
1

CS21
Decidability
and Tractability

Lecture 8
January 24, 2025

1

January 24, 2025 CS21 Lecture 8 2

Chomsky Normal Form

• Useful to deal only with CFGs in a simple
normal form

• Most common: Chomsky Normal Form (CNF)
• Definition: every production has form

A → BC or S → ε or
A → a

 where A, B, C are any non-terminals (and
B, C are not S) and a is any terminal.

2

January 24, 2025 CS21 Lecture 8 3

Chomsky Normal Form
Theorem: Every CFL is generated by a

CFG in Chomsky Normal Form.

Proof: exercise or in book…

3

January 24, 2025 CS21 Lecture 8 4

Deciding CFLs
• Useful to have an efficient algorithm to

decide whether string x is in given CFL
– e.g. programming language often described

by CFG. Determine if string is valid program.
• If CFL recognized by deterministic PDA,

just simulate the PDA.
– but not all CFLs are (homework)…

• Can simulate NPDA, but this takes
exponential time in the worst case.

4

January 24, 2025 CS21 Lecture 8 5

Deciding CFLs

• Convert CFG into Chomsky Normal Form
• parse tree for string x generated by

nonterminal A:
A

B C

x

If A →k x (k > 1) then there must
be a way to split x:

x = yz

• A → BC is a production and

• B →i y and C ⇒j z for i, j < k

5

January 24, 2025 CS21 Lecture 8 6

Deciding CFLs
• An algorithm:

IsGenerated(x, A)
if |x| = 1, then return YES if A → x is a production,

else return NO
for all n-1 ways of splitting x = yz
 for all ≤ m productions of form A → BC
 if IsGenerated(y, B) and IsGenerated(z, C),

 return YES
return NO

• worst case running time?

6

2

January 24, 2025 CS21 Lecture 8 7

Deciding CFLs
• worst case running time exp(n)
• Idea: avoid recursive calls

– build table of YES/NO answers to calls to
IsGenerated, in order of length of substring

– example of general algorithmic strategy called
dynamic programming

– notation: x[i,j] = substring of x from i to j
– table: T(i, j) contains

{A: A nonterminal such that A →* x[i,j]}

7

January 24, 2025 CS21 Lecture 8 8

Deciding CFLs
IsGenerated(x = x1x2x3…xn, G)
 for i = 1 to n
 T[i, i] = {A: “A → xi” is a production in G}
 for k = 1 to n - 1
 for i = 1 to n - k
 for k splittings x[i, i+k] = x[i,i+j]x[i+j+1, i+k]
 T[i, i+k] = {A: “A → BC” is a production

 in G and B ∈ T[i,i+j] and
 C ∈ T[i+j+1,i+k] }
 output “YES” if S ∈	T[1, n], else output “NO”

8

January 24, 2025 CS21 Lecture 8 9

Deciding CFLs
IsGenerated(x = x1x2x3…xn, G)
 for i = 1 to n
 T[i, i] = {A: “A → xi” is a production in G}
 for k = 1 to n - 1
 for i = 1 to n - k
 for k splittings x[i, i+k] = x[i,i+j]x[i+j+1, i+k]
 T[i, i+k] = {A: “A → BC” is a production

 in G and B ∈ T[i,i+j] and
 C ∈ T[i+j+1,i+k] }
 output “YES” if S ∈	T[1, n], else output “NO”

O(nm) steps

O(n3m3) steps

9

January 24, 2025 CS21 Lecture 8 10

Deterministic PDA
• A NPDA is a 6-tuple (Q, Σ, Γ, δ, q0, F)

where:
– δ:Q x (Σ ∪ {ε}) x (Γ ∪ {ε}) → P (Q x (Γ ∪ {ε})) is

a function called the transition function
• A deterministic PDA has only one option at

every step:
– for every state q ∈	Q, a ∈ Σ, and t ∈ Γ, exactly

1 element in δ(q, a, t), or
– exactly 1 element in δ(q, ε, t), and δ(q, a, t)

empty for all a ∈	Σ

10

January 24, 2025 CS21 Lecture 8 11

Deterministic PDA

• A technical detail:
 we will give our deterministic machine the

ability to detect end of input string
– add special symbol ■ to alphabet
– require input tape to contain x■

• language recognized by a deterministic
PDA is called a deterministic CFL (DCFL)

11

January 24, 2025 CS21 Lecture 8 12

Example deterministic PDA

L = {0n1n : n ≥	0}
(unpictured transitions go to a “reject” state and stay there)

ε, ε → $

■, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}

Γ = {0, 1, $}

12

3

January 24, 2025 CS21 Lecture 8 13

Deterministic PDA
Theorem: DCFLs are closed under

complement
(complement of L in Σ* is (Σ* - L))

Proof attempt:
– swap accept/non-accept states
– problem: might enter infinite loop before

reading entire string
– machine for complement must accept in these

cases, and read to end of string

13

January 24, 2025 CS21 Lecture 8 14

Example of problem

0, ε → ε
0, ε → ε

1, ε → ε

1, ε → ε
ε, ε → $

Language of this DPDA is 0Σ*

■, ε → ε

■, ε → ε

ε, ε → $

14

January 24, 2025 CS21 Lecture 8 15

Example of problem

0, ε → ε
0, ε → ε

1, ε → ε

1, ε → ε
ε, ε → $

Language of this DPDA is {𝜖}

■, ε → ε

■, ε → ε

ε, ε → $

15

January 24, 2025 CS21 Lecture 8 16

Deterministic PDA

Proof:
– convert machine into “normal form”

• always reads to end of input
• always enters either an accept state or single

distinguished “reject” state, and stay there
– step 1: keep track of when we have read to

end of input
– step 2: eliminate infinite loops

16

January 24, 2025 CS21 Lecture 8 17

Deterministic PDA
step 1: keep track of when we have read to end

of input

■, ? → ?

q0 q1

q3

q2

■, ? → ?

q0’ q1’

q3’
q2’

17

January 24, 2025 CS21 Lecture 8 18

Deterministic PDA
step 1: keep track of when we have read to end

of input

■, ? → ?q0 q1

q3

q2

■, ? → ?

q0’ q1’

q3’
q2’

for accept state q’: replace outgoing “ε, ? → ?”
transition with self-loop with same label

18

4

January 24, 2025 CS21 Lecture 8 19

Deterministic PDA
step 2: eliminate infinite loops

– add new “reject” states

r’r

a, t →t (for all a, t)
ε, t → t (for all t)

■, t → t (for all t)

19

January 24, 2025 CS21 Lecture 8 20

Deterministic PDA
step 2: eliminate infinite loops
– on input x, if infinite loop, then:

stack
height

time
i0 i1 i2 i3 infinite sequence i0< i1< i2< … such

that for all k, stack height never
decreases below ht(ik) after time ik

20

January 24, 2025 CS21 Lecture 8 21

Deterministic PDA
step 2: eliminate infinite loops
– infinite seq. i0< i1< … such that for all k, stack

height never decreases below ht(ik) after time ik
– infinite subsequence j0< j1< j2< … such that

same transition is applied at each time jk

p

ε, t → s

• never see any stack symbol below
t from jk on
• we are in a periodic, deterministic
sequence of stack operations
independent of the input

21

CS21 Lecture 8 22

Deterministic PDA
step 2: eliminate infinite loops
– infinite subsequence j0< j1< j2< … such that

same transition is applied at each time jk
– safe to replace:

p

ε, t → s

r’r

a, t →t (for all a, t)
ε, t → t (for all t)

■, t → t (for all t)

p’

ε, t → s

ε, t → s

or ε, t → s

January 24, 2025

22

January 24, 2025 CS21 Lecture 8 23

Deterministic PDA
– finishing up…
– have a machine M with no infinite loops
– therefore it always reads to end of input
– either enters an accept state q’, or enters

“reject” state r’

– now, can swap: make r’ unique accept state
to get a machine recognizing complement of L

23

