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Chomsky Normal Form

• Useful to deal only with CFGs in a simple 
normal form

• Most common: Chomsky Normal Form (CNF)
• Definition: every production has form

A → BC  or S → ε or
A → a

 where A, B, C are any non-terminals (and 
B, C are not S) and a is any terminal.
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Chomsky Normal Form
Theorem: Every CFL is generated by a 

CFG in Chomsky Normal Form.

Proof:  exercise or in book… 
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Deciding CFLs
• Useful to have an efficient algorithm to 

decide whether string x is in given CFL
– e.g. programming language often described 

by CFG. Determine if string is valid program.
• If CFL recognized by deterministic PDA, 

just simulate the PDA.
– but not all CFLs are (homework)…

• Can simulate NPDA, but this takes 
exponential time in the worst case.
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Deciding CFLs

• Convert CFG into Chomsky Normal Form
• parse tree for string x generated by 

nonterminal A:
A

B C

x

If A →k x  (k > 1) then there must 
be a way to split x:

x = yz

• A → BC is a production and 

• B →i y and C ⇒j z for i, j < k 
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Deciding CFLs
• An algorithm:

IsGenerated(x, A)
if |x| = 1, then return YES if A → x is a production, 

else return NO
for all n-1 ways of splitting x = yz
    for all ≤ m productions of form A → BC
        if IsGenerated(y, B) and IsGenerated(z, C),    

 return YES
return NO

• worst case running time? 
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Deciding CFLs
• worst case running time exp(n)
• Idea: avoid recursive calls 

– build table of YES/NO answers to calls to 
IsGenerated, in order of length of substring

– example of general algorithmic strategy called 
dynamic programming

– notation: x[i,j] = substring of x from i to j
– table: T(i, j) contains 

{A: A nonterminal such that A →* x[i,j]}
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Deciding CFLs
IsGenerated(x = x1x2x3…xn, G)
 for i = 1 to n
  T[i, i] = {A: “A → xi” is a production in G}
 for k = 1 to n - 1
     for i = 1 to n - k
   for k splittings x[i, i+k] = x[i,i+j]x[i+j+1, i+k]
    T[i, i+k] = {A: “A → BC” is a production 

   in G and B ∈ T[i,i+j] and 
     C ∈ T[i+j+1,i+k] }
 output “YES” if S ∈	T[1, n], else output “NO”
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Deciding CFLs
IsGenerated(x = x1x2x3…xn, G)
 for i = 1 to n
  T[i, i] = {A: “A → xi” is a production in G}
 for k = 1 to n - 1
     for i = 1 to n - k
   for k splittings x[i, i+k] = x[i,i+j]x[i+j+1, i+k]
    T[i, i+k] = {A: “A → BC” is a production 

   in G and B ∈ T[i,i+j] and 
     C ∈ T[i+j+1,i+k] }
 output “YES” if S ∈	T[1, n], else output “NO”

O(nm) steps

O(n3m3) steps
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Deterministic PDA
• A NPDA is a 6-tuple (Q, Σ, Γ, δ, q0, F) 

where:
– δ:Q x (Σ ∪ {ε}) x (Γ ∪ {ε}) → P (Q x (Γ ∪ {ε})) is 

a function called the transition function
• A deterministic PDA has only one option at 

every step:
– for every state q ∈	Q, a ∈ Σ, and t ∈ Γ, exactly 

1 element in δ(q, a, t), or
– exactly 1 element in δ(q, ε, t), and δ(q, a, t) 

empty for all a ∈	Σ 
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Deterministic PDA

• A technical detail: 
 we will give our deterministic machine the 

ability to detect end of input string
– add special symbol ■ to alphabet
– require input tape to contain x■

• language recognized by a deterministic 
PDA is called a deterministic CFL (DCFL)
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Example deterministic PDA

L = {0n1n : n ≥	0}
(unpictured transitions go to a “reject” state and stay there)

ε, ε → $

■, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}

Γ = {0, 1, $}
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Deterministic PDA
Theorem: DCFLs are closed under 

complement  
(complement of L in Σ* is (Σ* - L) )

Proof attempt:
– swap accept/non-accept states
– problem: might enter infinite loop before 

reading entire string
– machine for complement must accept in these 

cases, and read to end of string
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Example of problem

0, ε → ε
0, ε → ε

1, ε → ε

1, ε → ε
ε, ε → $

Language of this  DPDA is 0Σ*

■, ε → ε

■, ε → ε

ε, ε → $
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Example of problem

0, ε → ε
0, ε → ε

1, ε → ε

1, ε → ε
ε, ε → $

Language of this DPDA is {𝜖}

■, ε → ε

■, ε → ε

ε, ε → $
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Deterministic PDA

Proof:
– convert machine into “normal form”

• always reads to end of input
• always enters either an accept state or single 

distinguished “reject” state, and stay there
– step 1: keep track of when we have read to 

end of input
– step 2: eliminate infinite loops
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Deterministic PDA
step 1: keep track of when we have read to end 

of input

■, ? → ?

q0 q1

q3

q2

■, ? → ?

q0’ q1’

q3’
q2’
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Deterministic PDA
step 1: keep track of when we have read to end 

of input

■, ? → ?q0 q1

q3

q2

■, ? → ?

q0’ q1’

q3’
q2’

for accept state q’: replace outgoing “ε, ? → ?” 
transition with self-loop with same label 
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Deterministic PDA
step 2: eliminate infinite loops

– add new “reject” states

r’r

a, t →t  (for all a, t) 
ε, t → t  (for all t) 

■, t → t  (for all t) 
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Deterministic PDA
step 2: eliminate infinite loops
– on input x, if infinite loop, then:

stack 
height

time 
i0 i1 i2 i3 infinite sequence i0< i1< i2< … such 

that for all k, stack height never 
decreases below ht(ik) after time ik

20

January 24, 2025 CS21 Lecture 8 21

Deterministic PDA
step 2: eliminate infinite loops
– infinite seq. i0< i1< … such that for all k, stack 

height never decreases below ht(ik) after time ik
– infinite subsequence j0< j1< j2< … such that 

same transition is applied at each time jk

p

ε, t → s 

• never see any stack symbol below 
t from jk on
• we are in a periodic, deterministic 
sequence of stack operations 
independent of the input 
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Deterministic PDA
step 2: eliminate infinite loops
– infinite subsequence j0< j1< j2< … such that 

same transition is applied at each time jk
– safe to replace:

p

ε, t → s 

r’r

a, t →t  (for all a, t) 
ε, t → t  (for all t) 

■, t → t  (for all t) 

p’

ε, t → s 

ε, t → s 

or ε, t → s 

January 24, 2025
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Deterministic PDA
– finishing up…
– have a machine M with no infinite loops
– therefore it always reads to end of input
– either enters an accept state q’, or enters 

“reject” state r’

– now, can swap: make r’ unique accept state 
to get a machine recognizing complement of L 
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