
1

CS21
Decidability
and
Tractability

Lecture 6
January 17,
2025
January 17, 2025 CS21 Lecture 6 1

1

January 17, 2025 CS21 Lecture 6 2

Context-Free Grammars

 A → 0A1
 A → B
 B → #

start
symbol

terminal
symbols

non-terminal
symbols

production

2

January 17, 2025 CS21 Lecture 6 3

CFG example
• Balanced parentheses:

– ()
– (() ((() ())))

• a string w in Σ* = { (,) }* is balanced iff:
– # “(”s equals # “)”s, and
– for any prefix of w, # “(”s ≥ # “)”s

Exercise: design a CFG for balanced parentheses.

3

CFG example
S → (S) | SS | 𝜖

• Proof that w ∈ L(G) implies w is balanced
– induction on length of derivation
– base case: length 1: S ⇒ 𝜖
– general case: length n

• S ⇒ (S)	⇒!"# w$ = w	
• S ⇒ SS	⇒!"#	𝑤$𝑤′′ = w	

January 17, 2025 CS21 Lecture 6 4

4

CFG example
S → (S) | SS | 𝜖

• Proof that w is balanced implies w ∈ L(G)
– induction on length of w
– base case: length 0: w =	𝜖
– general case: length n
– consider shortest prefix in language
– if whole string then w = (w’) and w’ balanced
– if proper prefix then w = w’w’’ with w’ and w’’

balanced
January 17, 2025 CS21 Lecture 6 5

5

January 17, 2025 CS21 Lecture 6 6

CFG example
• Arithmetic expressions over {+,*,(,),a}

– (a + a) * a
– a * a + a + a + a + a

• A CFG generating this language:
 <expr> → <expr> * <expr>
 <expr> → <expr> + <expr>
 <expr> → (<expr>) | a

6

2

January 17, 2025 CS21 Lecture 6 7

CFG example

• A derivation of the string: a+a*a
<expr> ⇒	<expr> * <expr>
 ⇒	<expr> + <expr> * <expr>
 ⇒	a + <expr> * <expr>
 ⇒	a + a * <expr>
 ⇒	a + a * a

<expr> → <expr> * <expr>
<expr> → <expr> + <expr>
<expr> → (<expr>) | a

7

January 17, 2025 CS21 Lecture 6 8

Parse Trees
• Easier way to picture derivation: parse tree

• grammar encodes grouping information;
this is captured in the parse tree.

<expr>

<expr> <expr>

<expr> <expr>

*

+

a a

a

8

January 17, 2025 CS21 Lecture 6 9

CFGs and parse trees

• Is this a good grammar for arithmetic
expressions?
– can group wrong way (+ precedence over *)
– different grammar for same language can

force correct precedence/grouping

<expr> → <expr> * <expr>
<expr> → <expr> + <expr>
<expr> → (<expr>) | a

9

January 17, 2025 CS21 Lecture 6 10

Some facts about CFLs
• CFLs are closed under

– union (proof?)
– concatenation (proof?)
– star (proof?)

• Every regular language is a CFL
– proof?

10

January 17, 2025 CS21 Lecture 6 11

NPDA, CFG equivalence
Theorem: a language L is recognized by a

NPDA iff L is described by a CFG.

Must prove two directions: (proof next lecture!)

(⇒) L is recognized by a NPDA implies L is
described by a CFG.

(⇐) L is described by a CFG implies L is
recognized by a NPDA.

11

January 17, 2025 CS21 Lecture 6 12

NPDA, CFG equivalence
Proof of (⇐): L is described by a CFG

implies L is recognized by a NPDA.
0 # 1

q1

0

:

1
A

$

0 # 1

q2

0

:

1
#

$

0 # 1

q3

0

:

1
#

$

A → 0A1
A → #

an
idea:

12

3

January 17, 2025 CS21 Lecture 6 13

NPDA, CFG equivalence
1. we’d like to non-deterministically guess the

derivation, forming it on the stack
2. then scan the input, popping matching

symbol off the stack at each step
3. accept if we get to the bottom of the stack at

the end of the input.

what is wrong with this approach?

13

January 17, 2025 CS21 Lecture 6 14

NPDA, CFG equivalence
– only have access to top of stack
– combine steps 1 and 2:

• allow to match stack terminals with tape during the
process of producing the derivation on the stack

0 # 1

q1

0

1
A

$

0 # 1

q2

1
A

$

0 # 1

q3

#

1

$

A → 0A1
A → #

14

January 17, 2025 CS21 Lecture 6 15

NPDA, CFG equivalence
• informal description of construction:

– place $ and start symbol S on the stack
– repeat:

• if the top of the stack is a non-terminal A, pick a
production with A on the lhs and substitute the rhs
for A on the stack

• if the top of the stack is a terminal b, read b from
the tape, and pop b from the stack.

• if the top of the stack is $, enter the accept state.

15

January 17, 2025 CS21 Lecture 6 16

NPDA, CFG equivalence

ε, ε → S$

ε, A → w

b, b → ε

one transition for
each production

A → w

one transition for
each terminal b

ε, A → w = w1w2…wk

shorthand for:

ε, A → wk

q r

q r

q1
q2 qk…

ε, ε → wk-1

ε, ε → w1

ε, $ → ε

16

