CS21
Decidabilityyand

Tractability

Lecture 5
January 15, 2025

January 15, 2025

Non-regular languages

Pumping Lemma: Let L be a regular
language. There exists an integer p
(“pumping length”) for which every w € L
with |w| = p can be written as

w=xyz such that
1. foreveryi >0, xyzelL, and
2. ly|>0,and
3. |xy| <p.

January 15, 2025 €821 Lecture 5

Non-regular languages

* Using the Pumping Lemma to prove L is

not regular:

—assume L is regular

—then there exists a pumping length p

—select a string w € L of length at least p

—argue that for every way of writing w = xyz
that satisfies (2) and (3) of the Lemma,
pumping on y yields a string not in L.

— contradiction.

January 15, 2025 ©821 Lecture 5 3

Proof of the Pumping Lemma

—Let M be a FA that recognizes L.

— Set p = number of states of M.

— Consider w € L with |w| > p. On input w, M
must go through at least p+1 states. There
must be a repeated state (among first p+1).

January 15, 2025 ©S21 Lecture 5

FA Summary

* A “problem” is a language

* A “computation” receives an input and
either accepts, rejects, or loops forever.

+ A “computation” recognizes a language (it
may also decide the language).

* Finite Automata perform simple
computations that read the input from left
to right and employ a finite memory.

January 15, 2025 €821 Lecture 5 5

FA Summary

» The languages recognized by FA are the
regular languages.

* The regular languages are closed under
union, concatenation, and star.

» Nondeterministic Finite Automata may
have several choices at each step.

* NFAs recognize exactly the same
languages that FAs do.

January 15, 2025 ©S21 Lecture 5

FA Summary

» Regular expressions are languages built
up from the operations union,
concatenation, and star.

» Regular expressions describe exactly the
same languages that FAs (and NFAs)
recognize.

» Some languages are not regular. This can
be proved using the Pumping Lemma.

January 15, 2025 €821 Lecture 5

Machine view of FA

input tape
1 o T 3

finite
control

January 15, 2025 €821 Lecture 5 8

Machine view of FA

input tape
[of+ 1 [ofof* 1[*To 4 o]o[*]o]1]

finite
control

January 15, 2025 ©S21 Lecture 5 10

7
Machine view of FA
input tape
[of#+]oJo+ 4 +Te]+Jofo]*To]1]
finite
control
9

10

Machine view of FA

input tape

[oJ1T#ToJo 1 1 o 1o o *]ox]

finite
control etc...

January 15, 2025 ©S21 Lecture 5

A more powerful machine

« limitation of FA related to fact that they can
only “remember” a bounded amount of
information

* What is the simplest alteration that adds
unbounded “memory” to our machine?

» Should be able to recognize, e.g., {0"1": n = 0}

January 15, 2025 ©S21 Lecture 5 12

11

12

Pushdown Automata

input tape

finite o[t o et Ja 1 e 1 o]0 1 e]1]

control

New capabilities:
« can push symbol onto

(infinite) stack
stack
« can pop symbol off of
stack
January 15, 2025 Cs2t Lectre s 1

Pushdown Automata

input tape

finite [oJoJa 1 e a1 e 1 oo 1 e]1]

control

(infinite)
stack

January 15, 2025 €821 Lecture 5 14

13
Pushdown Automata
finite input tape
ooy BRELRHL[e[l
(infinite)
stack
15
Pushdown Automata
- input tape
finite
comtrol mv\imohwmﬂo\o\w
(infinite)
stack

17

14
Pushdown Automata
finite input tape
e ERERLLLRERHRL
(infinite)
stack
16
Pushdown Automata
- input tape
finite
control mu‘1‘i‘o‘111010‘0‘1‘0‘1‘
Note: often start by
o pushing $ marker onto
(infinite) stack so that we can
stack ° detect “empty stack”
18

Pushdown Automata (PDA)

* We will define nondeterministic pushdown
automata immediately

— potentially several choices of “next step”
* Deterministic PDA defined later
— weaker than NPDA
» Two ways to describe NPDA
—diagram
— formal definition

January 15, 2025 €821 Lecture 5 19

19

NPDA operation

 Taking a transition labeled:
a,b—c
—a€e(Xuie})
—b,ce(Tu{e})

— read a from tape, or don’t read from tape if a = ¢
— pop b from stack, or don’t pop from stack if b = €
— push c onto stack, or don’t push onto stack if c = €

January 15, 2025 ©821 Lecture 5 21

21
Example NPDA
£={0, 1}
r={0,1,8$} M0, e—0
W
1,0—¢
1,0—¢
» tape: 0011 Stack contents: 0 $
23

NPDA diagram

transition label: (tape symbol read, stack
symbol popped — stack symbol pushed)
-

tape alphabet
stack alphabet I’

start state ——

1,0—-¢
states

/)
accept states ’O

January 15, 2025

~U10-e

transitions

©s21 Lecture 5 20

20
Example NPDA
$={0, 1}
r={0,1,% M0,e—0
- £, €—)
1,0—¢
e$—¢
J1,0-¢
* tape: 0011 Stack contents: $
22
Example NPDA
={0, 1}
r=1{,1,$} A0, E—0
W
1,0—-¢
1,0—-¢
* tape: 0011 Stack contents: 00 $

24

Example NPDA
£={0, 1}
r={0,1,$}

1,0—-¢

\\
\J1,0—-¢
* tape: 0011 Stack contents: 00 $

January 15, 2025 €821 Lecture 5

25
Example NPDA
3={0,1}
r={0,1,% M0,e—0
- £, E€—)
1,0—¢
e$—¢
/1,0 -¢
* tape: 0011 Stack contents: $
accepted

27

Example NPDA
£={0, 1}

r={0,1,$ 0,0
{)

1,0—¢

1,0—¢
 tape: 001 Stack contents: 0 $

January 15, 2025 €821 Lecture 5

29

Example NPDA
£={0, 1}
r={0,1,$}

1,0—-¢

\\
\J1,0—-¢
» tape: 0011 Stack contents: 0 $

January 15, 2025 €821 Lecture 5 26

26
Example NPDA
£={0,1}
r={0,1,% M0,e—0
- £, €—)
1,0—¢
e$—¢
/1,0 ¢
* tape: 001 Stack contents: $

28

Example NPDA
£={0, 1}

r={0,1,$ M0,e—0
{)

1,0—¢

1,0—¢

* tape: 001 Stack contents: 00 $

January 15, 2025 €821 Lecture 5 30

30

Example NPDA
£={0, 1}
r={0,1,$}

1,0—-¢

\\
\J1,0—-¢
* tape: 001 Stack contents: 00 $

January 15, 2025 €821 Lecture 5 31

31

Example NPDA
¥={0, 1}
r={0,1,%

‘,/\]0, £—0
1,0—¢
e$—¢
/1,0 -¢
» What language does this NPDA accept?

January 15, 2025 ©821 Lecture 5 33

33

Formal definition of NPDA

* NPDAM=(Q, Z, T, 9, qo, F) accepts
string w € 2* if w can be written as
W1iWoW3... Wi € (Z U {€})*, and
« there exist states ro, rq, o, ..., I, and
« there exist strings s, s, ..., sm in ([U {e})*
—rh=goands,=¢

—(r+1, b) €0(r;,, Wi.q, @), where s, = at, s..; = bt
forsometeTr*

—rm€F

January 15, 2025 €821 Lecture 5 35

35

Example NPDA
£={0, 1}
r={0,1,$}

1,0—-¢

\\
U105

* tape: 001
not accepted

January 15, 2025

Stack contents: 0 $

©s21 Lecture 5 32

32

Formal definition of NPDA

* ANPDA is a 6-tuple (Q, Z, T, 8, qo, F)
where:
— Qs a finite set called the states
— X is a finite set called the tape alphabet
- T'is afinite set called the stack alphabet
-0Qx(Zu{e)x(Tu{e}) > PQx(Fu{e})is

a function called the transition function

— Qo is an element of Q called the start state
—F is a subset of Q called the accept states

January 15, 2025 ©S21 Lecture 5 34

34

Example of formal definition

- 8(a0, &, €)= {(a,)}

+ Q={qo, q1, 92, g3}

© 2200 . 5(q1,0,€)={(qi, 0 other
e I'={0,1,8} - 3(qn, 1, 0) = {(q2 £)} values of
* F={qo, q3} . 8(c1,0)={(z &)} Bl

D)
- B(gz e 9)={@m) Al

January 15, 2025 €821 Lecture 5 36

36

Exercise

Design a NPDA for the language

{abick:i,j,k=0andi=jori=k}

January 15, 2025 €821 Lecture 5

37
Context-Free Grammars
start terminal
/
bol symbols
Symbol s a oAt
A—B \
B— #\non-terminal
7 symbols
production
39
Context-Free Grammars
Example: A — 0A1
A = 0A1 = 00A11 > A—B
000A111 = 000B111 = Bo#

000#111
+ a derivation of the string 000#111

+ set of all strings generated in this way is
the language of the grammar L(G)

« called a Context-Free Language

January 15, 2025 €821 Lecture 5

41

Context-free grammars and
languages

* languages recognized by a (N)FA are
exactly the languages described by
regular expressions, and they are called
the regular languages

* languages recognized by a NPDA are
exactly the languages described by
context-free grammars, and they are
called the context-free languages

January 15, 2025 €821 Lecture 5 38

38

Context-Free Grammars

* generate strings by repeated replacement
of non-terminals with string of terminals
and non-terminals
— write down start symbol (non-terminal)
—replace a non-terminal with the right-hand-

side of a rule that has that non-terminal as its
left-hand-side.
— repeat above until no more non-terminals

January 15, 2025 ©S21 Lecture 5 40

40

Context-Free Grammars

* Natural languages (e.g. Ei shorthand for
structure: multiple rules
<sentence> — <noun-phrase><vgrb-phrase> with same lhs
<noun-phrase> — <cpx-noun> y <cpx-noun>:

r
<verb-phrase> — <cpx-verb> | <cpx-verb><prep-phrase>
<prep-phrase> — <prep><cpx-noun>

<cpx-noun> — <article><noun>

<cpx-verb> — <verb>|<verb><noun-phrase>

<article> — a | the

<noun> — dog | cat | flower
<verb> — eats | sees
<prep> — with

Generate a string in
the language of this
grammar.

January 15, 2025 €821 Lecture 5 a2

42

Context-Free Grammars

» CFGs don’t capture natural languages
completely

computer languages often defined by CFG
— hierarchical structure

— slightly different notation often used “Backus-
Naur form”

— see next slide for example

January 15, 2025 €821 Lecture 5 43

43

CFG formal definition

* A context-free grammar is a 4-tuple
V,Z,R, S)
where
— Vs afinite set called the non-terminals
— X is afinite set (disjoint from V) called the terminals
— Ris afinite set of productions where each production
is a non-terminal and a string of terminals and non-
terminals.
— S € Vis the start variable (or start non-terminal)

January 15, 2025 ©821 Lecture 5 45

45

CFG formal definition

* notation: u ="v
—meaning: 3k = 0 and strings u;,...,u.; for
which u='u, ='u, ='... 2'u, =v

e

« if u = start symbol, this is a derivation of v
» The language of G, denoted L(G) is:
{wez*:S="w}

January 15, 2025 €821 Lecture 5 a7

47

Example CFG

<stmt> — <if-stmt> | <while-stmt> | <begin-stmt>

| <asgn-stmt>
<if-stmt> — IF <bool-expr> THEN <stmt> ELSE <stmt>
<while-stmt> — WHILE <bool-expr> DO <stmt>
<begin-stmt> — BEGIN <stmt-list> END
<stmt-list> — <stmt> | <stmt>; <stmt-list>
<asgn-stmt> — <var> := <arith-expr>
<bool-expr> — <arith-expr><compare-op><arith-expr>
<compare-op> — < |>|<|2|=
<arith-expr> — <var> | <const>

| (<arith-expr><arith-op><arith-expr>)

<arith-op> — + |- | *|/
<const>—0]1]2]3]4|5|6]7]8]9
<var>—al|b|c|...|x|y|z

January 15, 2025 €821 Lecture 5 44

44

CFG formal definition

* u, v, w are strings of non-terminals and
terminals, and A — w is a production:
“uAv yields uwv” notation: uAv = uwv
also: “yields in 1 step” notation: uAv =* uwv

* in general:
“yields in k steps” notation: u =k v

—meaning: there exists strings us,us, ..U for
which u=!u, =2'u, ='... 21u, =2v

January 15, 2025 ©S21 Lecture 5 46

46

