
1

CS21
Decidability and

Tractability
Lecture 5

January 15, 2025

January 15, 2025 CS21 Lecture 5 1

1

2

Non-regular languages
Pumping Lemma: Let L be a regular

language. There exists an integer p
(“pumping length”) for which every w	∈	L
with |w| ≥	p can be written as

w = xyz such that
1. for every i ≥	0, xyiz ∈	L , and
2. |y| > 0, and
3. |xy| ≤	p.

January 15, 2025 CS21 Lecture 5

2

3

Non-regular languages
• Using the Pumping Lemma to prove L is

not regular:
– assume L is regular
– then there exists a pumping length p
– select a string w ∈ L of length at least p
– argue that for every way of writing w = xyz

that satisfies (2) and (3) of the Lemma,
pumping on y yields a string not in L.

– contradiction.
January 15, 2025 CS21 Lecture 5

3

January 15, 2025 CS21 Lecture 5 4

Proof of the Pumping Lemma
– Let M be a FA that recognizes L.
– Set p = number of states of M.
– Consider w ∈	L with |w| ≥	p. On input w, M

must go through at least p+1 states. There
must be a repeated state (among first p+1).

M
x

y

z

4

January 15, 2025 CS21 Lecture 5 5

FA Summary
• A “problem” is a language
• A “computation” receives an input and

either accepts, rejects, or loops forever.
• A “computation” recognizes a language (it

may also decide the language).
• Finite Automata perform simple

computations that read the input from left
to right and employ a finite memory.

5

January 15, 2025 CS21 Lecture 5 6

FA Summary
• The languages recognized by FA are the

regular languages.
• The regular languages are closed under

union, concatenation, and star.
• Nondeterministic Finite Automata may

have several choices at each step.
• NFAs recognize exactly the same

languages that FAs do.

6

2

January 15, 2025 CS21 Lecture 5 7

FA Summary
• Regular expressions are languages built

up from the operations union,
concatenation, and star.

• Regular expressions describe exactly the
same languages that FAs (and NFAs)
recognize.

• Some languages are not regular. This can
be proved using the Pumping Lemma.

7

January 15, 2025 CS21 Lecture 5 8

Machine view of FA

0 1 1 0 0 1 1 1 0 1 0 0 1 0 1

q0

input tape

finite
control

8

January 15, 2025 CS21 Lecture 5 9

Machine view of FA

0 1 1 0 0 1 1 1 0 1 0 0 1 0 1

q3

input tape

finite
control

9

January 15, 2025 CS21 Lecture 5 10

Machine view of FA

0 1 1 0 0 1 1 1 0 1 0 0 1 0 1

q1

input tape

finite
control

10

January 15, 2025 CS21 Lecture 5 11

Machine view of FA

0 1 1 0 0 1 1 1 0 1 0 0 1 0 1

q2

input tape

finite
control etc…

11

January 15, 2025 CS21 Lecture 5 12

A more powerful machine
• limitation of FA related to fact that they can

only “remember” a bounded amount of
information

• What is the simplest alteration that adds
unbounded “memory” to our machine?

• Should be able to recognize, e.g., {0n1n: n ≥ 0}

12

3

January 15, 2025 CS21 Lecture 5 13

Pushdown Automata

0 1 1 0 0 1 1 1 0 1 0 0 1 0 1

q0

input tapefinite
control

0

1

1

0

:

(infinite)
stack

New capabilities:

• can push symbol onto
stack

• can pop symbol off of
stack

13

January 15, 2025 CS21 Lecture 5 14

Pushdown Automata

0 0 1 1 0 1 1 1 0 1 0 0 1 0 1

q0

input tapefinite
control

$

:
(infinite)

stack

14

January 15, 2025 CS21 Lecture 5 15

Pushdown Automata

0 0 1 1 0 1 1 1 0 1 0 0 1 0 1

q1

input tapefinite
control

0

:
(infinite)

stack
$

15

January 15, 2025 CS21 Lecture 5 16

Pushdown Automata

0 0 1 1 0 1 1 1 0 1 0 0 1 0 1

q1

input tapefinite
control

0

:

(infinite)
stack $

0

16

January 15, 2025 CS21 Lecture 5 17

Pushdown Automata

0 0 1 1 0 1 1 1 0 1 0 0 1 0 1

q2

input tapefinite
control

0

:
(infinite)

stack
$

17

January 15, 2025 CS21 Lecture 5 18

Pushdown Automata

0 0 1 1 0 1 1 1 0 1 0 0 1 0 1

q2

input tapefinite
control

$

:(infinite)
stack

Note: often start by
pushing $ marker onto
stack so that we can
detect “empty stack”

18

4

January 15, 2025 CS21 Lecture 5 19

Pushdown Automata (PDA)
• We will define nondeterministic pushdown

automata immediately
– potentially several choices of “next step”

• Deterministic PDA defined later
– weaker than NPDA

• Two ways to describe NPDA
– diagram
– formal definition

19

January 15, 2025 CS21 Lecture 5 20

NPDA diagram
tape alphabet Σ
stack alphabet 𝚪

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

states

start state

accept states

transitions

transition label: (tape symbol read, stack
symbol popped → stack symbol pushed)

20

January 15, 2025 CS21 Lecture 5 21

NPDA operation
• Taking a transition labeled:

a, b → c
– a ∈	(Σ ∪ {ε})
– b,c ∈	(Γ ∪ {ε})

– read a from tape, or don’t read from tape if a = ε
– pop b from stack, or don’t pop from stack if b = ε
– push c onto stack, or don’t push onto stack if c = ε

21

January 15, 2025 CS21 Lecture 5 22

Example NPDA

• tape:

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

1 100 Stack contents: $

22

January 15, 2025 CS21 Lecture 5 23

Example NPDA

• tape:

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

1 100 Stack contents: 0 $

23

January 15, 2025 CS21 Lecture 5 24

Example NPDA

• tape:

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

1 100 Stack contents: 0 $0

24

5

January 15, 2025 CS21 Lecture 5 25

Example NPDA

• tape:

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

1 100 Stack contents: 0 $0

25

January 15, 2025 CS21 Lecture 5 26

Example NPDA

• tape:

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

1 100 Stack contents: 0 $

26

January 15, 2025 CS21 Lecture 5 27

Example NPDA

• tape:

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

1 100 Stack contents: $
accepted

27

January 15, 2025 CS21 Lecture 5 28

Example NPDA

• tape:

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

100 Stack contents: $

28

January 15, 2025 CS21 Lecture 5 29

Example NPDA

• tape:

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

100 Stack contents: 0 $

29

January 15, 2025 CS21 Lecture 5 30

Example NPDA

• tape:

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

100 Stack contents: 0 $0

30

6

January 15, 2025 CS21 Lecture 5 31

Example NPDA

• tape:

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

100 Stack contents: 0 $0

31

January 15, 2025 CS21 Lecture 5 32

Example NPDA

• tape:

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

100 Stack contents: 0 $
not accepted

32

January 15, 2025 CS21 Lecture 5 33

Example NPDA

• What language does this NPDA accept?

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε

Σ = {0, 1}
𝚪	= {0, 1, $}

33

January 15, 2025 CS21 Lecture 5 34

Formal definition of NPDA
• A NPDA is a 6-tuple (Q, Σ, Γ, δ, q0, F)

where:
– Q is a finite set called the states
– Σ is a finite set called the tape alphabet
– Γ	is a finite set called the stack alphabet
– δ:Q x (Σ ∪ {ε}) x (Γ ∪ {ε}) → P(Q x (Γ ∪ {ε})) is

a function called the transition function
– q0 is an element of Q called the start state
– F is a subset of Q called the accept states

34

January 15, 2025 CS21 Lecture 5 35

Formal definition of NPDA
• NPDA M = (Q, Σ, Γ,	 δ, q0, F) accepts

string w ∈	Σ* if w can be written as
w1w2w3…wm ∈	(Σ ∪ {ε})*, and

• there exist states r0, r1, r2, …, rm, and
• there exist strings s0, s1, …, sm in (Γ ∪	{ε})*

– r0 = q0 and s0 = ε
– (ri+1, b) ∈	δ(ri, wi+1, a), where si = at, si+1 = bt

for some t ∈ Γ∗
– rm ∈	F

35

January 15, 2025 CS21 Lecture 5 36

Example of formal definition

• Q = {q0, q1, q2, q3}
• Σ = {0,1}
• Γ	= {0, 1, $}
• F = {q0, q3}

ε, ε → $

ε, $ → ε

1, 0 → ε

0, ε → 0

1, 0 → ε
• δ(q0, ε, ε) = {(q1, $)}
• δ(q1, 0, ε) = {(q1, 0)}
• δ(q1, 1, 0) = {(q2, ε)}
• δ(q2, 1, 0) = {(q2, ε)}
• δ(q2, ε, $) = {(q3, ε)}

q0 q1

q3 q2

other
values of

δ(•, •, •)
equal {}

36

7

January 15, 2025 CS21 Lecture 5 37

Exercise

Design a NPDA for the language

{aibjck : i, j, k ≥ 0 and i = j or i = k}

37

January 15, 2025 CS21 Lecture 5 38

Context-free grammars and
languages

• languages recognized by a (N)FA are
exactly the languages described by
regular expressions, and they are called
the regular languages

• languages recognized by a NPDA are
exactly the languages described by
context-free grammars, and they are
called the context-free languages

38

January 15, 2025 CS21 Lecture 5 39

Context-Free Grammars

 A → 0A1
 A → B
 B → #

start
symbol

terminal
symbols

non-terminal
symbols

production

39

January 15, 2025 CS21 Lecture 5 40

Context-Free Grammars
• generate strings by repeated replacement

of non-terminals with string of terminals
and non-terminals
– write down start symbol (non-terminal)
– replace a non-terminal with the right-hand-

side of a rule that has that non-terminal as its
left-hand-side.

– repeat above until no more non-terminals

40

January 15, 2025 CS21 Lecture 5 41

Context-Free Grammars
Example:
A ⇒ 0A1 ⇒ 00A11 ⇒
 000A111 ⇒ 000B111 ⇒
 000#111
• a derivation of the string 000#111
• set of all strings generated in this way is

the language of the grammar L(G)
• called a Context-Free Language

A → 0A1
A → B
B → #

41

January 15, 2025 CS21 Lecture 5 42

Context-Free Grammars
• Natural languages (e.g. English) have this sort of

structure:
 <sentence> → <noun-phrase><verb-phrase>
 <noun-phrase> → <cpx-noun> | <cpx-noun><prep-phrase>
 <verb-phrase> → <cpx-verb> | <cpx-verb><prep-phrase>
 <prep-phrase> → <prep><cpx-noun>
 <cpx-noun> → <article><noun>
 <cpx-verb> → <verb>|<verb><noun-phrase>
 <article> → a | the
 <noun> → dog | cat | flower
 <verb> → eats | sees
 <prep> → with

Generate a string in
the language of this
grammar.

shorthand for
multiple rules
with same lhs

42

8

January 15, 2025 CS21 Lecture 5 43

Context-Free Grammars
• CFGs don’t capture natural languages

completely

• computer languages often defined by CFG
– hierarchical structure
– slightly different notation often used “Backus-

Naur form”
– see next slide for example

43

Example CFG
<stmt> → <if-stmt> | <while-stmt> | <begin-stmt>
 | <asgn-stmt>
<if-stmt> → IF <bool-expr> THEN <stmt> ELSE <stmt>
<while-stmt> → WHILE <bool-expr> DO <stmt>
<begin-stmt> → BEGIN <stmt-list> END
<stmt-list> → <stmt> | <stmt>; <stmt-list>
<asgn-stmt> → <var> := <arith-expr>
<bool-expr> → <arith-expr><compare-op><arith-expr>
<compare-op> → < | > | ≤ | ≥ | =
<arith-expr> → <var> | <const>
 | (<arith-expr><arith-op><arith-expr>)
<arith-op> → + | - | * | /
<const> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<var> → a | b | c | … | x | y | z
January 15, 2025 44CS21 Lecture 5

44

January 15, 2025 CS21 Lecture 5 45

CFG formal definition
• A context-free grammar is a 4-tuple

(V, Σ, R, S)
where

– V is a finite set called the non-terminals
– Σ is a finite set (disjoint from V) called the terminals
– R is a finite set of productions where each production

is a non-terminal and a string of terminals and non-
terminals.

– S ∈	V is the start variable (or start non-terminal)

45

January 15, 2025 CS21 Lecture 5 46

CFG formal definition
• u, v, w are strings of non-terminals and

terminals, and A → w is a production:
“uAv yields uwv” notation: uAv ⇒ uwv

also: “yields in 1 step” notation: uAv ⇒" uwv

• in general:
“yields in k steps” notation: u ⇒# v

– meaning: there exists strings u1,u2,…uk-1 for
which u ⇒"u1 ⇒"u2 ⇒"… ⇒"uk-1 ⇒"v

46

January 15, 2025 CS21 Lecture 5 47

CFG formal definition
• notation: u ⇒∗v

– meaning: ∃	k ≥ 0 and strings u1,…,uk-1 for
which u ⇒"u1 ⇒"u2 ⇒"… ⇒"uk-1 ⇒"v

• if u = start symbol, this is a derivation of v
• The language of G, denoted L(G) is:

{w ∈Σ* : S ⇒∗ w}

47

