Outline

- FA, Regular Expression equivalence
- Non-regular languages: Pumping Lemma
 ** first problem set out today

Regular expressions and FA

- **Theorem**: a language \(L \) is recognized by a FA if and only if \(L \) is described by a regular expression.
 Must prove two directions:
 \((\Rightarrow)\) L is recognized by a FA implies \(L \) is described by a regular expression
 \((\Leftarrow)\) L is described by a regular expression implies L is recognized by a FA.

Proof: given FA \(M \) that recognizes \(L \), we will

1. build an equivalent machine "Generalized Nondeterministic Finite Automaton" (GNFA)
2. convert the GNFA into a regular expression

Regular expressions and FA

- GNFA definition:
 - it is a NFA, but may have regular expressions labeling its transitions
 - GNFA accepts string \(w \in \Sigma^* \) if can be written
 \[w = w_1w_2\ldots w_k \]
 where each \(w_i \in \Sigma^* \), and there is a path from the start state to an accept state in which the \(i \)th transition traversed is labeled with \(R \) for which \(w_i \in L(R) \)

Recall step 1: build an equivalent GNFA

- Our FA \(M \) is a GNFA.
- We will require "normal form" for GNFA to make the proof easier:
 - single accept state \(q_{\text{accept}} \) that has all possible incoming arrows
 - every state has all possible outgoing arrows; exception: start state \(q_0 \) has no self-loop
Regular expressions and FA

• converting our FA M into GNFA in normal form:

1. Convert M into a GNFA with k states.
2. Convert the GNFA into a regular expression R.

- if normal-form GNFA has two states:
 the regular expression R labeling the single transition describes the language recognized by the GNFA.

- if GNFA has more than 2 states:
 - select one "$q_{rip}\)"; delete it; repair transitions so that machine still recognizes same language.
 - repeat until only 2 states.

- how to repair the transitions:
 - for every pair of states q_i and q_j do

 \[
 q_i \to q_j \text{ in } M \\text{ allows all strings taking } M \text{ from } q_i \text{ to } q_j \text{ using } q_{rip} \text{ (see slide)}
 \]

 \[
 \text{thus } G' \text{ accepts } w
 \]

- summary:
 FA $M \to k$-state GNFA $\rightarrow (k-1)$-state GNFA $\rightarrow (k-2)$-state GNFA $\rightarrow \ldots \rightarrow 2$-state GNFA $\rightarrow R$
 want to prove that this procedure is correct, i.e. $L(R) = \text{language recognized by } M$

 - FA M equivalent to k-state GNFA
 - i-state GNFA equivalent to $(i-1)$-state GNFA (we will prove...)
 - 2-state GFNA equivalent to R

- Claim: i-state GNFA G equivalent to $(i-1)$-state GNFA G' (obtained by removing q_{rip})
- Proof:
 - if G accepts string w, then it does so by entering states: q_0, q_1, q_2, ... q_{accept}
 - else, break state sequence into runs of q_0:
 $q_0 \rightarrow q_0q_0 \rightarrow \ldots \rightarrow q_0q_{accept}$
 - transition from q_0 to q_i in G' allows all strings taking G from q_0 to q_i using q_{rip} (see slide)
 - thus G' accepts w
— **Proof** (continued):
 - if G' accepts string w, then every transition from q_i to q_j traversed in G' corresponds to either a transition from q_i to q_j in G or transitions from q_i to q_j via q_{ri} in G.
 - In both cases G accepts w.
 - Conclude: G and G' recognize the same language.

Theorem: a language L is recognized by a FA iff L is described by a regular expression.

Languages recognized by a FA are called regular languages.

Rephrasing what we know so far:
- regular languages closed under 3 operations
- NFA recognize exactly the regular languages
- regular expressions describe exactly the regular languages

Limits on the power of FA

- Is every language describable by a sufficiently complex regular expression?
 - If someone asks you to design a FA for a language that seems hard, how do you know when to give up?

Is this language regular?

w has an equal # of "01" and "10" substrings} = 0^*1^* \cup 1^*0^*$

but w has an equal # of "0" and "1" substrings} is not regular!
How do you prove that there is no Finite Automaton recognizing a given language?

Pumping Lemma: Let L be a regular language. There exists an integer p ("pumping length") for which every $w \in L$ with $|w| \geq p$ can be written as $w = xyz$ such that
1. for every $i \geq 0$, $xy^iz \in L$, and
2. $|y| > 0$, and
3. $|xy| \leq p$.

Using the Pumping Lemma to prove L is not regular:

- Assume L is regular
- Then there exists a pumping length p
- Select a string $w \in L$ of length at least p
- Argue that for every way of writing $w = xyz$ that satisfies (2) and (3) of the Lemma, pumping on y yields a string not in L.
- Contradiction.

Theorem: $L = \{0^n1^n : n \geq 0\}$ is not regular.

Proof:
- Let p be the pumping length for L
- Choose $w = 0^p1^p$
 - $w = 00000000...01111111...1$
 - $w = xyz$, with $|y| > 0$ and $|xy| \leq p$.

3 possibilities:

- $w = 00000000...01111111...1$
- $w = 00000000...01111111...1$
- $w = 00000000...01111111...1$

- In each case, pumping on y gives a string not in language L.

Theorem: $L = \{w : w$ has an equal # of 0s and 1s $\}$ is not regular.

Proof:
- Let p be the pumping length for L
- Choose $w = 0^p1^p$
 - $w = 00000000...01111111...1$
 - $w = xyz$, with $|y| > 0$ and $|xy| \leq p$.

3 possibilities:

- $w = 00000000...01111111...1$
- $w = 00000000...01111111...1$
- $w = 00000000...01111111...1$

- In each case, pumping on y gives a string not in language L.

Theorem: $L = \{w : w$ has an equal # of 0s and 1s $\}$ is not regular.

Proof:
- Let p be the pumping length for L
- Choose $w = 0^p1^p$
 - $w = 00000000...01111111...1$
 - $w = xyz$, with $|y| > 0$ and $|xy| \leq p$.

3 possibilities:

- $w = 00000000...01111111...1$
- $w = 00000000...01111111...1$
- $w = 00000000...01111111...1$

- In each case, pumping on y gives a string not in language L.

Pumping Lemma Examples

– 3 possibilities:
 \[w = 000000000...0111111111...1\]
 \[w = 000000000...01111111111...1\]
 \[w = 000000000...01111111111...1\]

– first 2 cases, pumping on \(y\) gives a string not in language \(L\); 3rd case a problem!

– recall condition 3: \(|xy| \leq p\)

– since \(w = 0^p1^p\) we know more about how it can be divided, and this case cannot arise:
 \[w = 000000000...01111111111...1\]

– so we do get a contradiction.

– conclude that \(L\) is not regular.