CS21
Decidability and Tractability

Lecture 4
January 11, 2021
Outline

• Regular Expressions
• FA and Regular Expressions
• Non-regular languages: Pumping Lemma
Regular expressions

• R is a regular expression if R is
 – a, for some $a \in \Sigma$
 – ε, the empty string
 – \emptyset, the empty set
 – $(R_1 \cup R_2)$, where R_1 and R_2 are reg. exprs.
 – $(R_1 \circ R_2)$, where R_1 and R_2 are reg. exprs.
 – (R_1^*), where R_1 is a regular expression

A reg. expression R describes the language $L(R)$.
Regular expressions

• example: $R = (0 \cup 1)$
 – if $\Sigma = \{0,1\}$ then use “Σ” as shorthand for R

• example: $R = 0 \circ \Sigma^*$
 – shorthand: omit “\circ” $R = 0\Sigma^*$
 – precedence: \ast, then \circ then \cup, unless override by parentheses
 – in example $R = 0(\Sigma^*)$, not $R = (0\Sigma)^*$
Some examples

• \{w : w has at least one 1\}
 \[= \Sigma^*1\Sigma^*\]

• \{w : w starts and ends with same symbol\}
 \[= 0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1\]

• \{w : |w| \leq 5\}
 \[= (\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)\]

• \{w : every 3^{rd} position of w is 1\}
 \[= (1\Sigma\Sigma)^*(\varepsilon \cup 1 \cup 1\Sigma)\]

alphabet
\[\Sigma = \{0, 1\}\]
Manipulating regular expressions

• The empty set and the empty string:
 – $R \cup \emptyset = R$
 – $R\varepsilon = \varepsilon R = R$
 – $R\emptyset = \emptyset R = \emptyset$
 – \cup and \circ behave like $+$, \times; \emptyset, ε behave like 0, 1

• additional identities:
 – $R \cup R = R$ (here $+$ and \cup differ)
 – $(R_1 \ast R_2) \ast R_1 \ast = (R_1 \cup R_2) \ast$
 – $R_1 (R_2 R_1) \ast = (R_1 R_2) \ast R_1$
Regular expressions and FA

- **Theorem**: a language L is recognized by a FA if and only if L is described by a regular expression.

Must prove *two* directions:

(\Rightarrow) L is recognized by a FA implies L is described by a regular expression

(\Leftarrow) L is described by a regular expression implies L is recognized by a FA.
Regular expressions and FA

(\Leftarrow) L is described by a regular expression implies L is recognized by a FA

Proof: given regular expression R we will build a NFA that recognizes $L(R)$.

then NFA, FA equivalence implies a FA for $L(R)$.

Regular expressions and FA

• R is a regular expression if R is

 – a, for some $a \in \Sigma$

 – ε, the empty string

 – \emptyset, the empty set
Regular expressions and FA

- \((R_1 \cup R_2)\), where \(R_1\) and \(R_2\) are reg. exprs.

- \((R_1 \circ R_2)\), where \(R_1\) and \(R_2\) are reg. exprs.

- \((R_1^*)\), where \(R_1\) is a regular expression
Regular expressions and FA

(\Rightarrow) L is recognized by a FA implies L is described by a regular expression

Proof: given FA M that recognizes L, we will

1. build an equivalent machine “Generalized Nondeterministic Finite Automaton” (GNFA)
2. convert the GNFA into a regular expression
Regular expressions and FA

• GNFA definition:
 – it is a NFA, but may have regular expressions labeling its transitions
 – GNFA accepts string \(w \in \Sigma^* \) if can be written
 \[w = w_1w_2w_3\ldots w_k \]
 where each \(w_i \in \Sigma^* \), and there is a path from the start state to an accept state in which the \(i^{th} \)
 transition traversed is labeled with \(R \) for which \(w_i \in L(R) \)
Regular expressions and FA

• Recall step 1: build an equivalent GNFA

• Our FA M is a GNFA.

• We will require “normal form” for GNFA to make the proof easier:
 – *single* accept state q_{accept} that has all possible incoming arrows
 – every state has all possible outgoing arrows; exception: start state q_0 has no self-loop
Regular expressions and FA

- converting our FA M into GNFA in normal form:
Regular expressions and FA

• On to step 2: convert the GNFA into a regular expression

 – if normal-form GNFA has two states:

 the regular expression R labeling the single transition describes the language recognized by the GNFA
Regular expressions and FA

– if GNFA has more than 2 states:

– select one “q_{rip}”; delete it; repair transitions so that machine still recognizes same language.

– repeat until only 2 states.
Regular expressions and FA

– how to repair the transitions:
– for every pair of states \(q_i\) and \(q_j\) do
Regular expressions and FA

– summary:
FA $M \rightarrow k$-state GNFA $\rightarrow (k-1)$-state GNFA $\rightarrow (k-2)$-state GNFA $\rightarrow \ldots \rightarrow 2$-state GNFA $\rightarrow R$

– want to prove that this procedure is correct, i.e. $L(R) = \text{language recognized by } M$

- $\text{FA } M \text{ equivalent to } k$-state GNFA
- i-state GNFA equivalent to $(i-1)$-state GNFA (we will prove…)
- 2-state GFNA equivalent to R
Regular expressions and FA

- **Claim**: i-state GNFA G equivalent to (i-1)-state GNFA G’ (obtained by removing q_{rip})

- **Proof**:
 - if G accepts string w, then it does so by entering states: $q_0, q_1, q_2, q_3, \ldots, q_{\text{accept}}$
 - if none are q_{rip} then G’ accepts w (see slide)
 - else, break state sequence into runs of q_{rip}: $q_0q_1\ldots q_i q_{\text{rip}} q_{\text{rip}} \ldots q_{\text{rip}} q_j \ldots q_{\text{accept}}$
 - transition from q_i to q_j in G’ allows all strings taking G from q_i to q_j using q_{rip} (see slide)
 - thus G’ accepts w
Regular expressions and FA

\[(R_1)(R_2)^*(R_3) \cup (R_4) \]
Regular expressions and FA

\[(R_1)(R_2)^*(R_3) \cup (R_4)\]
Regular expressions and FA

– **Proof** (continued):

 • if G' accepts string w, then every transition from q_i to q_j traversed in G' corresponds to

 either

 a transition from q_i to q_j in G
 or

 transitions from q_i to q_j via q_{rip} in G

 • In both cases G accepts w.

 • Conclude: G and G' recognize the same language.
Regular expressions and FA

• **Theorem**: a language \(L \) is recognized by a FA iff \(L \) is described by a regular expr.

• Languages recognized by a FA are called **regular languages**.

• Rephrasings what we know so far:
 – regular languages closed under 3 operations
 – NFA recognize exactly the **regular languages**
 – regular expressions describe exactly the **regular languages**
Limits on the power of FA

• Is every language describable by a sufficiently complex regular expression?
• If someone asks you to design a FA for a language that seems hard, how do you know when to give up?

• Is this language regular?
 \{w : w has an equal # of “01” and “10” substrings\}
Limits on the power of FA

• Intuition:
 – FA can only remember finite amount of information. They cannot count
 – languages that “entail counting” should be non-regular…

• Intuition not enough:

\{w : w has an equal # of “01” and “10” substrings\}

= \Sigma^*0 \cup \Sigma^*1

but \{w : w has an equal # of “0” and “1” substrings\} is not regular!
Limits on the power of FA

How do you *prove* that there is *no* Finite Automaton recognizing a given language?