* z$)
 - Conclude: $A_{p,q} \rightarrow a A_{r,s} b \rightarrow^* ayb = x$.

Pumping Lemma for CFLs

CFL Pumping Lemma: Let L be a CFL. There exists an integer p ("pumping length") for which every $w \in L$ with $|w| \geq p$ can be written as $w = uvxyz$ such that
1. For every $i \geq 0$, $uv^i x y^i z \in L$, and
2. $|vy| > 0$, and
3. $|vxy| \leq p$.
CFL Pumping Lemma Example

Theorem: the following language is not context-free:

\[L = \{ a^n b^n c^n : n \geq 0 \} \]

- **Proof**:
 - let \(p \) be the pumping length for \(L \)
 - choose \(w = a^p b^p c^p \)
 - \(w = aaaa...abbb...bccc...c \)
 - \(w = uvxyz \), with \(|y| > 0 \) and \(|xy| \leq p \).

CFL Pumping Lemma Example

- **possibilities**:
 \(w = aaaa...abbb...bccc...c \)

(if \(v \) or \(y \) contain more than one type of symbol, then pumping on them might produce a string with equal numbers of a's, b's, and c's – if \(vy \) contains equal numbers of a's, b's, and c's. But they will be out of order.)

CFL Pumping Lemma Example

Theorem: the following language is not context-free:

\[L = \{ xx : x \in \{0,1\}^* \} \]

- **Proof**:
 - let \(p \) be the pumping length for \(L \)
 - try \(w = 0^p10^p10^p \)
 - can this be pumped?

Pumping Lemma for CFLs

CFL Pumping Lemma: Let \(L \) be a CFL. There exists an integer \(p \) ("pumping length") for which every \(w \in L \) with \(|w| \geq p \) can be written as

\[w = uvxy \]

such that

1. for every \(i \geq 0 \), \(uv^i x y^i \in L \), and
2. \(|xy| > 0 \), and
3. \(|vxy| \leq p \).
CFL Pumping Lemma

Proof: consider a parse tree for a very long string \(w \in L \):

```
S → A
  ∣
  v
A → A
  ∣
  v
S → A
  ∣
  v
A → A
  ∣
  v
...
```

some non-terminal must repeat on long path

January 22, 2021 CS21 Lecture 8 25

CFL Pumping Lemma

• Schematic proof:

```
S
  ∣
  △
A
```

January 22, 2021 CS21 Lecture 8 26

CFL Pumping Lemma

– how large should pumping length \(p \) be?
– need to ensure other conditions:

\[
|vy| > 0 \quad |vxy| \leq p
\]

\[b = \max \text{ # symbols on rhs of any production (assume } b \geq 2)\]

– if parse tree has height \(\leq h \), then string generated has length \(\leq b^h \) (so length \(> b^h \) implies height \(> h \))

January 22, 2021 CS21 Lecture 8 28

CFL Pumping Lemma

– let \(m \) be the # of nonterminals in the grammar
– to ensure path of length at least \(m+2 \), require

\[|w| \geq p = b^{m+2}\]

– since \(|w| > b^{m+1} \), any parse tree for \(w \) has height \(> m+1 \)
– let \(T \) be the smallest parse tree for \(w \)
– longest root-leaf path must consist of \(\geq m+1 \) non-terminals and 1 terminal.

January 22, 2021 CS21 Lecture 8 29

CFL Pumping Lemma

– must be a repeated non-terminal \(A \) on long path
– select a repetition among the lowest \(m+1 \) non-terminals on path.
– pictures show that for every \(i \geq 0, uv^iwxz \in L \)
– is \(|vy| > 0 \) ?
 • smallest parse tree \(T \) ensures
– is \(|vxy| \leq p \)?
 • red path has length \(\leq m+2 \), so \(\leq b^{m+2} = p \) leaves

January 22, 2021 CS21 Lecture 8 30