CS21
Decidability
and
Tractability
Lecture 4
January 10,
2024

Regular expressions
• R is a regular expression if R is
 – a, for some a ∈ Σ
 – ε, the empty string
 – Ø, the empty set
 – (R₁ ∪ R₂), where R₁ and R₂ are reg. exprs.
 – (R₁ ∘ R₂), where R₁ and R₂ are reg. exprs.
 – (R₁*), where R₁ is a regular expression
A reg. expression R describes the language L(R).

January 10, 2024
CS21 Lecture 4

Regular expressions and FA
• Theorem: a language L is recognized by a
 FA if and only if L is described by a regular
 expression.
 Must prove two directions:
 (⇒) L is recognized by a FA implies L is
 described by a regular expression
 (⇐) L is described by a regular expression
 implies L is recognized by a FA.

January 10, 2024
CS21 Lecture 4

Regular expressions and FA
(⇒) L is described by a regular expression
 implies L is recognized by a FA

Proof: given regular expression R we will
 build a NFA that recognizes L(R).
 then NFA, FA equivalence implies a FA for
 L(R).

January 10, 2024
CS21 Lecture 4

Regular expressions and FA
• R is a regular expression if R is
 – a, for some a ∈ Σ
 – ε, the empty string
 – Ø, the empty set

January 10, 2024
CS21 Lecture 4

Regular expressions and FA
• R is a regular expression if R is
 – (R₁ ∪ R₂), where R₁ and R₂ are reg. exprs.
 – (R₁ ∘ R₂), where R₁ and R₂ are reg. exprs.
 – (R₁*), where R₁ is a regular expression

January 10, 2024
CS21 Lecture 4
Theorem: a language \(L \) is recognized by a FA if and only if \(L \) is described by a regular expression.

Must prove two directions:

(\(\Rightarrow \)) \(L \) is recognized by a FA implies \(L \) is described by a regular expression

(\(\Leftarrow \)) \(L \) is described by a regular expression implies \(L \) is recognized by a FA.

Proof: given FA \(M \) that recognizes \(L \), we will

1. build an equivalent machine "Generalized Nondeterministic Finite Automation" (GNFA)
2. convert the GNFA into a regular expression

GNFA definition:

- it is a NFA, but may have regular expressions labeling its transitions
- GNFA accepts string \(w \in \Sigma^* \) if can be written \(w = w_1 w_2 w_3 \ldots w_k \) where each \(w_i \in \Sigma^* \), and there is a path from the start state to an accept state in which the \(i \)th transition traversed is labeled with \(R \) for which \(w_i \in L(R) \)

Recall step 1: build an equivalent GNFA

- Our FA \(M \) is a GNFA.
- We will require "normal form" for GNFA to make the proof easier:
 - single accept state with all possible incoming arrows
 - every state has all possible outgoing arrows; exception: start state has no self-loop

On to step 2: convert the GNFA into a regular expression

- if normal-form GNFA has two states:
 - the regular expression \(R \) labeling the single transition describes the language recognized by the GNFA.
Regular expressions and FA

- if GNFA has more than 2 states:
 - select one “q_{rip}”; delete it; repair transitions so that machine still recognizes same language.
 - repeat until only 2 states.

January 10, 2024
CS21 Lecture 4

Regular expressions and FA

- how to repair the transitions:
 - for every pair of states q_i and q_j do

 $$(R_1)(R_2)^*(R_3) \cup (R_4)$$

January 10, 2024
CS21 Lecture 4

Regular expressions and FA

- summary:
 - FA $M \rightarrow k$-state GNFA $\rightarrow (k-1)$-state GNFA $\rightarrow (k-2)$-state GNFA $\rightarrow \ldots \rightarrow 2$-state GNFA $\rightarrow R$
 - want to prove that this procedure is correct, i.e. $L(R) =$ language recognized by M

 - M equivalent to k-state GNFA
 - i-state GNFA equivalent to $(i-1)$-state GNFA (we will prove...)
 - 2-state GFNA equivalent to R

January 10, 2024
CS21 Lecture 4

Regular expressions and FA

- Claim: i-state GNFA G equivalent to $(i-1)$-state GNFA G' (obtained by removing q_{rip})

- Proof:
 - if G accepts string w, then it does so by entering states: $q_0, q_1, q_2, \ldots, q_{accept}$
 - if none are q_{rip} then G' accepts w (see slide)
 - else, break state sequence into runs of q_{rip}:

 $$(q_0) (q_1) (q_{rip}) (q_2, \ldots, q_{accept})$$

 - transition from q_i to q_j in G' allows all strings taking G from q_i to q_j using q_{rip} (see slide)
 - thus G' accepts w

January 10, 2024
CS21 Lecture 4

Regular expressions and FA

Regular expressions and FA

- if GNFA has more than 2 states:
 - select one “q_{rip}”; delete it; repair transitions so that machine still recognizes same language.
 - repeat until only 2 states.

January 10, 2024
CS21 Lecture 4

Regular expressions and FA

- how to repair the transitions:
 - for every pair of states q_i and q_j do

 $$(R_1)(R_2)^*(R_3) \cup (R_4)$$

January 10, 2024
CS21 Lecture 4
Regular expressions and FA

- **Proof (continued):**
 - if \(G' \) accepts string \(w \), then every transition from \(q_i \) to \(q_j \) traversed in \(G' \) corresponds to either a transition from \(q_i \) to \(q_j \) in \(G \) or transitions from \(q_i \) to \(q_j \) via \(q_{ri} \) in \(G \).
 - In both cases \(G \) accepts \(w \).
 - Conclude: \(G \) and \(G' \) recognize the same language.

Limits on the power of FA

- Is every language describable by a sufficiently complex regular expression?
- If someone asks you to design a FA for a language that seems hard, how do you know when to give up?
- Is this language regular?
 \(\{w : w \text{ has an equal # of "01" and "10" substrings}\} \)

Non-regular languages

Pumping Lemma: Let \(L \) be a regular language. There exists an integer \(p \) ("pumping length") for which every \(w \in L \) with \(|w| \geq p \) can be written as \(w = xyz \) such that
1. for every \(i \geq 0 \), \(xyz \in L \), and
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).
Non-regular languages

- Using the Pumping Lemma to prove L is not regular:
 - assume L is regular
 - then there exists a pumping length p
 - select a string $w \in L$ of length at least p
 - argue that for every way of writing $w = xyz$ that satisfies (2) and (3) of the Lemma, pumping on y yields a string not in L.
 - contradiction.

Pumping Lemma Examples

- Theorem: $L = \{0^n1^n : n \geq 0\}$ is not regular.
 - Proof:
 - let p be the pumping length for L
 - choose $w = 0^p1^p$
 $$w = 00000000...01111111...1$$
 - $w = xyz$, with $|y| > 0$ and $|xy| \leq p$.

Pumping Lemma Examples

- 3 possibilities:
 - $w = 00000000...01111111...1$
 - $w = 00000000...01111111...1$
 - $w = 00000000...01111111...1$
 - in each case, pumping on y gives a string not in language L.

Pumping Lemma Examples

- Theorem: $L = \{w : w$ has an equal # of 0s and 1s$\}$ is not regular.
 - Proof:
 - let p be the pumping length for L
 - choose $w = 0^p1^p$
 $$w = 00000000...01111111...1$$
 - $w = xyz$, with $|y| > 0$ and $|xy| \leq p$.

Pumping Lemma Examples

- 3 possibilities:
 - $w = 00000000...01111111...1$
 - $w = 00000000...01111111...1$
 - $w = 00000000...01111111...1$
 - first 2 cases, pumping on y gives a string not in language L; 3rd case a problem!

Pumping Lemma Examples

- recall condition 3: $|xy| \leq p$
 - since $w = 0^p1^p$, we know more about how it can be divided, and this case cannot arise:
 $$w = 00000000...01111111...1$$
 - so we do get a contradiction.
 - conclude that L is not regular.