Lecture 7
January 22, 2025

CS21

Decidability
and
Tractability

NPDA, CFG equivalence

Theorem: a language L is recognized by a
NPDA iff L is described by a CFG.

Must prove two directions:
(=) L is recognized by a NPDA implies L is
described by a CFG.
(<) L is described by a CFG implies L is
recognized by a NPDA (done last lecture)

January 22, 2025 CS21 Lecture 7 2

NPDA, CFG equivalence

Proof of (=): L is recognized by a NPDA
implies L is described by a CFG.

— harder direction

— first step: convert NPDA into “normal form”:
« single accept state
« empties stack before accepting
« each transition either pushes or pops a symbol

January 22, 2025 CS21 Lecture 7

NPDA, CFG equivalence

—main idea: non-terminal A, generates exactly
the strings that take the NPDA from state p (w/
empty stack) to state q (w/ empty stack)

— then Astart, accept generates all of the strings in
the language recognized by the NPDA.

January 22, 2025 CS21 Lecture 7 4

NPDA, CFG equivalence

» Two possibilities to get from state p to g:

oo generated by A, generated by A

height

Wad abcabb;cacbacbacabacabgabbabaaoabbbaba'baacaocaccocc

e
string taking NPDA from p to q

input

January 22, 2025 CS21 Lecture 7

NPDA, CFG equivalence

* NPDA P =(Q, Z, T, &, start, {accept})
* CFGG:

—non-terminals V = {A,q: p, 9 € Q}

— start variable Astart, accept

— productions:
for every p, r, g € Q, add the rule
Apa— AoArg

January 22, 2025 CS21 Lecture 7 6

NPDA, CFG equivalence

» Two possibilities to get from state p to q:

enerated by A,
stack g S Y
height
p pushd popdlg
input __~ abcabbacacbacbacabacabbabbabaacabbbababaacaccacceee

e
string taking NPDA from p to q

January 22, 2025 CS21 Lecture 7

NPDA, CFG equivalence

* NPDA P =(Q, Z, T, 9, start, {accept})
« CFG G:
—non-terminals V = {A,q: p, g € Q}
— start variable Astart, accept
— productions:
for every p € Q, add the rule
Ap— €

January 22, 2025 CS21 Lecture 7

NPDA, CFG equivalence

1.if Ap 4 generates string x, then x can take
NPDA P from state p (w/ empty stack) to q
(w/ empty stack)
— induction on length of derivation of x.

— base case: 1 step derivation. must have only
terminals on rhs. In G, must be production of
form Ay, — €.

January 22, 2025 CS21 Lecture 7

NPDA, CFG equivalence

B from state p,
* NPDAP = (Q, S read a, push d,
* CFG G: move to state r

—non-termina from state s,
— start variable/Astart, ac{ €ad b, pop d,
— productio move to state q

forevery/p/r,s,qeQ,del'anda, b e (X U {e})
if (r, d) €p(p, a, €), and
(g, €) € (s, b, d), add the rule
Apq— aAh

January 22, 2025 CS21 Lecture 7

=~

NPDA, CFG equivalence

» two claims to verify correctness:

1. if Apq generates string x, then x can take
NPDA P from state p (w/ empty stack) to
g (w/ empty stack)

2. if x can take NPDA P from state p (w/
empty stack) to q (w/ empty stack), then
Apq generates string x

January 22, 2025 CS21 Lecture 7

10

NPDA, CFG equivalence

1.if Ap 4 generates string x, then x can take
NPDA P from state p (w/ empty stack) to q
(w/ empty stack)

—assume true for derivations of length at most
k, prove for length k+1.

— verify case: Apq— ApArg— X =yz

— verify case: Apq— aArsb —* x = ayb

11

January 22, 2025 CS21 Lecture 7

12

NPDA, CFG equivalence

2. if x can take NPDA P from state p (w/
empty stack) to q (w/ empty stack), then
A, q generates string x
—induction on # of steps in P’s computation

—base case: 0 steps. starts and ends at same
state p. only has time to read empty string ¢.

— G contains Ay, — €.

January 22, 2025 CS21 Lecture 7 13

NPDA, CFG equivalence

2. if x can take NPDA P from state p (w/
empty stack) to g (w/ empty stack), then
Ap q generates string x
— induction step. assume true for computations

of length at most k, prove for length k+1.
— if stack becomes empty sometime in the
middle of the computation (at state r)
« yis read going from state pto r (Ao—"y)
» zis read going from state r to q (Arg—" 2)
» conclude: Ay g — A /A g — Yz =X

January 22, 2025 CS21 Lecture 7 14

13

NPDA, CFG equivalence

2. if x can take NPDA P from state p (w/
empty stack) to q (w/ empty stack), then
A, q generates string x
— if stack becomes empty only at beginning and

end of computation.
« first step: state ptor, read a, push d
« go from state r to s, read string y (Acs—™" YY)
« last step: state s to q, read b, pop d
« conclude: A, ; — aArsb —" ayb =x

January 22, 2025 CS21 Lecture 7 15

14

NPDA, CFG equivalence

2. if x can take NPDA P from state p (w/
empty stack) to q (w/ empty stack), then
A, q generates string x
— if stack becomes empty only at beginning and

end of computation.
« first step: state p tor, read a, push d
* go from stater to s, read string y (Acs—™"Y)
* last step: state s to g, read b, pop d
» conclude: A, ; — aArsb —" ayb =x

January 22, 2025 CS21 Lecture 7 16

15

Pumping Lemma for CFLs

CFL Pumping Lemma: Let L be a CFL.
There exists an integer p (“pumping
length”) for which every w € L with |w| >
p can be written as

w =uvxyz such that
1. foreveryi >0, uvixyzel,and
2. |vy| >0, and
3. |vxy| <p.

January 22, 2025 CS21 Lecture 7 17

16

CFL Pumping Lemma Example

Theorem: the following language is not
context-free:
L ={a""c": n = 0}.

* Proof:

— let p be the pumping length for L

— choose w = aPbPcP

w = aaaa...abbbb...bccce...c
— w =uvxyz, with |vy| > 0 and |vxy| < p.

January 22, 2025 CS21 Lecture 7 18

17

18

CFL Pumping Lemma Example

— possibilities:
W = aaaa...aaabbb...bbccce...c
u v X y z

(if v, y each contain only one type of symbol,
then pumping on them produces a string not
in the language)

January 22, 2025 CS21 Lecture 7 19

CFL Pumping Lemma Example

— possibilities:
W = aaaa...abbbb...bcccce...c
u v X y z

(if v or y contain more than one type of symbol,
then pumping on them might produce a string
with equal numbers of a’s, b’s, and c’s — if vy
contains equal numbers of a’s, b’s, and C’s.
But they will be out of order.)

January 22, 2025 CS21 Lecture 7 20

19

CFL Pumping Lemma Example

Theorem: the following language is not
context-free:

L ={xx:x €{0,1}}.

* Proof:
— let p be the pumping length for L
—try w = 0P10P1

— can this be pumped?

January 22, 2025 CS21 Lecture 7 21

20

CFL Pumping Lemma Example

L = {xx:x €{0,1}}.

—try w = 0212r(Q2P12p
—w = uvxyz, with [vy| > 0 and |vxy| < p.
— case: vxy in first half.

« then uv2xy2z = 07?...?21?2...7
— case: vxy in second half.

« then uv2xy?z = ?7...207?...71
— case: vxy straddles midpoint

» then uvoxy%z = uxz = 02011012, with i #2p or j # 2p

January 22, 2025 CS21 Lecture 7 22

21

Pumping Lemma for CFLs

CFL Pumping Lemma: Let L be a CFL.
There exists an integer p (“pumping
length”) for which every w € L with |w| >
p can be written as

w =uvxyz such that
1. foreveryi >0, uvixyzel,and
2. |vy| >0, and
3. |vxy| <p.

January 22, 2025 CS21 Lecture 7 23

22

CFL Pumping Lemma

Proof: consider a parse tree for a very long

string w € L: S long path
_——\ VN

A D ...S C S A A ...B
A2 S SN2
a AC bADsp DC B A
O AN
some non-terminal must Ff’ '?‘b b b
repeat on long path b a

January 22, 2025 CS21 Lecture 7 24

23

24

CFL Pumping Lemma

. Schematlc proof

vxy

January 22, 2025 CS21 Lecture 7

25

CFL Pumping Lemma

» Schematic proof: S

=

January 22, 2025 CS21 Lecture 7 26

CFL Pumping Lemma

— how large should pumping length p be?
—need to ensure other conditions:
lvy|>0 lvxy| <p

—b = max # symbols on rhs of any production
(assume b = 2)

— if parse tree has height < h, then string
generated has length < b" (so length > bh
implies height > h)

January 22, 2025 CS21 Lecture 7 27

26

27

CFL Pumping Lemma

—let m be the # of nonterminals in the grammar
—to ensure path of length at least m+2, require
|w| = p = b™*2
—since |w| > b™", any parse tree for w has
height > m+1
—let T be the smallest parse tree for w

— longest root-leaf path must consist of = m+1
non-terminals and 1 terminal.

January 22, 2025 CS21 Lecture 7 28

CFL Pumping Lemma

— must be a repeated non- S
terminal A on long path

— select a repetition among the
lowest m+1 non-terminals on

path. A
— pictures show that for every i

>0, uvixyizelL u VvXxyz
—is|vy|>07?

« smallest parse tree T ensures
—is |vxy| £ p?

* red path has length < m+2, so < bm*2 = p leaves

January 22, 2025 CS21 Lecture 7 29

29

28

