Non-regular languages

Pumping Lemma: Let L be a regular language. There exists an integer p ("pumping length") for which every $w \in L$ with $|w| \geq p$ can be written as $w = xyz$ such that

1. for every $i \geq 0$, $xy^iz \in L$, and
2. $|y| > 0$, and
3. $|xy| \leq p$.

Pumping Lemma Examples

- **Theorem:** $L = \{0^i1^j : i > j \}$ is not regular.
- **Proof:**
 - let p be the pumping length for L
 - choose $w = 0^{p+1}1^p$
 - $w = 000000000...01111111...1$
 - $w = xyz$, with $|y| > 0$ and $|xy| \leq p$.

Outline

- Non-regular languages: Pumping Lemma
- Pushdown Automata
- Context-Free Grammars and Languages

Pumping Lemma Examples

- 1 possibility:
 - $w = 000000000...01111111...1$
 - pumping on y gives strings in the language (?)
 - this seems like a problem...
 - Lemma states that for every $i \geq 0$, $xy^iz \in L$
 - xy^iz not in L. So L not regular.
Proof of the Pumping Lemma

– Let M be a FA that recognizes L.
– Set \(p \) = number of states of M.
– Consider \(w \in L \) with \(|w| \geq p\). On input \(w \), M must go through at least \(p+1 \) states. There must be a repeated state (among first \(p+1 \)).

FA Summary

• A “problem” is a language
• A “computation” receives an input and either accepts, rejects, or loops forever.
• A “computation” recognizes a language (it may also decide the language).
• Finite Automata perform simple computations that read the input from left to right and employ a finite memory.

FA Summary

• The languages recognized by FA are the regular languages.
• The regular languages are closed under union, concatenation, and star.
• Nondeterministic Finite Automata may have several choices at each step.
• NFAs recognize exactly the same languages that FAs do.

FA Summary

• Regular expressions are languages built up from the operations union, concatenation, and star.
• Regular expressions describe exactly the same languages that FAs (and NFAs) recognize.
• Some languages are not regular. This can be proved using the Pumping Lemma.

Machine view of FA

Machine view of FA
A more powerful machine

- Limitation of FA related to fact that they can only “remember” a bounded amount of information

- What is the simplest alteration that adds unbounded “memory” to our machine?

- Should be able to recognize, e.g., $\{0^n1^n : n \geq 0\}$
Pushdown Automata

- Finite control
- Input tape
- (Infinite) stack

Pushdown Automata

- Finite control
- Input tape
- (Infinite) stack

Pushdown Automata

- Finite control
- Input tape
- (Infinite) stack

Pushdown Automata

- Finite control
- Input tape
- (Infinite) stack

Pushdown Automata (PDA)

- We will define nondeterministic pushdown automata immediately
 - Potentially several choices of "next step"
- Deterministic PDA defined later
 - Weaker than NPDA
- Two ways to describe NPDA
 - Diagram
 - Formal definition

Note: often start by pushing $ marker onto stack so that we can detect 'empty stack'

NPDA diagram

- Tape alphabet Σ
- Stack alphabet Γ
- Transition label: (tape symbol read, stack symbol popped \rightarrow stack symbol pushed)

NPDA operation

- Taking a transition labeled:
 - $a, b \rightarrow c$
 - $a \in (\Sigma \cup \{\varepsilon\})$
 - $b, c \in (\Gamma \cup \{\varepsilon\})$
 - Read a from tape, or don't read from tape if $a = \varepsilon$
 - Pop b from stack, or don't pop from stack if $b = \varepsilon$
 - Push c onto stack, or don't push onto stack if $c = \varepsilon$
Example NPDA

$\Sigma = \{0, 1\}$
$\Gamma = \{0, 1, \$, $\}$

- tape: 0 0 1 1
- Stack contents: $\$

Example NPDA

$\Sigma = \{0, 1\}$
$\Gamma = \{0, 1, \$, $\}$

- tape: 0 0 1 1
- Stack contents: 0 0 $\$

Example NPDA

$\Sigma = \{0, 1\}$
$\Gamma = \{0, 1, \$, $\}$

- tape: 0 0 1 1
- Stack contents: 0 $\$

Example NPDA

$\Sigma = \{0, 1\}$
$\Gamma = \{0, 1, \$, $\}$

- tape: 0 0 1 1
- Stack contents: $\$

Example NPDA

$\Sigma = \{0, 1\}$
$\Gamma = \{0, 1, \$, $\}$

- tape: 0 0 1 1
- Stack contents: 0 $\$

Example NPDA

$\Sigma = \{0, 1\}$
$\Gamma = \{0, 1, \$, $\}$

- tape: 0 0 1 1
- Stack contents: $\$

Example NPDA

- **tape:** 0 0 1
 Stack contents: $

\[\sum = \{0, 1\} \]
\[\Gamma = \{0, 1, \$\} \]

\[\epsilon, \epsilon \rightarrow $ \]
\[0, \epsilon \rightarrow 0 \]
\[1, 0 \rightarrow \epsilon \]
\[\epsilon, \$ \rightarrow \epsilon \]
\[1, 0 \rightarrow \epsilon \]

\[\Sigma = \{0, 1\} \]
\[\Gamma = \{0, 1, \$\} \]

Stack contents: $

not accepted
Formal definition of NPDA

- A NPDA is a 6-tuple \((Q, \Sigma, \Gamma, \delta, q_0, F)\) where:
 - \(Q\) is a finite set called the states
 - \(\Sigma\) is a finite set called the tape alphabet
 - \(\Gamma\) is a finite set called the stack alphabet
 - \(\delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow P(Q \times (\Gamma \cup \{\epsilon\}))\) is a function called the transition function
 - \(q_0\) is an element of \(Q\) called the start state
 - \(F\) is a subset of \(Q\) called the accept states

Formal definition of NPDA

- NPDA \(M = (Q, \Sigma, \Gamma, \delta, q_0, F)\) accepts string \(w \in \Sigma^*\) if \(w\) can be written as \(w_1w_2w_3...w_m \in (\Sigma \cup \{\epsilon\})^*\), and there exist states \(r_0, r_1, r_2, ..., r_m\), and there exist strings \(s_0, s_1, ..., s_m\) in \((\Gamma \cup \{\epsilon\})^*\) such that:
 - \(r_0 = q_0\) and \(s_0 = \epsilon\)
 - \((r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)\), where \(s_i = at, s_{i+1} = bt\) for some \(t \in \Gamma^*\)
 - \(r_m \in F\)

Example of formal definition

- \(Q = \{q_0, q_1, q_2, q_3\}\)
- \(\Sigma = \{0, 1\}\)
- \(\Gamma = \{0, 1, \$\}\)
- \(F = \{q_0, q_3\}\)
- \(\delta(q_0, \epsilon, \epsilon) = (q_1, \$)\)
- \(\delta(q_1, 0, \epsilon) = (q_1, 0)\)
- \(\delta(q_1, 1, 0) = (q_2, \epsilon)\)
- \(\delta(q_2, 1, 0) = (q_2, \epsilon)\)
- \(\delta(q_2, \epsilon, \$) = (q_3, \epsilon)\)
- \(\delta(q_3, \epsilon, \epsilon) = \emptyset\)