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Non-regular languages
Pumping Lemma: Let L be a regular 

language. There exists an integer p 
(“pumping length”) for which every w	∈	L 
with |w| ≥	p can be written as

w = xyz     such that
1. for every i ≥	0, xyiz ∈	L , and 
2. |y| > 0, and
3. |xy| ≤	p.
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Non-regular languages
• Using the Pumping Lemma to prove L is 

not regular:
– assume L is regular
– then there exists a pumping length p
– select a string w ∈ L of length at least p
– argue that for every way of writing w = xyz 

that satisfies (2) and (3) of the Lemma, 
pumping on y yields a string not in L.

– contradiction.
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Proof of the Pumping Lemma
– Let M be a FA that recognizes L. 
– Set p = number of states of M.
– Consider w ∈	L with |w| ≥	p. On input w, M 

must go through at least p+1 states. There 
must be a repeated state (among first p+1).

M
x

y

z
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FA Summary
• A “problem” is a language
• A “computation” receives an input and 

either accepts, rejects, or loops forever. 
• A “computation” recognizes a language (it 

may also decide the language).
• Finite Automata perform simple 

computations that read the input from left 
to right and employ a finite memory. 
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FA Summary
• The languages recognized by FA are the 

regular languages.
• The regular languages are closed under 

union, concatenation, and star.
• Nondeterministic Finite Automata may 

have several choices at each step.
• NFAs recognize exactly the same 

languages that FAs do.
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FA Summary
• Regular expressions are languages built 

up from the operations union, 
concatenation, and star.

• Regular expressions describe exactly the 
same languages that FAs (and NFAs) 
recognize. 

• Some languages are not regular. This can 
be proved using the Pumping Lemma.
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Machine view of FA

0 1 1 0 0 1 1 1 0 1 0 0 1 0 1

q0

input tape

finite 
control

8

January 15, 2025 CS21 Lecture 5 9

Machine view of FA

0 1 1 0 0 1 1 1 0 1 0 0 1 0 1

q3

input tape

finite 
control
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Machine view of FA

0 1 1 0 0 1 1 1 0 1 0 0 1 0 1

q1

input tape

finite 
control

10

January 15, 2025 CS21 Lecture 5 11

Machine view of FA

0 1 1 0 0 1 1 1 0 1 0 0 1 0 1

q2

input tape

finite 
control etc…
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A more powerful machine
• limitation of FA related to fact that they can 

only “remember” a bounded amount of 
information

• What is the simplest alteration that adds 
unbounded “memory” to our machine?

• Should be able to recognize, e.g., {0n1n: n ≥ 0}
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Pushdown Automata

0 1 1 0 0 1 1 1 0 1 0 0 1 0 1

q0

input tapefinite 
control

0

1

1

0

:

(infinite) 
stack

New capabilities:

• can push symbol onto 
stack

• can pop symbol off of 
stack
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Pushdown Automata

0 0 1 1 0 1 1 1 0 1 0 0 1 0 1

q0

input tapefinite 
control

$

:
(infinite) 

stack
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Pushdown Automata

0 0 1 1 0 1 1 1 0 1 0 0 1 0 1

q1

input tapefinite 
control

0

:
(infinite) 

stack
$
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Pushdown Automata

0 0 1 1 0 1 1 1 0 1 0 0 1 0 1

q1

input tapefinite 
control

0

:

(infinite) 
stack $

0
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Pushdown Automata

0 0 1 1 0 1 1 1 0 1 0 0 1 0 1

q2

input tapefinite 
control

0

:
(infinite) 

stack
$
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Pushdown Automata

0 0 1 1 0 1 1 1 0 1 0 0 1 0 1

q2

input tapefinite 
control

$

:(infinite) 
stack

Note: often start by 
pushing $ marker onto 
stack so that we can 
detect “empty stack”
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Pushdown Automata (PDA)
• We will define nondeterministic pushdown 

automata immediately
– potentially several choices of “next step”

• Deterministic PDA defined later
– weaker than NPDA

• Two ways to describe NPDA
– diagram
– formal definition

19

January 15, 2025 CS21 Lecture 5 20

NPDA diagram
tape alphabet Σ
stack alphabet 𝚪

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

states

start state

accept states

transitions

transition label: (tape symbol read, stack 
symbol popped → stack symbol pushed)
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NPDA operation
• Taking a transition labeled:

a, b → c
– a ∈	(Σ ∪ {ε})
– b,c ∈	(Γ ∪ {ε})

– read a from tape, or don’t read from tape if a = ε 
– pop b from stack, or don’t pop from stack if b = ε
– push c onto stack, or don’t push onto stack if c = ε

21
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Example NPDA

• tape: 

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

1 100 Stack contents: $

22
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Example NPDA

• tape: 

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

1 100 Stack contents: 0 $
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Example NPDA

• tape: 

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

1 100 Stack contents: 0 $0
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Example NPDA

• tape: 

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

1 100 Stack contents: 0 $0
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Example NPDA

• tape: 

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

1 100 Stack contents: 0 $
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Example NPDA

• tape: 

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

1 100 Stack contents: $
accepted
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Example NPDA

• tape: 

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

100 Stack contents: $
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Example NPDA

• tape: 

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

100 Stack contents: 0 $
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Example NPDA

• tape: 

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

100 Stack contents: 0 $0
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Example NPDA

• tape: 

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

100 Stack contents: 0 $0

31
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Example NPDA

• tape: 

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

100 Stack contents: 0 $
not accepted
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Example NPDA

• What language does this NPDA accept?

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}
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Formal definition of NPDA
• A NPDA is a 6-tuple (Q, Σ, Γ, δ, q0, F) 

where:
– Q is a finite set called the states
– Σ is a finite set called the tape alphabet
– Γ	is a finite set called the stack alphabet
– δ:Q x (Σ ∪ {ε}) x (Γ ∪ {ε}) → P(Q x (Γ ∪ {ε})) is 

a function called the transition function 
– q0 is an element of Q called the start state
– F is a subset of Q called the accept states

34
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Formal definition of NPDA
• NPDA M = (Q, Σ, Γ,	 δ, q0, F) accepts 

string w ∈	Σ* if w can be written as
w1w2w3…wm ∈	(Σ ∪ {ε})*, and

• there exist states r0, r1, r2, …, rm, and
• there exist strings s0, s1, …, sm in (Γ ∪	{ε})*

– r0 = q0 and s0 = ε
– (ri+1, b) ∈	δ(ri, wi+1, a), where si = at, si+1 = bt 

for some t ∈ Γ∗
– rm ∈	F

35
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Example of formal definition

• Q = {q0, q1, q2, q3}
• Σ = {0,1}
• Γ	= {0, 1, $}
• F = {q0, q3}

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε
• δ(q0, ε, ε) = {(q1, $)}
• δ(q1, 0, ε) = {(q1, 0)}
• δ(q1, 1, 0) = {(q2, ε)} 
• δ(q2, 1, 0) = {(q2, ε)}
• δ(q2, ε, $) = {(q3, ε)}

q0 q1

q3 q2

other 
values of

δ(•, •, •) 
equal {}

36
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Exercise

Design a NPDA for the language

{aibjck : i, j, k ≥ 0 and i = j or i = k}
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Context-free grammars and 
languages

• languages recognized by a (N)FA are 
exactly the languages described by 
regular expressions, and they are called 
the regular languages

• languages recognized by a NPDA are 
exactly the languages described by 
context-free grammars, and they are 
called the context-free languages

38
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Context-Free Grammars

    
    A → 0A1
    A → B
    B → #

start 
symbol

terminal 
symbols

non-terminal 
symbols

production

39
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Context-Free Grammars
• generate strings by repeated replacement 

of non-terminals with string of terminals 
and non-terminals
– write down start symbol (non-terminal)
– replace a non-terminal with the right-hand-

side of a rule that has that non-terminal as its 
left-hand-side.

– repeat above until no more non-terminals

40
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Context-Free Grammars
Example: 
A ⇒ 0A1 ⇒ 00A11 ⇒ 
 000A111 ⇒ 000B111 ⇒ 
 000#111
• a derivation of the string 000#111
• set of all strings generated in this way is 

the language of the grammar L(G)
• called a Context-Free Language

A → 0A1
A → B
B → #

41
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Context-Free Grammars
• Natural languages (e.g. English) have this sort of 

structure:
 <sentence> → <noun-phrase><verb-phrase>
 <noun-phrase> → <cpx-noun> | <cpx-noun><prep-phrase>
 <verb-phrase> → <cpx-verb> | <cpx-verb><prep-phrase>
 <prep-phrase> → <prep><cpx-noun>
 <cpx-noun> → <article><noun>
 <cpx-verb> → <verb>|<verb><noun-phrase>
 <article> → a | the
 <noun> → dog | cat | flower
 <verb> → eats | sees
 <prep> → with

Generate a string in 
the language of this 
grammar.

shorthand for 
multiple rules 
with same lhs
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Context-Free Grammars
• CFGs don’t capture natural languages 

completely

• computer languages often defined by CFG
– hierarchical structure
– slightly different notation often used “Backus-

Naur form”
– see next slide for example

43

Example CFG 
<stmt> → <if-stmt> | <while-stmt> | <begin-stmt>
       | <asgn-stmt>
<if-stmt> → IF <bool-expr> THEN <stmt> ELSE <stmt>
<while-stmt> → WHILE <bool-expr> DO <stmt> 
<begin-stmt> → BEGIN <stmt-list> END
<stmt-list> → <stmt> | <stmt>; <stmt-list>
<asgn-stmt> → <var> := <arith-expr>
<bool-expr> → <arith-expr><compare-op><arith-expr>
<compare-op> → < | > | ≤ | ≥ | =
<arith-expr> → <var> | <const> 
    | (<arith-expr><arith-op><arith-expr>)
<arith-op> → + | - | * | /
<const> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<var> → a | b | c | … | x | y | z
January 15, 2025 44CS21 Lecture 5
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CFG formal definition
• A context-free grammar is a 4-tuple 

(V, Σ, R, S)
where

– V is a finite set called the non-terminals
– Σ is a finite set (disjoint from V) called the terminals
– R is a finite set of productions where each production 

is a non-terminal and a string of terminals and non-
terminals.

– S ∈	V is the start variable (or start non-terminal)

45
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CFG formal definition
• u, v, w are strings of non-terminals and 

terminals, and A → w is a production:
“uAv yields uwv” notation: uAv ⇒ uwv

also: “yields in 1 step” notation: uAv ⇒" uwv

• in general: 
“yields in k steps” notation: u ⇒# v

– meaning: there exists strings u1,u2,…uk-1 for 
which  u ⇒"u1 ⇒"u2 ⇒"… ⇒"uk-1 ⇒"v

46
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CFG formal definition
• notation: u ⇒∗v

– meaning: ∃	k ≥ 0 and strings u1,…,uk-1 for 
which  u ⇒"u1 ⇒"u2 ⇒"… ⇒"uk-1 ⇒"v

• if u = start symbol, this is a derivation of v 
• The language of G, denoted L(G) is:

{w ∈Σ* : S ⇒∗ w}
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